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Abstract
Background  Quantitative image analysis using pre-operative magnetic resonance imaging (MRI) has been able to predict 
survival in patients with glioblastoma (GBM). The study explored the role of postoperative radiation (RT) planning MRI-
based radiomics to predict the outcomes, with features extracted from the gross tumor volume (GTV) and clinical target 
volume (CTV).
Methods  Patients with IDH-wildtype GBM treated with adjuvant RT having MRI as a part of RT planning process were 
included in the study. 546 features were extracted from each GTV and CTV. A LASSO Cox model was applied, and internal 
validation was performed using leave-one-out cross-validation with overall survival as endpoint. Cross-validated time-
dependent area under curve (AUC) was constructed to test the efficacy of the radiomics model, and clinical features were 
used to generate a combined model. Analysis was done for the entire group and in individual surgical groups-gross total 
excision (GTR), subtotal resection (STR), and biopsy.
Results  235 patients were included in the study with 57, 118, and 60 in the GTR, STR, and biopsy subgroup, respectively. 
Using the radiomics model, binary risk groups were feasible in the entire cohort (p < 0.01) and biopsy group (p = 0.04), but 
not in the other two surgical groups individually. The integrated AUC (iAUC) was 0.613 for radiomics-based classification 
in the biopsy subgroup, which improved to 0.632 with the inclusion of clinical features.
Conclusion  Imaging features extracted from the GTV and CTV regions can lead to risk-stratification of GBM undergoing 
biopsy, while the utility in other individual subgroups needs to be further explored.
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Introduction

Radiomics involve quantitative image analysis aided by 
computer vision with an emerging role in medicine and 
oncology as noninvasive biomarkers [1]. The high-dimen-
sional imaging data can be linked to a diverse range of 
biological and clinical endpoints, including histological 
diagnosis, molecular characteristics, treatment response, 
survival outcomes, and toxicity estimation [2]. Magnetic 
resonance imaging (MRI) is considered the gold standard 
imaging modality in central nervous system (CNS) tumors 
due to superior anatomical representation of intracranial 
structures compared to other imaging modalities as well as 
functional information obtained from advanced sequences 
like perfusion, diffusion, spectroscopy [3]. Radiomics 
research has been widely applied in CNS tumors includ-
ing gliomas in characterizing tumor histology (astrocy-
toma vs. oligodendroglioma), tumor grade (low grade vs. 
high grade), risk-stratification, and quantitative response 
assessment [4, 5].

Glioblastoma (GBM) is a grade 4 glial neoplasm, asso-
ciated with poor prognosis with a median survival of 
15 months [6]. Following maximal safe resection, patients 
are treated with radiotherapy (RT) along with concurrent 
temozolomide. Radiation target volumes constitute gross 
tumor volume (GTV) and the clinical target volume (CTV) 
accounting for macroscopic residual disease along with sur-
gical cavity and microscopic infiltrative disease in the peri-
tumoral region, respectively [7]. Following RT completion, 
patients are treated with adjuvant temozolomide and serial 
interval MRIs are performed to monitor disease status. As a 
part of RT planning, patients undergo computed tomography 
(CT) for dose computation purposes and MRI for delineation 
of target volumes and organs at risk. A significant body of 
work has been undertaken utilizing pre-operative MRI for 
patients with GBM, demonstrating the feasibility of prog-
nostication and identifying different subsets of patients with 
variable outcomes [4]. However, limited data is available 
using radiomics on post-surgery or pre-radiation imaging, 
which can tentatively provide important insights into bio-
logical behavior. In this study, we have undertaken explora-
tory analysis to investigate the impact of quantitative fea-
tures obtained from RT planning MRI, as well as the impact 
across different surgical resection subsets.

