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Abstract
Introduction Being the most common primary brain tumor, glioblastoma presents as an extremely challenging malignancy 
to treat with dismal outcomes despite treatment. Varying molecular epidemiology of glioblastoma between patients and intra-
tumoral heterogeneity explains the failure of current one-size-fits-all treatment modalities. Radiomics uses machine learning 
to identify salient features of the tumor on brain imaging and promises patient-specific management in glioblastoma patients.
Methods We performed a comprehensive review of the available literature on studies investigating the role of radiomics 
and radiogenomics models for the diagnosis, stratification, prognostication as well as treatment planning and monitoring 
of glioblastoma.
Results Classifiers based on a combination of various MRI sequences, genetic information and clinical data can predict non-
invasive tumor diagnosis, overall survival and treatment response with reasonable accuracy. However, the use of radiomics 
for glioblastoma treatment remains in infancy as larger sample sizes, standardized image acquisition and data extraction 
techniques are needed to develop machine learning models that can be translated effectively into clinical practice.
Conclusion Radiomics has the potential to transform the scope of glioblastoma management through personalized medicine.

Keywords Glioblastoma · Neuro-oncology · Radiomics · Radiogenomics · Primary brain tumor

Glioblastoma

Glioblastoma has an incidence of 3.22 per 100,000 and 
median overall survival (OS) of 14.6  months follow-
ing standard treatment, which includes a combination of 

surgical resection, radiation therapy and chemotherapy [1]. 
This “one-size-fits-all” model for the treatment of glioblas-
toma is now being questioned following research on various 
pathways implied in intratumoral heterogeneity, arising as 
a result of genetic and epigenetic makeup, levels of protein 
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expression, metabolic or bioenergetic behavior, microenvi-
ronment biochemistry and structural composition [2]. Con-
sequently, features differ on histopathology and imaging 
across patients as well as spatially throughout a single tumor 
[3–5]. Personalized treatment protocols targeting individual 
patients’ tumor characteristics are thus being increasingly 
advocated for improved success rates in glioblastoma man-
agement [4, 6, 7].

Radiomics and radiogenomics

Radiomics is an emerging application of neuroimaging 
where advanced computational methods are used to quanti-
tatively extract characteristics from clinical images that are 
too complex for a human eye to appreciate [8, 9]. These 
imaging characteristics, called “features” reflect tumor char-
acteristics and inner organization as well as the tumor micro-
environment [9]. Radiomics is a multi-step process including 
the acquisition and preprocessing of images, segmentation, 
feature extraction and selection, and advanced statistics 
using machine learning (ML) algorithms (Fig. 1). The pipe-
line of radiomics is highly collaborative and involves contri-
butions from clinicians, molecular biologists, statisticians, 
and bioengineers [8].

Radiomics-derived imaging phenotypes are associated 
with molecular markers to create ‘radiogenomics’ models 
[5]. It is a rapid and reproducible tool to evaluate tumor 
subtype, mutation status and intratumoral heterogeneity; 
and non-invasively predicts tumor progression, survival 
and response to targeted therapies using these character-
istics [5, 8]. Radiogenomics offers more information as 
opposed to surgical biopsy in view of spatial tumor het-
erogeneity [8], especially useful for genomic profiling in 
recurrent glioblastoma which is driven by different clonal 
populations with varying hypermutations and evasion 
mechanisms [10]. Thus, clinical decision support systems 
using radiomics will form the base for precision medicine 
[9].

Applications of radiomics in glioblastoma 
management

Radiomics analysis has been widely studied for its use in 
subtyping brain tumors, predicting prognosis and treatment 
planning, supporting its potential use as a biomarker. Com-
bining radiomics analysis with clinical and genetic infor-
mation can remarkably enhance the utility of these models.

