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Abstract
Purpose  Glioblastoma (GB) poses formidable challenges to systemic immunotherapy approaches owing to the paucity of 
immune infiltration and presence of the blood brain/tumor barriers (BBB/BTB). We hypothesize that BBB/BTB disruption 
(BBB/BTB-D) with focused ultrasound (FUS) and microbubbles (MB) increases immune infiltration in GB. As a prelude 
to rational combination of FUS with ITx, we herein investigate the impact of localized BBB/BTB-D on innate and adaptive 
immune responses in an orthotopic murine GB model.
Methods  Mice with GL261 gliomas received i.v. MB and underwent FUS BBB/BTB-D (1.1 MHz, 0.5 Hz pulse repetition 
frequency, 10 ms bursts, 0.4–0.6 MPa). Brains, meninges, and peripheral lymphoid organs were excised and examined by 
flow cytometry 1–2 weeks following FUS.
Results  The number of dendritic cells (DC) was significantly elevated in GL261 tumors and draining cervical LN in response 
to sonication. CD86 + DC frequency was also upregulated with 0.6 MPa FUS, suggesting increased maturity. While FUS did 
not significantly alter CD8 + T cell frequency across evaluated organs, these cells upregulated checkpoint molecules at 1 week 
post-FUS, suggesting increased activation. By 2 weeks post-FUS, we noted emergence of adaptive resistance mechanisms, 
including upregulation of TIGIT on CD4 + T cells and CD155 on non-immune tumor and stromal cells.
Conclusions  FUS BBB/BTB-D exerts mild, transient inflammatory effects in gliomas—suggesting that its combination with 
adjunct therapeutic strategies targeting adaptive resistance may improve outcomes. The potential for FUS-mediated BBB/
BTB-D to modify immunological signatures is a timely and important consideration for ongoing clinical trials investigating 
this regimen in GB.
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Background

Glioblastoma (GB) is the most common and aggressive pri-
mary brain malignancy in adults. Even when treated with 
the standard of care (surgical debulking, radiotherapy, and 
chemotherapy), its diffuse nature and proclivity for recur-
rence render it largely intractable. Thus, patients face a dis-
mal prognosis, with a high probability of recurrence (> 90%) 
and survival on the order of months [1, 2].

Growing evidence refutes historic dogma purporting 
that the central nervous system (CNS) is a site of immune 
privilege. This paradigm shift toward consideration of the 
CNS as “immune distinct” has largely been driven by recent 
demonstration of a lymphatic system within the CNS [3] 
and documentation of complex immunological interactions 
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between the CNS and periphery [4]. These advances have 
underscored growing interest in evaluation of immuno-
therapy approaches in brain tumors, including GB [5–7]. 
Despite some encouraging early stage and anecdotal results, 
advanced clinical trials assessing single-agent immunothera-
pies GB have largely been negative owing to factors such as 
poor pre-existing lymphocytic infiltration, complex adap-
tive mechanisms of immunosuppression and protection of 
tumor cells by the blood brain/blood tumor barrier (BBB/
BTB) [8, 9].