Methods

Patient selection

Patients with newly diagnosed IDH-wildtype GBM treated 
with RT at Sunnybrook Health Sciences Centre, Toronto, 
between January 2014 and December 2018 were consid-
ered eligible for the retrospective study. The institutional 
ethics committee approved the study, and the require-
ment for informed consent was waived. Patients who had 
T1-weighted gadolinium contrast-enhanced (T1-CE), 
T2-weighted FLAIR (T2-FLAIR), and apparent diffu-
sion coefficient (ADC) MRI sequences and completed the 
scheduled course of RT were considered eligible for the 
study. Patients with prior RT, missing survival informa-
tion, missing or motion artifact corrupted images were 
excluded.

Radiation planning contour extraction and image 
preprocessing

Patients were treated with RT and chemotherapy following 
surgery according to standard protocols [6, 8]. Following 
consultation and decision for RT, planning CT and MRI 
was performed for all patients. Radiation planning MRIs 
were acquired on GE Signa HDxT 1.5 T MRI scanners (GE 
Medical Systems, WI, USA) or Philips Ingenia 1.5 T sys-
tems (Philips Medical, WI, USA). The slice thickness for 
T1-CE, T2-FLAIR, and ADC was 1, 2, and 5 mm, respec-
tively. The RT target volumes were drawn by the responsi-
ble radiation oncologists. GTV encompassed the enhancing 
residual disease on the T1-CE sequence and the surgical 
cavity. CTV included a 1.5 cm expansion beyond the GTV 
typically encompassing the peritumoral region (PTR) iden-
tified as hyperintense region on T2-FLAIR, duly edited 
from anatomical barriers like the falx, tentorium cerebelli, 
and bone. A planning target volume (PTV) of 5 mm was 
used. All patients were treated on a linear accelerator device 
using intensity-modulated RT with image guidance. Typi-
cal dose prescriptions included 60 Gy in 30 fractions over 
6 weeks in patients less than 65 years or 40 Gy in 15 frac-
tions over 3 weeks in elderly patients or patients with poor 
performance status. The decision regarding concurrent and 
adjuvant temozolomide was taken by the responsible neuro-
oncologist and radiation oncologist.

Contours for the GTV and CTV that were planned on 
fused CT/T1-CE images in Pinnacle (Philips Medical, WI, 
USA) were exported into Matlab R2018b (The Mathworks, 
Inc., MA, USA), where the CT-based contours were trans-
formed to the T1-CE reference frame using the CT/T1-CE 
registration information. Images were skull stripped using 
HD-BET [9], and then the T2-FLAIR and ADC volumes 
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were rigidly registered to the corresponding T1-CE vol-
umes using the FMIRB Software Library (FSL) tool FLIRT 
[10–12]. The contours and images were resampled to a uni-
form resolution of 1 mm3, N4 bias field corrected [13, 14] 
and intensity normalized by histogram matching [15–17] 
to the T1-CE and T2-FLAIR images acquired on the GE 
scanners. Finally, the CTV contours were manually refined 
using ITK-SNAP [18] (http://​www.​itksn​ap.​org) to omit the 
ventricles, prominent sulci, and the skull where applicable, 
and the GTV was subtracted from the CTV to generate two 
disjoint contours.

Feature extraction

Radiomic features were extracted from the GTV and modi-
fied CTV for each of the three MRI sequences. Fixed bin 
width (FBW) quantization was used to discretize pixel inten-
sities within each contour. To determine the FBW for each 
modality and contour type, the minimum and maximum 
intensities were measured, and the FBW was selected as the 
maximum width that produced bin counts greater than or 
equal to 30. Feature extraction was performed using PyRa-
diomics [19] software V2.2.0. The feature set included the 
following: 18 first-order statistical features; 22 gray level 

co-occurrence matrix features; 16 gray level size zone fea-
tures; 16 gray level run length matrix features; 5 neighbor-
ing gray tone difference matrix features; and 14 gray level 
dependence matrix features. Ninety-one features were 
extracted for the GTV and CTV for each of the three MR 
modalities, resulting in a total of 546 radiomic features per 
patient. A detailed description of the features can be found 
on the PyRadiomics website (https://​pyrad​iomics.​readt​
hedocs.​io). A schematic of the data processing is shown in 
Fig. 1.