IMAGE ACQUISITION IMAGE 
SEGMENTATION

PHENOTYPIC FEATURES 
EXTRACTION AND 
SELECTION FROM 

IMAGING 

RADIOMICS 
ANALYSIS

ROI labelling 

MRI/CT/PET 
images

Standardization of 
acquired images

SVM
LASSO Regression

Random Forest

Predictive Modelling

Performance Testing

Fig. 1  Pipeline showing radiomics workflow. Acquired clinical 
images are subjected to standardization and segmentation to extract 
Regions Of Interest (ROI). After selecting relevant features, advanced 
statistical analysis is performed to classify and correlate radiomic fea-
tures. (Images taken from these sources: Image acquisition—https:// 
www. mdpi. com/ 2072- 6694/ 11/8/ 1148. Segmentation—https:// www. 

front iersin. org/ artic les/ 10. 3389/ fncom. 2020. 00061/ full. Feature 
extraction and selection- https:// www. front iersin. org/ artic les/ 10. 3389/ 
fncom. 2019. 00058/ full. Analysis—https:// www. front iersin. org/ artic 
les/ 10. 3389/ fnins. 2019. 00966/ full. Analysis—https:// bmcme dgeno 
mics. biome dcent ral. com/ artic les/ 10. 1186/ 1755- 8794-7- 30)

https://www.mdpi.com/2072-6694/11/8/1148
https://www.mdpi.com/2072-6694/11/8/1148
https://www.frontiersin.org/articles/10.3389/fncom.2020.00061/full
https://www.frontiersin.org/articles/10.3389/fncom.2020.00061/full
https://www.frontiersin.org/articles/10.3389/fncom.2019.00058/full
https://www.frontiersin.org/articles/10.3389/fncom.2019.00058/full
https://www.frontiersin.org/articles/10.3389/fnins.2019.00966/full
https://www.frontiersin.org/articles/10.3389/fnins.2019.00966/full
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/1755-8794-7-30
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/1755-8794-7-30
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Diagnosis and classification of glioblastoma

Simple features on structural MRI such as tumor size, loca-
tion and enhancement patterns have been used to predict 
histopathological subtypes of glioblastoma. Extracting com-
plex features using image-processing software and combin-
ing with advanced MRI modalities can further improve the 
accuracy of these models (Table 1).

Tumor location

It is well known that the location of the tumor affects the 
outcomes in patients with glioblastoma. A “probabilistic 
radiographic atlas” of more than 500 glioblastoma patients 
showed associations between stereospecific frequency of 
tumor occurrence with age, extent of resection, genetic 
expression, and survival data. Interestingly, regions closer 
to subventricular zone were seen to have MGMT unmeth-
ylated, mesenchymal, and EGFR-amplified tumors [17], 
supporting their invasive nature and poor prognosis [38]. 
Another study showed correlation of tumor phenotypes with 
their spatial distribution [30]. A comparison between soli-
tary and multicentric glioblastoma revealed upregulation of 
genes responsible for tumor cell motility and invasiveness 
and poor prognosis in the multicentric radiophenotype [22]. 
Thus, tumor location and multicentricity can give important 
clues to the cell of origin and tumor behavior.

Tumor size and contrast enhancement patterns

The correlation between tumor sizes and volume of different 
components (enhancing, necrosis and edema) is well estab-
lished [27]. Previously, ‘VASARI’, a semi-quantitative fea-
ture set including tumor volumes, was employed to predict 
tumor subtypes and survival [15, 39]. In the VAK classifica-
tion, a scoring system was developed to create phenotypes 
using tumor volumetry in combination with age and KPS 
annotation (Fig. 2) [35]. Volumetry was incorporated in a 
radiogenomics model where it was combined with DNA 
microarray analysis to train classifiers that can predict gene-
expression patterns and survival. They showed that a high 
ratio of contrast-enhancing volume to the necrotic tumor 
volume (C:N) could predict overexpression of EGFR, an 
important therapeutic target [40]. In another radiogenomic 
study based on The Cancer Genome Atlas (TCGA) data, 
stratification into high and low FLAIR radiophenotypes 
reflected underlying edema and cellular invasion in glio-
blastoma, as they were associated with genes and microR-
NAs involved in cancer and cellular migration [36]. MRI 
volumetric features are predictive of several cancer-relevant, 
drug-targetable DNA mutations in glioblastoma. TP53, RB1, 
NF1, EGFR, and PDGFRA mutations could each be signifi-
cantly predicted by at least one imaging feature [18]. These 

studies provide a basis for genomic profiling and non-inva-
sively selecting patients for personalized therapies using 
tumor volumetry.