Consequently, there exists a critical—yet unmet—demand 
for adjunct approaches designed to bolster effector immune 
cell infiltration, curb mechanisms of immunosuppression in 
GB and surmount the challenges to systemic drug deliv-
ery imposed by the BBB/BTB. GBTo this end, this study 
investigates BBB/BTB disruption (BBB/BTB-D) with MR 
imaging-guided focused ultrasound (FUS) and microbubbles 
(MB) as an approach for modulating anti-tumor immunity 
in a preclinical model of GB. FUS + MB has been demon-
strated as a safe, non-invasive, non-ionizing technique for 
transient, localized, and reversible BBB/BTB permeabiliza-
tion. The extracorporeal nature of this technology obviates 
the need for invasive intracranial catheterization, injection 
or implantation. FUS BBB/BTB-D has been demonstrated 
to improve the delivery of chemotherapies [10–13], anti-
bodies [14–18], cytokines [19] and immune cells [20, 21] 
to brain malignancies. More recently, FUS BBB disruption 
has been demonstrated to invoke sterile inflammation in the 
brain including acute changes to trophic factors, alarmins, 
cytokines and chemokines [22–26]. While such effects are 
not necessarily desirable in normal brain tissue or neuro-
logical pathologies with an existing chronic inflammation 
component, the concept of FUS-mediated immune modula-
tion is of great interest in the setting of brain malignancies 
including GB, wherein anti-tumor inflammation may be 
favorable [27, 28]. That said, studies have shown that such 
parameters as MB formulation and dose [23, 29], anesthe-
sia protocol [26, 30, 31] and number of BBB opening ses-
sions [29] can differentially impact inflammatory response 
to FUS, and despite recent work having demonstrated that 
FUS BBB/BTB-D can promote the efficacy of immunothera-
pies in GB [18, 32], the influence of the aforementioned 
parameters on GB immunobiology following this regimen 
is yet unresolved.

Clinical investigation of FUS BBB and/or BTB open-
ing has been burgeoning over the last 5 years. Safety and 
feasibility have been confirmed across multiple pathologies 
including GB [33–35], ALS [36] and Alzheimer’s disease 
[37, 38]. In addition to these pathologies, FUS-mediated 
barrier disruption is currently being evaluated in Parkin-
son’s disease dementia (NCT03608553), low grade glioma 
(NCT04063514) and HER-2 + breast cancer brain metasta-
ses (NCT03714243). A first-in-human trial combining FUS 

with immunotherapy in brain malignancies will soon assess 
the safety and efficacy of nivolumab and BBB/BTB-D in 
melanoma brain metastases (NCT04021420).

Motivated by the tremendous potential of FUS to potenti-
ate immunotherapeutic agents in GB, this study is founded 
upon the need for systematic characterization of GB immu-
nobiology following FUS BBB/BTB-D, as well as filling 
the existing gap in our understanding of how FUS exposure 
conditions influence this immunobiology. We here report on 
the impact of two distinct FUS peak negative pressures (0.4 
and 0.6 MPa) on elaboration of local and systemic immune 
responses 1–2 weeks following FUS BBB/BTB-D in ortho-
topic GL261 tumors. These findings generate important con-
siderations for pre-clinical investigations of FUS immuno-
therapy in brain tumors as well as timely insights for clinical 
trials seeking to deploy FUS BBB/BTB-D in GB.

Methods

Cell line and culture

Luciferase-transduced GL261 cells (GL261-luc2) obtained 
from the Woodworth Lab (University of Maryland) were 
cultured in high glucose 1 × Dulbecco modified Eagle 
medium (DMEM, Gibco) supplemented with 1 mM sodium 
pyruvate (Gibco), non-essential amino acids (Gibco), 10% 
fetal bovine serum (Gibco), and 100 ug/ml G418 (GoldBio). 
Cells were maintained at 37 °C and 5% CO2. Thawed cells 
were cultured for up to three passages and maintained in 
logarithmic growth phase for all experiments. Cells tested 
negative for mycoplasma.

Intracranial tumor cell inoculation

GL261-luc2 cells (1 × 105 cells per 2 µl) were resuspended 
in sterile PBS for intracranial tumor implantation. Cells 
were implanted into the right striatum of 6–10 weeks female 
C57BL/6 mice (The Jackson Laboratory). Following anes-
thetization with an intraperitoneal injection of ketamine 
(50 mg/kg; Zoetis) and dexdomitor (0.25 mg/kg; Pfizer) 
in sterilized 0.9% saline, the heads of mice were depilated, 
aseptically prepared, and placed into a stereotactic head 
frame. Cells were implanted at a mechanically controlled 
rate of 0.5 μl/min using a Hamilton syringe and micropump 
(UltraMicroPump, World Precision Instruments). Injection 
coordinates were ~ 2.0 mm lateral from the sagittal suture, 
0.5 mm anterior of bregma and 3 mm below the dura. Mice 
were housed on a 12/12 h light/dark cycle and supplied food 
ad libitum. Animal experiments were approved by the Ani-
mal Care and Use Committee at the University of Virginia 
and conformed to the National Institutes of Health guide-
lines for the use of animals in research.
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MRI‑guided focused ultrasound for BBB/BTB‑D