Statistical analysis

Risk modelling

The statistical analysis was performed using R V4.0.3 [20] 
(http://​www.R-​proje​ct.​org). Four independent models were 
considered: one including all patients and one for each of the 
three surgical treatment subgroups i.e., gross total resection, 
subtotal resection, and biopsy. Internal validation was per-
formed using leave-one-out cross-validation. First, a patient 
was left out, and the radiomic features from the remain-
ing patients were shifted and scaled to zero mean and unit 
standard deviation using the caret [21] package function 
“PreProcess”, and then the shifting/scaling parameters were 

Fig. 1   Workflow for image preprocessing and feature extraction

http://www.itksnap.org
https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
http://www.R-project.org
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applied to the test patient. Using the package glmnet [22, 23], 
the radiomics signatures were constructed by least absolute 
shrinkage and selection operator (LASSO) Cox regression. 
To reduce potential overfitting, the regularization weight λ 
was optimized to minimize the tenfold cross-validation error 
on the training set. The fitted LASSO Cox model was then 
applied to the training and test patients and radiomics risk 
scores were derived by a linear combination of the features 
weighed by their model coefficients. The median of the train-
ing patients’ radiomics risk scores was used as a threshold 
to assign the test patient to either low or high risk. Using the 
survival [24, 25] package, Cox proportional hazard models 
were fit to the clinical features of the training data, which 
included age, GTV volume, and surgical treatment, and lin-
ear predictions were made on the test patient to produce a 
clinical risk score. Additionally, a combined radiomics and 
clinical Cox model was fit on the training data and applied to 
the test patient to create a combined risk score. All modeling 
steps were repeated from scratch for each left-out patient. A 
flowchart of the leave-one-out cross-validation procedure is 
shown in Supplementary Fig. 1.

Evaluation of predictive accuracy

Cross-validated Kaplan–Meier curves for high/low overall 
survival (OS) risk were constructed using the survival pack-
age function “survfit.” The split into binary risk groups (high 
and low) were obtained using the major split as obtained 
from the algorithm. The date of surgery was considered as 
baseline for the survival analysis. To assign statistical sig-
nificance to the log-rank tests, the permutation distributions 
of the log-rank statistics were obtained by randomly per-
muting the correspondence between radiomic features and 
OS and repeating the entire leave-one-out cross-validation 
procedure 100 times. To test the hypothesis of predicting OS 
using radiomic features, the proportion of permuted log-rank 
statistics greater than or equal to the un-permuted statistic 
was taken as the significance level [26]. A weighted log-rank 
test was used (G-rho rank test, rho = 1). The cross-validated 
time-dependent area under the receiver operator character-
istic curves for the radiomics, clinical, and combined risk 
scores were generated using the package risksetROC [27], 
and the integrated areas under the time-dependent curves 
(iAUC) were evaluated with the function “risksetAUC.” To 
evaluate the incremental value of radiomics to clinical in 
OS prediction, the null hypothesis that radiomics are inde-
pendent of OS and clinical variables was tested by obtain-
ing the permutation distribution of the iAUCs. In this case, 
the correspondence between radiomic features and OS were 
randomly permuted while clinical variables were left un-
permuted and the leave-one-out cross validation procedure 
was repeated 100 times. The difference in iAUC measures 

between the combined and clinical models was used as the 
test metric. The proportion of iAUC differences with per-
muted radiomic features greater than or equal to the un-
permuted iAUC differences were taken as the significance 
level. Kendall’s τb was used to test the association between 
the predicted radiomic risk scores and surgical treatment. 
Normality of the radiomics risk scores was assessed with 
the Shapiro–Wilk test and a one-way ANOVA or Kurskal-
Wallis test for risk scores by surgical treatment was used 
where appropriate. p-values < 0.05 were taken as significant.