Radiomics can be used to distinguish solitary brain 
metastasis from glioblastoma on structural MRI. Artzi et al. 
developed an excellent classifier (AUC 0.96) with support 
vector machine (SVM) using post-contrast T1 weighted 
(T1CE) MRI. However, performance decreased when sub-
types of brain metastasis were attempted to classify [11]. In 
another study, contrast-enhancing and peritumoral hyper-
intense masks in T2-weighted (T2W) MRI-based deep 
learning model showed best performance (area under curve 
AUC 0.956) compared to the traditional machine learning 
model (AUC 0.890) and human readers (AUC 0.774) [12]. 
However, when Shin et al. utilized both T1CE and T2W 
sequences to develop a 2D CNN, they only achieved reason-
able accuracy implying no clear benefit of combining the 
two modalities [37].

Texture

Texture is a chief radiomic feature utilized for glioblastoma 
phenotyping. In one study, a gray-level co-occurrence matrix 
(GLCM) approach was employed for extracting phenotypic 
texture features for necrosis, active tumor, and edema on 
structural MRI. Features were significant predictors (p 
value < 0.01) of prognosis but in areas of active tumor only 
[41]. Another study was able to predict MGMT methylation 
status using space-frequency texture analysis based on the 
S-transform in T2W MRI, albeit with an accuracy of 71%, 
requiring better algorithms [16]. Other studies based on tex-
ture features were able to predict MGMT methylation status 
with reasonable accuracy [21, 20].

Occasionally, high‐grade gliomas (WHO Grade III and 
glioblastoma) may have the same MRI appearance as low-
grade gliomas. Classifiers using texture along with size, 
shape, intensity, and histogram features can be used to dif-
ferentiate low-grade from high-grade gliomas. Performance 
of these classifiers varies with the algorithm used, the best 
performance was observed with SVM (AUC 0.932) and 
Random forest (AUC 0.921) [28, 14].

Advanced MRI sequences and multimodal analyses

Advanced sequences such as Diffusion and Perfusion MRI 
have been extensively used in brain tumors to evaluate 
invasiveness, angiogenesis, and tumor behavior. Raw tumor 
features from structural MRI and delta-radiomic features 
from dynamic susceptibility contrast (DSC) perfusion MRI 
were extracted to differentiate low-grade gliomas from high-
grade gliomas. This classifier reached an AUC of 0.94 [19]. 
However, a Cochrane meta-analysis on 7 studies to differ-
entiate untreated solid and non‐enhancing low-grade from 
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high-grade gliomas using DSC MRI features (rCBV and 
Ktrans) reported wide range of estimates for both sensitivity 
and specificity, making these parameters less reliable [42]. 
Diffusion MRI was employed to compare the expression 
of various genes between the high- versus low- Apparent 
Diffusion Coefficient (ADC) tumors in a subset of patients. 
High-ADC tumors were found to have higher expression of 
13 genes, 6 of which encode for extracellular matrix (ECM) 
molecules including collagen or collagen-binding proteins, 
suggesting a role of these genes in pro-invasive phenotype 
[29]. In another study, physiologic MRI was correlated with 
stereotactic image-guided biopsies to differentiate contrast-
enhancing and nonenhancing tumor areas. DSC MRI was 
useful for identifying tissue specimens with higher tumor 
proliferation, necrosis, and vascular hyperplasia in the con-
trast-enhancing component of the lesion, while diffusion 
MRI may be useful to detect infiltrating tumors in the non-
enhancing region. This is of particular interest for defining 

tumor burden in non-enhancing regions, where distinguish-
ing reactive edema from biologically active infiltrative tumor 
is clinically important. In this study, accuracy of the results 
could be confounded by the misregistration arising as a 
result of brain shift [13].