Two weeks following brain tumor inoculation, mice were 
anesthetized with an intraperitoneal injection of ketamine 
(50 mg/kg; Zoetis) and dexdomitor (0.25 mg/kg; Pfizer) in 
sterilized 0.9% saline. Tails were cannulated to allow for 
intravenous (i.v.) injections of MRI contrast agent and MB. 
Mouse heads were shaved and depilated in preparation for 
MRI-guided focused ultrasound treatment. Each mouse was 
positioned supine on a custom surface transmit-receive RF 
coil (to maximize imaging SNR) with the head coupled to a 
1.14 MHz spherical single-element transducer via degassed 
water bath housed within an MR-compatible FUS system 
(RK-100; FUS Instruments). Image-guidance was enabled 
by co-registration of FUS system coordinates to those of the 
3 T MRI (Prisma, Siemens) within which the system was 
placed for studies. MRI contrast agent (0.05 ml of 105.8 mg/
ml preparation; MultiHance Bracco Diagnostic Inc.) was 
administered i.v. to confirm tumor location by contrast-
enhanced MR imaging. A four-spot grid of sonications was 
overlaid on the MR-visible tumor and sonications were car-
ried out at a 0.5% duty cycle for 2 min. All sonications were 
performed at a non-derated peak negative pressure of either 
0.4 or 0.6 MPa, in the presence of i.v. injected albumin-
shelled MB (1 × 105/g B.W.). MB were fabricated in-house 
and characterized as previously described [39, 40]. Contrast-
enhanced MR imaging was repeated to confirm BBB/BTB-
D. Following FUS exposure, mice were moved to a heating 
pad for recovery. Mice were given Antisedan subcutaneously 
for anesthesia reversal. MRI parameters and passive cavi-
tation detection (PCD) methods detailed in Supplemental 
Information (SI).

Flow cytometry

Immunological characterization was conducted on samples 
obtained from euthanized, tumor-bearing mice at 21 and 
28 days post-inoculation. In order to gain resolution into 
tissue resident versus vascular immune cell populations, 
mice were i.v. injected with a fluorescently conjugated 
αCD45 antibody ~ 2 min prior to euthanasia. Whole brains 
were excised in order to preserve the entirety of the tumor 
as well as its infiltrative margins. Additionally, spleens, car-
diac blood, superficial cervical lymph nodes, deep cervical 
lymph nodes and meninges were harvested, following which 
all samples were processed for flow cytometry. Detailed 
methods for sample processing and staining are described 
in SI. To gauge cytokine expression in T cells, samples 
were stimulated with either plate bound (5 µg/ml) αCD3 or 
PMA (0.2 ug/ml:ionomycin (4 uM) for 4 h in the presence 
of brefeldin-A (10 µg/ml). Surface staining was performed 
followed by fixation and permeabilization in order to stain 
for IFNγ or Granzyme B. Unstimulated cells were used as 

baseline controls for cytokine production. Samples were run 
on either the CytoFLEX flow cytometer (Beckman Coulter) 
or Attune NxT flow cytometer (Thermo Fisher Scientific). 
Data analysis was conducted using FlowJo (Treestar) or 
FCSExpress (DeNovo).