Results

Clinical characteristics

A total of 235 patients were included in the study. Patients 
undergoing gross total resection (GTR), subtotal resection 
(STR), and biopsy were 24%, 50%, and 26% of the cohort, 
respectively. The median interval between surgery and plan-
ning MRI was 19 days. The six week long RT course was 
delivered to 56% of patients. Concurrent and adjuvant temo-
zolomide was used in 91% and 65% of patients, respectively. 
The median OS for all patients was 13 months. The detailed 
clinical and treatment characteristics for all patients as well 
as the surgical treatment subgroups are listed in Table 1.

Radiomics risk stratification

The cross-validated Kaplan–Meier survival curves for classi-
fying patients into low- or high-risk groups according to the 
radiomics signatures for each of the four patient sub-group-
ings are shown in Fig. 2. The radiomics signatures derived 
from the inclusion of all surgery subtypes stratified the 
patients into low-risk and high-risk groups with G-rho per-
mutation test p-value < 0.01. For the GTR and STR models, 
the radiomics signature could not stratify risk groups with 
statistical significance. In the biopsy subgroup model, the 
radiomics signature stratified patients into low-risk and high-
risk groups (p = 0.04). A boxplot of the predicted radiomics 
risk scores as well stratified by surgical treatment are shown 
in Fig. 3, showing significantly higher risk in patients with a 
higher residual disease post-surgery (biopsy > STR > GTR).

Survival prediction

The cross-validated time-dependent area under the 
receiver operator characteristic curves of the radiomic, 
clinical, and combined models for survival prediction in 
the patient subgroups are shown in Fig. 4. For the pre-
diction models including all patients, the iAUCs of the 
radiomics signature was 0.593; the clinical model was 
0.644; and the combined radiomics and clinical model 
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was 0.632. The iAUC difference (iAUC​combined–iAUC​
clinical) was − 0.012. For the GTR subgroup, the iAUCs 
of the radiomics signature were 0.576; the clinical model 
was 0.614; and the combined model was 0.604, with an 
iAUC difference of − 0.01. For the STR subgroup, the 
iAUC of the radiomics signature was 0.540; the clinical 
model was 0.538; and the combined model was 0.523. 
The iAUC difference was − 0.015. Finally, for the biopsy 
subgroup, the iAUC of the radiomics signature was 0.613; 
the clinical model was 0.522; and the combined model 
was 0.632. The iAUC difference was 0.11 (permutation 
test p < 0.01).

Analysis of the radiomics risk scores derived from 
the inclusion of all patients showed a moderate to strong 
association of radiomics risk with surgical treatment 
(τb = − 0.343, p ≪ 0.01). The Kruskal–Wallis test revealed 
a significant difference in the predicted radiomics risks 
among surgical treatment groups (p ≪ 0.001) and a large 
effect size (η2 = 0.188). Post-hoc multiple pairwise com-
parisons using Wilcoxon’s test with Bonferroni p-value 

adjustment revealed significant differences between the 
biopsy and STR groups (p < 0.01); between the biopsy 
and GTR groups (p ≪ 0.01); as well as between the STR 
and GTR groups (p ≪ 0.01). A G-rho rank test of OS for 
the surgical treatment groups showed a significant dif-
ference in OS (p ≪ 0.01). The survival plot for OS curves 
stratified by surgical treatment is shown in Supplemen-
tary Fig. 2.

Discussion

Computational analysis techniques have enabled medical 
imaging to cross the boundaries of traditional contribution 
in diagnostics and serve as noninvasive biomarkers [28]. 
Since MRI has an integral role at different stages of man-
agement of CNS tumors, quantitative analysis provides an 
excellent opportunity for integration with clinical factors 
to improve prognostication as well as potential treatment 
modifications. In this study, we have undertaken radiomic 

Table 1   Clinical and 
treatment details for patients 
included in the study

Characteristic All patients GTR​ STR Biopsy

No. of patients 235 (100%) 57 (24%) 118 (50%) 60 (26%)
Gender
 Male 149 (63%) 35 (61%) 75 (64%) 39 (65%)
 Female 86 (37%) 22 (39%) 43 (36%) 21 (35%)