MR imaging features of Primary CNS Lymphoma 
(PCNSL) and glioblastoma overlap, with differing survival 
outcomes and treatment options. In a study where perfusion 
and diffusion-weighted MRI were used to differentiate glio-
blastoma from lymphoma, mean ADC and plasma volume 
(rVp) were higher in the glioblastoma compared to PCNSL. 
Moreover, mean ADC was superior (AUC 0.83) to rVp and 
permeability transfer constant (Ktrans). This was true for 
contrast-enhancing regions only, possibly due to increases in 
tumor cellularity, microvascular permeability, and vascular 
proliferation [25]. In another study, ADC was outperformed 
by a multi-parametric (T1WCE, post-contrast T2W and 
FLAIR) and multiregional radiomics classifier with AUC 

Fig. 2  Volume, Age, KPS (VAK) classification and phenotype. Vol-
ume, Age, KPS (VAK)-A and B classes showing (A) Kaplan Meier 
survival plot (B) representative MRI images for VAK-A and VAK-B 
patients and (C) VAK-A and VAK-B survival validation in an inde-
pendent patient set (N = 64) and (D) combination of the discovery and 

validation set (N = 142) for patient with full VAK annotation includ-
ing the Proportional Hazards Model correcting for Age and KPS. 
(Source https:// journ als. plos. org/ ploso ne/ artic le? id= 10. 1371/ journ al. 
pone. 00415 22)

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041522
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041522
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0.921 [26]. This questions the benefit of including advanced 
sequences in classifier in the presence of conventional MRI.

Other studies have explored the utility of multiparamet-
ric MRI to create more accurate radiomic models for tumor 
subtyping, grading and predicting mutational status. Rathore 
et al. used 267 multiparametric MRI based radiomic fea-
tures, extracted from T1-weighted (T1W), T2W, T1CE, T2 
FLAIR, DSC, and DTI to subtype de novo glioblastoma into 
three imaging phenotypes. For example, the solid subtype 
was characterized by highly uniform vascularization, highest 
cell densities, small-sized edema, moderately spherical and 
well-circumscribed appearance, with peritumoral edema-
tous tissue having signs of heterogeneous neovasculariza-
tion. This subtype had a predilection for the right temporal 
lobe and was associated with the worst prognosis. A per-
sonalized treatment regimen would involve very aggressive 
peritumoral resection and radiation dose escalation in these 
tumors [30]. Combining various MRI sequences can also 
improve classifier accuracy for tumor grading [32, 34]. Clas-
sifier performance also increased using MRI features from 
multiregional and multiparametric structural MRI to predict 
MGMT methylation status in glioblastoma [33, 24]. Simi-
larly, IDH 1 mutation status was predicted using radiomic 
features on multiparametric MRI with enhanced accuracy 
when age and multiple regions were included [23].

Prognostication of glioblastoma

It is increasingly important for physicians to understand 
an individual patient’s prognosis and adjust their therapy 
accordingly. For this reason, a large number of studies aimed 
to predict outcomes using radiomics alone and augmented 
with clinical data, genomics, and proteomics can be used. 
(Table 2).

Conventional MRI features

Studies have used various features extracted from conven-
tional MRI to predict patient outcomes in glioblastoma. 
Longer median survival was associated with higher sphe-
ricity, surface-to-volume ratio and edge enhancement of 
glioblastoma lesions on T1W MRI [54]. Lao et. al divided 
features into ‘handcrafted features’ and ‘deep features’ to 
create a feature signature, which when coupled with clinical 
risk factors such as age and Karnofsky Performance Score, 
was able to predict overall survival (OS). Compared with 
the predictive ability of traditional risk factors, the pro-
posed feature signature achieved a superior prediction of OS 
(C-index = 0.739) [49]. Similar combined models reached 
C-index of 0.974 [56].