Interferon‑gamma assay

Supernatants from homogenized whole brains of naïve mice, 
untreated or treated GL261-luc2 tumor-bearing mice were 
assayed for immunocytokine representation using the Mouse 
IFN-gamma DuoSet ELISA kit (R&D Systems #DY485-05, 
#DY008). This was conducted in accordance with manufac-
turer’s instructions.

Statistical analysis

All statistical analyses were performed in Graphpad Prism 
8 and 9 (Graphpad Software, Inc). Unless otherwise noted, 
flow cytometry data are displayed in normalized format 
(i.e. fold change over mean of control group). Outliers 
were removed via Grubb’s test. Statistical indicators refer 
to *p < 0.05, **p < 0.01 and ***p < 0.001 vs. group(s) indi-
cated, with numerical p-values noted on figure panels for 
all p < 0.2. Statistical significance was defined as p < 0.05. 
Unpaired Student’s t-test was used to determine statisti-
cal significance for comparisons of two groups. One-way 
ANOVA followed by either Dunnett or Tukey multiple com-
parison correction was utilized for comparisons of three or 
more groups. Comparison of multiple groups across mul-
tiple organs was performed by two-way ANOVA followed 
by Tukey multiple comparison correction. All values are 
reported as mean ± standard error of the mean (SEM) unless 
otherwise noted.

Results

Differential impact of MR‑image guided FUS peak 
negative pressures on BBB/BTB‑D in GL261 tumors

An orthotopic glioma model was established via implanta-
tion of 100,000 GL261 cells into the right striatum of mice. 
Two weeks following intracranial tumor implantation, 
FUS-mediated BBB/BTB-D disruption was performed in a 
subset of MR-visible GL261 tumors targeted with a 4-spot 
grid of sonications (1.1 MHz, 0.5% duty cycle) applied at 
either 0.4 or 0.6 MPa, as measured in water, in the pres-
ence of systemically circulating MB. At the conclusion of 
the 2-min sonication period, contrast-enhanced MR imag-
ing was repeated to verify BBB/BTB-D (Fig. 1A). Quanti-
fication of changes in MRI contrast enhancement based on 
disruption of either GL261 BTB or BBB/BTB revealed no 
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Fig. 1   MR-image guided FUS-mediated blood brain/tumor bar-
rier disruption in GL261 tumors at two peak negative pressures. 
A Representative contrast MR images of GL261 tumor-bearing 
brain pre- and post-FUS BBB/BTB-D at peak negative pressures of 
0.4 and 0.6  MPa. Yellow arrows denote GL261 tumors before and 
after BBB/BTB-D. B Quantification of change in mean greyscale 

intensity of MR-visible tumors following FUS BBB/BTB-D at 0.4 
and 0.6  MPa. ROIs based on BTB and BBB/BTB were separately 
assessed. Mean ± SD. No significance detected. C–E Passive cavita-
tion analyses for 2nd harmonic (C), 3rd harmonic (D) and broadband 
(E) acoustic emissions. n = 6–8 per group. Data reported for one rep-
resentative experiment. n.s. not significant
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significant difference across FUS PNP (Fig. 1B). Nonethe-
less, PCD revealed significant differences in 2nd (Fig. 1C) 
and 3rd harmonic (Fig. 1D) emissions, consistent with a 
“dose-dependent” increase in MB oscillations with increas-
ing PNP. Broadband emissions did not differ significantly 
from 0.4 to 0.6 MPa (Fig. 1E).