Age (years)
 Median (range) 63 (20–84) 60 (20–81) 64 (39–84) 63 (34–83)

GTV (cc)
 Median (range) 31.3 (1.19–170) 18.2 (1.19–89.0) 33.3 (7.18–170) 37.4 (3.03–158)

MGMT
 Methylated 49 (21%) 13 (23%) 25 (21%) 11 (18%)
 Unmethylated 55 (23%) 9 (16%) 31 (26%) 15 (25%)
 Unknown 131 (56%) 35 (61%) 62 (53%) 34 (57%)

Steroid use after surgery
 < 2 weeks 31 (13%) 9 (16%) 15 (13%) 7 (12%)
 2 weeks or more 183 (78%) 41 (72%) 91 (77%) 51 (84%)
 None 7 (3%) 3 (5%) 3 (2%) 1 (2%)
 Unknown 14 (6%) 4 (7%) 9 (8%) 1 (2%)

Interval surgery and planning MRI (days)
 Median (range) 19 (4–48) 22 (9–35) 20 (5–46) 15 (4–48)

Radiation
 Conventional 132 (56%) 38 (67%) 68 (58%) 26 (43%)
 Hypofractionated 103 (44%) 19 (33%) 50 (42%) 34 (57%)

Concurrent temozolomide
 Yes 214 (91%) 55 (97%) 108 (92%) 51 (85%)
 No 21 (9%) 2 (3%) 10 (8%) 9 (15%)

Adjuvant temozolomide
 Yes 152 (65%) 48 (84%) 74 (63%) 30 (50%)
 No 83 (35%) 9 (16%) 44 (37%) 30 (50%)
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analysis of three MRI sequences extracted from the stand-
ard radiation target volumes performed following surgery 
as a part of RT planning to predict overall survival.

Radiation oncology treatment planning and delivery 
are deeply intertwined with various morphological and 
functional imaging modalities needed for dosimetry 
computation, delineation of target volumes and avoid-
ance structures, and guiding treatment delivery. Although 
cone-beam CT images during RT have been analyzed in 
different malignancies like lung or head-neck primaries 
[29, 30], there is a dearth of studies regarding the use of 
pre-treatment RT volumes and corresponding imaging data 
in radiomic analysis. As the general principle for RT is the 
presence of macroscopic tumors within GTV and micro-
scopic disease within the CTV, a significant amount of 
biological information is expected to be contained within 
the target volumes. It is reasonable to hypothesize that 

the GTV is likely to include more information than CTV 
volumes when RT is used as the primary modality rather 
than an adjuvant treatment. Also, in such a scenario, the 
imaging parameters obtained following surgery might turn 
out challenging with postoperative changes (e.g., glio-
sis, blood products in the brain), causing obfuscation of 
underlying biological information. In patients with GBM, 
although radiation is considered in the adjuvant setting, 
the surgical principle includes maximal safe resection, 
with macroscopic residual disease often left behind in 
proximity to eloquent areas. Therefore, we had considered 
performing analysis according to the surgical subgroups to 
understand the impact of residual disease. Also, it is well 
known the presence of microscopic infiltrative disease in 
the PTR surrounding the enhancing disease in patients 
with GBM, which is included within the CTV. Previous 
work has shown the clinical utility of radiomic analysis of 

Fig. 2   Kaplan–Meier plots for the binary risk-stratified groups based on the radiomics modeling for all the patients and individual surgical sub-
groups
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PTR in GBM, with Prasanna et al. demonstrating quanti-
tative features extracted from the PTR region alone using 
pre-operative MRI was able to stratify patients with dif-
ferent survival outcomes [31]. In our previous work, we 
have demonstrated voxel-based mapping to identify areas 
with infiltrative disease in the PTR, which correlated with 
areas of future recurrence [32]. Also, the distinctive MRI 
characteristics of the GBM PTR (constituting microscopic 
disease and edema) as opposed to low grade glioma (com-
posed of infiltrative tumor cells) have been demonstrated 
using radiomics approach [33]. In the current study, we 
have not analyzed the PTV which is used to encompass the 
setup uncertainties during treatment delivery. The impact 
of inclusion of imaging features from the PTV as well as 
the penumbra region and dose-spillage beyond the target 
volume needs to be addressed in future studies.