Texture, tumor shape and volumetric features were 
extracted, and combined with age to produce a model that 
would predict short-term, mid-term, and long-term OS 

[56, 53]. Zhou et al. went one step further and identified 
spatial-based characteristics from tumor sub-regions that 
can be used to predict survival time in patients [57]. Simi-
larly, Chaddad et al. found three texture features extracted 
from active part of the tumors that significantly predicted 
survival outcomes compared to the necrotic and edematous 
parts [41]. Moreover, these radiomic models could predict 
survival in different molecular subtypes as well [55]. Addi-
tion of location-based features of brain tumors to radiomic 
features extracted from conventional MRI enhanced the 
ability of a model to predict OS of patients by 9%. Fur-
thermore, classifying groups according to resection status 
can also increase the accuracy of such prediction models 
[58]. Verma et al. used MRI features to create a radiomics 
risk score for predicting PFS. With a concordance index of 
0.80, these features also correlated well with histopathologic 
attributes associated with glioblastoma aggressiveness. Such 
scores can be easily utilized in clinical settings [59].

Advanced MRI features

Advanced MRI modalities have also been also explored to 
predict glioblastoma patient outcomes [52]. It was seen that 
high rCBV in the non-enhancing region of tumor was predic-
tive of worsening OS and Progression-free Survival (PFS) 
[48]. ADC histogram analysis was useful to predict PFS 
in newly diagnosed as well as recurrent glioblastoma [29, 
60]. In these studies, low ADC predicted poor outcomes. 
Models incorporating both conventional and advanced MRI 
sequences may show better performance at predicting the 
prognosis.

Radiogenomics and proteomics

MGMT promoter hypermethylation is associated with better 
prognosis and response to therapy. This mutational status 
alongwith IDH has been combined with radiomic features 
from structural MRI to stratify patients based on overall 
survival producing more robust radiomics-based prognostic 
models [44, 51]. Zinn et al. stratified VAK annotated cases 
further with molecular signatures and found a 10.5 months’ 
additional survival benefit for the group with MGMT pro-
moter methylation [15]. In another study, glioblastomas 
were first divided into groups based on vascularization 
(rCBV values). It was seen that MGMT methylation was 
a positive predictive factor for OS (p = 0.003, AUC = 0.70) 
in the moderately vascularized tumors. However, there was 
no significant effect of MGMT methylation in the highly 
vascularized tumors (p = 0.10, AUC = 0.56) [45]. Contrast-
ingly, some studies did not find any significant association of 
prognosis with MGMT promoter hypermethylation [54, 31]. 
This could be due to insufficient feature selection methods.
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Integrative models promise a reduction in prediction 
errors [44, 43]. Chaddad et al. created multi-omic integra-
tive model using radiomic, clinical, protein expression and 
genetic features to predict the outcome for IDH1 wild-type 
glioblastoma patients which reached AUC of 78.24% [61]. 
Liao et al. extracted First order and multi-dimensional fea-
tures from segmented lesions on FLAIR MRI and gave a 
feature importance score for feature selection [50]. When 
combined with genetic expression, the Gradient Boosting 
Decision Tree model predicted both short-term and long-
term survival with an accuracy of 0.81. While six metagenes 
showed significant interactive effects with image features, 
this study was limited by unavailability of complete genomic 
data [50].

Immunophenotypes in glioblastoma are important as they 
predict response to immunotherapy and outcomes. Hsu et al. 
used radiomic immunophenotyping models to predict patient 
prognosis [62]. They showed that the phenotype with the 
worst prognosis comprised highly enriched myeloid-derived 
suppressor cells and lowly enriched Cytotoxic T lympho-
cytes [62].

Treatment of glioblastoma

Studies have shown the benefit of radiomics analysis in plan-
ning surgical procedures, evaluating the dose of radiother-
apy, predicting the effective dose of chemotherapeutic agents 
and stratifying patients who will benefit from therapy. After 
initiating therapies, radiomics can be used to differentiate 
mimicking entities like true progression, pseudoprogression 
and radionecrosis(Table 3).