Evaluation of innate immune response to FUS BBB/
BTB‑D in GL261 tumors

In response to the observation from acoustic emissions data 
that PNPs of 0.4 and 0.6 MPa distinctly confer mechanical 
energy deposition into GL261 tumors, we performed a series 
of flow cytometry studies designed to evaluate the differ-
ential impact of PNP on immunological response to FUS 
BBB/BTB-D (Fig. 2A). We first interrogated the impact of 
FUS BBB/BTB-D on the innate immune response. In order 
to evaluate the hypothesis that mechanical perturbation of 
GL261 tumors with FUS + MB can lead to elevated local 
or peripheral DC representation and maturity, we harvested 
tumors and secondary lymphoid organs 1 and 2 weeks fol-
lowing FUS for flow cytometry analysis. We observed that 
0.6 MPa FUS significantly elevates CD11b + myeloid cell 
representation in GL261 tumors 1 week following BBB/
BTB-D; a 1.7- to 2.3- fold elevation in absolute cell num-
ber was noted relative to control and 0.4 MPa FUS tumors, 
respectively (Figure S1A). Correspondingly, this higher PNP 
conferred a strong trend toward increased absolute number 
of intratumoral DCs (Fig. 2B). In the draining cervical LN 
(DLN), 0.4 MPa FUS significantly elevated the number of 
DCs by ~ twofold at Day 21 (Fig. 2C). An opposing trend to 
those in the tumor and LN was observed in the meninges, 
where DC numbers decreased with increasing FUS PNP 
(Fig. 2D). This was consistent with the decreasing trend 
in meningeal CD11b + cell representation invoked by FUS 
(Fig. S1B). No significant differences in DC percentage were 
detected in tumors, DLN or meninges at Day 21 (Fig. 2E–G). 
By Day 28, there were no noteworthy FUS-induced changes 
in DC numbers or percentages across organs. Moreover, the 
effects observed 1 week following FUS were not preserved 
by the 2 week time point (Fig. S2A–F).

We next evaluated expression of CD86—a marker of DC 
maturity—as a proxy for activation status. CD86 expression 
was significantly enriched on intratumoral DCs following 
0.6 MPa FUS (Fig. 2H). No significant changes in absolute 
number of CD86 + DCs were noted in the DLN (Fig. 2I) or 
meninges (Fig. 2J). Moreover, no changes in DC matura-
tion were noted at Day 28 (Fig. S2G–I). Across both time-
points, there were no appreciable changes in percentage of 
CD86 + DCs (Fig. S3A–F) or CD86 geometric fluorescence 
intensity (GMF) (Fig. S3G–H), suggesting that the mechani-
cal stimulus invoked by FUS at these PNP was neither suf-
ficient to promote trafficking of mature DCs into tumors, 

DLN, or meninges, nor to elevate the activation status of 
DCs already within these sites.

Evaluation of adaptive immune response to FUS 
BBB/BTB‑D in GL261 tumors

Our observation of a modest, yet significant, DC response 
to FUS BBB/BTB-D in GL261 tumors prompted us to next 
evaluate whether this translates to changes in local and/
or systemic T cell populations. Flow cytometry analysis 
revealed that intratumoral CD8 + and CD4 + T cells were 
not significantly altered by FUS at either time point (Fig. 3A, 
B, E, F). In fact, variable trends in decreasing intratumoral 
T cell percentage were noted with FUS. Neither FUS PNP 
elicited significant changes in CD8 + T cells within DLN 
(Fig. 3C, G) or meninges (Fig. S4A–C), though decreasing 
trends in meningeal CD8 + T cell representation were noted 
at both FUS pressures. A significant decrease in CD4 + T 
cells was observed in DLN 1 week following 0.4 MPa FUS 
(Fig. 3C). This effect appeared to be transient (Fig. 3H) and 
was not recapitulated in other tissues (Fig. S4D–F). Aside 
from changes in T cells, we additionally interrogated B and 
natural killer (NK) cells. Changes in the representation 
of these cell types was only noteworthy in the meninges, 
wherein numbers and percentages exhibited decreasing 
trends with FUS (Fig. S4G–J).