In the present study, the radiomic features extracted 
from the radiation target volumes were able to stratify the 
survival outcomes into two groups for all the 235 patients 
(p < 0.01) and biopsy subgroups (0.04). In the other two 
surgical subgroups (GTR and STR), risk-stratification 
was not possible, which can be justified by the absence 
of enough biological information contained with the 
target volumes (due to the removal of the major bulk of 

macroscopic disease). When the clinical features were 
included in the radiomics model, the combined model per-
formed significantly better (iAUC = 0.632) as compared 
to the radiomics model (iAUC = 0.613) or clinical model 
(iAUC = 0.522) alone. The findings from our study are 
quite similar to the radiomics study of pre-operative MRI, 
where the iAUC for radiomics model alone for overall sur-
vival and progression-free survival was 0.652 and 0.590, 
respectively, which improved to some extent with the use 
of clinical features [34]. The radiomics risk score was sig-
nificantly better in the biopsy group than the other two 
subgroups indicating the presence of macroscopic tumor 
or core (corresponding to GTV) was the driver of the 
classifiers rather than the microscopic disease or the PTR 
(corresponding to CTV) in the postoperative setting. One 
important consideration here is the CTV in the majority 
of instances was not only limited to the T2 hyperintensity 
but also included the normal signal contained within the 
isotropic expansion from GTV edges, which could poten-
tially weaken the relevant imaging information.

It may be worthwhile to pursue future studies to limit 
the feature extraction to only areas of altered FLAIR sig-
nal intensity within the CTV volume. A recently published 
phase 1/2 trial by Azoulay et al. used a small CTV margin of 
5 mm with hypofractionated RT resulting in equivalent clini-
cal outcomes in GBM, challenging the traditional concept of 
larger margins and possibly reducing toxicity [35]. The gen-
eration of efficient imaging biomarkers from RT planning 
MRI can pave the way towards precision radiation oncology 
workflow tailoring treatment protocols individually, such as 
treatment-escalation in high-risk groups. The advent of MR-
LINAC in clinical practice has generated an opportunity to 
generate and adopt imaging biomarkers not only before treat-
ment initiation but also to study the temporal changes during 
the course of RT. The prospective UNITED trial investigat-
ing the role of MR-LINAC guided small-margin adaptive 
RT (clinicaltrials.gov identifier NCT04726397) provides 
an opportunity to evaluate changes in radiomic features 
throughout a course of RT, which may provide additional 
insight in terms of survival prediction. Another limitation 
was the exclusion of MGMT from the clinical model, due 
to unavailability in a proportion of patients, which is other-
wise known to strongly influence the survival outcomes. The 
dosimetric parameters and their impact on outcomes were 

Fig. 3   Radiomics risk score across the three surgical subgroups
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not studied in the current work. Here we primarily investi-
gated the utility of biological information contained within 
the target volumes, which can be mined through quantita-
tive analysis. The dosimetric details (like cumulative dose, 
fractionation, dosimetric heterogeneity) can be incorporated 
in future studies along with the development of integrated 
"dosiomics" and "radiomics" models to explore if better 
results can be achieved from the combined models.”

Conclusion

Radiomic features from radiation planning T1 CE, 
T2-FLAIR, and ADC MRI sequences corresponding to the 
GTV and CTV can be used for predicting survival in patients 
with GBM, particularly in the subgroup undergoing biopsy. 
The iAUC of 0.613 was achieved for a radiomics-based clas-
sification for predicting OS in the biopsy subgroup, which 
improved to 0.632 with the inclusion of clinical features.

Fig. 4   Integrated area under curve values with time as the dependent variable (X-axis) for all the patients and individual surgical subgroups
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