Surgical resection

A study correlating tumor surface regularity on T1W MRI 
with OS of 165 glioblastoma patients who underwent surgi-
cal resection highlighted that patients with surface-regular 
tumors had a higher survival rate and benefit from total 
tumor resection as compared to surface-irregular tumor 
patients [62]. Gaw et al. created a hybrid model to predict 
tumor cell invasion preoperatively for more effective sur-
gery and radiation planning. The hybrid model, comprising 
an ML component that was driven by imaging data and a 
mechanistic model of tumor growth called the Proliferation-
Invasion (PI) model, outperformed the individual compo-
nents [68]. Thus, radiomics can help plan a targeted and 
personalized surgical treatment.

Radiation therapy (RT) planning

Radiomics shows immense potential to guide precision 
radiotherapy. Prediction models can estimate the extent of 
tumor infiltration and can help identify areas that are at a Ta
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higher risk of tumor recurrence for targeted RT [63, 76]. 
Rathore et al. worked on a method for estimating peritu-
moral edema infiltration using radiomics by testing on pre- 
and post-operative multimodal MRI sequences in 90 de novo 
glioblastoma patients and found that recurrent tumor regions 
revealed higher vascularity and cellularity when compared 
with the non-recurrent regions [76]. A similar study done on 
31 de novo glioblastoma patients confirmed these findings 
and also highlighted the importance of using multiparamet-
ric pattern analysis methods for planning a focused treat-
ment approach to decrease recurrence rate [63]. Radiomics 
can guide in planning radiation therapy dose escalation in 
areas with higher risk of tumor recurrence as well as increas-
ing gross total resection. This method can also help prevent 
dose-related toxicities seen with RT, salvaging the neural 
tissue at lower risk areas from damage [77].

Chemotherapy with temozolomide (TMZ)

Chemotherapy with TMZ along with adjuvant RT increases 
median OS [78]. However, TMZ resistance arises due to 
tumor heterogeneity. Yan et al. confirmed the importance 
of radiomics analysis in predicting disease progression in 
57 glioblastoma patients treated with TMZ post-surgery 
using structural, diffusion and perfusion MRI. The study 
found lower ADC, higher FLAIR and hyperintense signals 
on T1CE in areas with a higher risk of tumor progression 
[72]. Another study assessed the efficacy of deep-learning 
based survival-prediction in 118 patients undergoing con-
current chemoradiotherapy with temozolomide post-surgery 
using features from multimodal MRI.. It highlighted that 
both clinical and radiomic features should be used hand in 
hand to predict OS of glioblastoma patients [73]. This reiter-
ates the importance of radiomic models for identification of 
suitable treatment regimens guided by predicted response.

Therapy with bevacizumab

Bevacizumab is a monoclonal antibody targeting vascular 
endothelial growth factor (VEGF) used in patients with 
recurrent glioblastoma. However, variations in genetic 
makeup of VEGF among individuals can lead to resistance 
to bevacizumab, limiting its use [47]. Radiomics analysis 
can provide important biomarkers for selecting patients who 
will benefit from this therapy. Pre-treatment T1W and T1CE 
MRI of patients with recurrent glioblastoma were used to 
develop radiomics-based predictors of survival and progres-
sion. This has utility as a low-cost instrument for identifying 
treatment response in these patients [47, 69]. Using ADC 
and CBV of 54 patients with recurrent glioblastoma that 
were treated with RT and temozolomide, and subsequently 
treated with bevacizumab, was effective in segregating 
patients into responders and non-responders to bevacizumab 

treatment [71]. In a more complex model, a stratification 
model was created which integrated the pre-treatment MRI 
radiomics signature, the interval between radiotherapy and 
diagnosis of brain necrosis, and the interval between diagno-
sis of brain necrosis and treatment with bevacizumab to pre-
dict which patients will benefit from bevacizumab therapy 
for brain necrosis after radiotherapy. This model performed 
well with an AUC of 0.912 in the validation set [66].