In order to interrogate T cell activation status, we also 
evaluated expression of checkpoint molecules, which are 
commonly expressed after TCR engagement. One week 
post-FUS, absolute number of PD1-expressing CD8 + T 
cells in GL261 tumors showed an increasing trend with 
0.6 MPa FUS (Fig. 4A), while the corresponding percentage 
of these cells increased significantly at 0.4 MPa (Fig. 4B). 
At this time point, trends in TIM3 upregulation were noted 
following FUS, but not in TIGIT expression (Fig. 4D, E, G, 
H). Most strikingly, percentage of TIM3-expressing intra-
tumoral CD8 + T cells was significantly elevated follow-
ing 0.4 MPa FUS, with 0.6 MPa FUS trending in a similar 
manner (Fig. 4H). These markers remained unchanged on 
intratumoral CD4 + T cells (data not shown). By Day 28, the 
noted effects of FUS on checkpoint molecule expression had 
dissipated (Fig. 4C, F, I).

In the DLN, TIGIT expression on CD4 + T cells displayed 
a decreasing trend 1 week following FUS (Fig. S5A); nota-
bly, this trend reversed at the 2 week time point, wherein 
FUS generated an increase in TIGIT expression on CD4 + T 
cells, reaching significance at 0.6 MPa (Fig. S5B).

In tandem with our assessment of checkpoint molecules, 
we evaluated canonical markers of T cell function including 
granzyme-B (GzB) and interferon-γ (IFNγ). The percent-
age of CD8 + T cells expressing these markers was largely 
unaltered by FUS at both time points (Fig. 5A–D). A similar 
observation was made in the DLN (Fig. S6). IFNγ GMF 
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was significantly higher in intratumoral CD8 + T cells as 
compared with those in meninges or draining LN (Fig. S7A). 
IFNγ GMF in intratumoral CD8 + T cells also saw increas-
ing trends with FUS at both time points, though this increase 
did not reach statistical significance (Fig. 5E, G). Consist-
ent with this, a global assessment of IFNγ concentration 
from whole GL261-bearing brain homogenates revealed 
no significant influence attributable to FUS (Fig. S7B). 
While IFNγ GMF remained unchanged on CD4 + cells at 
Day 21 (Fig. 5I), a significant decrease emerged by Day 
28 (Fig. 5K). Neither CD8 + nor CD4 + T cells exhibited 
significant changes in GzB GMF at the time points assessed 
(Fig. 5F, H, J, L).

Evaluation of checkpoint ligand expression in GL261 
tumors following FUS BBB/BTB‑D

During flow cytometry processing, single cell suspensions 
were divided into CD45.2 + (immune) and CD45.2- (non-
immune) cell populations. Within tumor specimens, the 
latter population was anticipated to be predominantly com-
prised of GL261 and stromal cells. Both compartments were 
interrogated for expression of PD-L1 and CD155, the check-
point ligands that engage with PD1 and TIGIT, respectively. 
Overall checkpoint ligand expression levels were quite low 
on CD45.2- cells relative to the much higher expression on 
their CD45.2 + counterpart. PD-L1 expression on CD45.2- 
cells was not significantly influenced by FUS at Day 21 or 
28 (Fig. S8A, B). One week following BBB/BTB-D, CD155 
trended toward decreased expression on CD45.2- cells with 
increasing FUS PNP (Fig. S8C). Interestingly, this trend 
reversed at the 2 week time point, with 0.6 MPa FUS confer-
ring a significant upregulation in CD155 expression, nearly 
twofold over that of control GL261 tumors (Fig. S8D). The 
percentage of CD45.2- cells dually expressing PD-L1 and 
CD155 was significantly decreased 1 week following FUS, 
irrespective of PNP (Fig. S8E); this effect was not preserved 

on reassessment at Day 28 (Fig. S8F). Checkpoint ligand 
expression on intratumoral CD45.2 + cells was unaltered by 
FUS (Fig. S9).