Evaluating response to radiation therapy (RT) 
and chemotherapy

Radiotherapy can result in conditions that mimic true disease 
progression. Texture features derived from enhancing com-
ponent and perilesional edema on structural MRI were used 
to differentiate pseudoprogression from true progression in 
glioblastoma [79]. Another model displayed a boost in accu-
racy when MGMT status was incorporated [65]. While these 
studies were based on post-RT MRI, pre-RT MRI scans may 
also predict the development of future pseudoprogression 
in glioblastoma patients [64]. Recent studies incorporated 
diffusion and perfusion MRI which reflect hypercellular-
ity and hypervascularity to classify pseudoprogression.the 
accuracy is superior in these models than those based on 
conventional MRI alone [70, 67, 80]. Another post-RT effect 
that is difficult to differentiate from true progression is radia-
tion necrosis. This can also be detected using ML classifiers 
based on traditional and delta radiomic features derived from 
MRI [74]. Pseudoprogression can also follow chemotherapy 
and radiomics offers hope in this regard. A clinio-radiomic 
classifier including multimodal MRI features was developed 
which showed an AUC of 0.80 [75].

Challenges in the clinical application 
of radiomics for glioblastoma

Despite the proven potential of radiomics in various aspects 
of glioblastoma management, these methods are yet to be 
introduced in mainstream clinical practice. Obstacles to 
translation include limited reproducibility of algorithms and 
less robust machine models. Formation of bodies to recom-
mend standardization methods such as QIBA and QIN offer 
hope [81, 82].

Data availability and sharing

The majority of the studies exploring radiomics in glioblas-
toma are limited by small sample sizes. Biological variabil-
ity of the tumor among patients explains why radiomics is 
still in its infancy. Promoting collaborative studies, sharing 
of data across institutions and making more high-quality 
datasets publicly available (such as Huiyihuiying Inc., 



228 Journal of Neuro-Oncology (2022) 156:217–231

1 3

BraTS, TCGA [83–85]) will result in more robust as well 
as reproducible models. This also requires overcoming the 
administrative and regulatory barriers to large-scale data 
sharing. In addition, clearly documenting the analysis and 
making original codes and data available will allow other 
investigators to replicate the results [62].

Image acquisition

The inclusion of retrospectively collected, multi-center 
data for clinical trials on radiomics is limited by variations 
across institutions in image acquisition such as the proto-
col defined by physicians, resolution, slice thickness, and 
washout period for contrast imaging of the acquired images 
[86]. Features extracted from MRI images can be influenced 
by field of view, field strength and slice thickness [87]. To 
combat the variability in the data collected, standardized 
steps are recommended following the image acquisition like 
intensity normalization, voxel re-slicing, use of a specific 
anatomical plane for multiparametric data, standardization 
of signal intensity prior to image listing, and developing 
algorithms for multiple MR modalities for image registra-
tion [86, 88, 89].

Segmentation and feature extraction

Although considered the highest standard for segmenta-
tion, manual segmentation of images is labor-intensive and 
increases risk of observer bias. In contrast, semi- and fully-
automated methods can improve robustness and reproduc-
ibility [90]. Extracted features are dependent on the seg-
mented region and tumor margins therefore segmentation 
is the key step [87]. While automated feature extraction has 
lower degree of variation in the scoring of semantic features 
[86], these methods can still lead to site-specific variations 
when obtaining imaging [86].

Machine learning models

Accuracy of ML models is limited by overfitting and under-
fitting. Overfitting of data occurs when doing feature extrac-
tion on high-dimensional, large-scale data [83]. However, it 
can be reduced by feature selection methods such as princi-
pal components analysis (PCA), sparse PCA, auto-encoders, 
etc. [91, 92]. Underfitting, due to small sample sizes, can be 
addressed using techniques like SMOTE [93].

Conclusion

Radiomics offers revolutionary changes in the scope of glio-
blastoma management through facilitating a personalized 
approach at various stages. Integrative models that include 
clinical, genetic and other molecular data can enhance the 
accuracy. The main limitation seen in most studies is the 
small sample size and the retrospective nature of these pro-
jects. Besides, variability in methods to generate data across 
institutions limits the generalizability in different patient 
populations. Whilst the results of these studies are promis-
ing, a key goal moving forward is to make these models 
more reproducible in a wide array of settings. Multicenter 
clinical trials are needed to translate these models and pro-
vide actual benefits to glioblastoma patients.
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