Discussion

BBB disruption via FUS and MB has emerged as a promis-
ing and transformative strategy for non-invasive therapy in 
the CNS. While this technique has been demonstrated to be 
safe and repeatable across multiple CNS pathologies includ-
ing GB [34–38], emerging evidence suggests that FUS-
mediated disruption of the BBB invokes endogenous neuro-
inflammatory mechanisms [25, 28, 41, 42]. Indeed, a recent 
study from our group, using a brain metastasis model of 
melanoma, demonstrated a mild and transient pro-inflamma-
tory effect of FUS BBB/BTB-D – using acoustic parameters 
comparable to ours [28]. In contrast with our longitudinal 
assessments at 1 and 2 weeks post-FUS, our previous study 
focused on more acute time points in an effort to capture 
changes in the innate immune compartment. Nonetheless, 
the observed signatures therein were determined unlikely to 
elicit a systemic anti-tumor immune response.

In this report, we phenotypically and functionally pro-
file the immunological impact of FUS BBB/BTB-D at 
two different PNP levels in GL261 glioma-bearing mice. 
We evaluated the impact of two different PNPs activating 
Optison-like MB. Prior studies have compared the influence 
of Optison with other MB formulations for FUS BBB-D 
[43–45]. Among these other formulations are Definity lipid-
shelled MB, the formulation most commonly in use for clini-
cal investigations of FUS BBB-D. While some studies have 
concluded that Optison and Definity induce similar BBB-D 
effects and persistence [44], others have shown that Optison 
may produce a larger effect for a given acoustic pressure 
amplitude [45]. To our knowledge, no studies to date have 
performed this type of detailed immunological assessment 
in primary brain tumors, nor have they evaluated the influ-
ence of acoustic exposure conditions on resulting immu-
nobiology. Our study revealed that FUS incites moderate, 
transitory signatures of innate and adaptive inflammation 
in response to differing degrees of mechanical energy depo-
sition. Collectively, our findings draw attention to impor-
tant considerations and opportunities for future pre-clinical 
studies seeking to advance the role of FUS BBB/BTB-D in 
immunotherapy.

The PNPs that we chose to evaluate at 1 MHz were 
previously established to fall within a safe, stable cavita-
tion regime when applied to brain tumors in the presence 
of circulating MB [13, 46]. We independently evaluated 
acoustic emissions to confirm that these PNPs indeed 
confer differential mechanical energy deposition within 
the targeted focal region. We observed that our chosen 

Fig. 2   Dendritic cell representation in tumors, meninges and drain-
ing cervical lymph nodes at Day 21 post-implantation. A Overview of 
experimental design. An orthotopic glioma model was established via 
intracranial implantation of murine GL261 cells. Two weeks follow-
ing, mice were randomized into three groups (control, 0.4 MPa FUS 
or 0.6  MPa FUS) and BBB/BTB-D was performed. Tissues were 
harvested for flow cytometry analysis either 1 or 2 weeks follow-
ing BBB/BTB-D. B–D Fold change in absolute number of CD11c-
hi, MHC II + dendritic cells in GL261 tumors (B), draining cervi-
cal lymph nodes (C) and meninges (D). n = 20–24 per group. Data 
reported for 4 independent experiments. E–G Fold change in percent-
age of CD11c-hi, MHC II + dendritic cells out of CD45.2 + immune 
cells in GL261 tumors (E), draining cervical lymph nodes (F) and 
meninges (G). n = 12–16 per group. Data reported for 2 independent 
experiments. H–J Fold change in absolute number of CD86 + den-
dritic cells in GL261 tumors (H), draining cervical lymph nodes (I) 
and meninges (J). n = 10–13 per group. Data reported for 2 independ-
ent experiments

◂
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PNPs conferred an increase in CD11b + myeloid cells 1 
week post-FUS; this was accompanied by an inverse trend 
in the meninges, which mirrored the decreasing trend in 
overall CD45.2 + immune cells in the meninges as well 
(Fig. S10A). DCs are a critical antigen-presenting mye-
loid cell population owing to their ability to initiate and 
direct adaptive immune responses [47, 48]. We observed 
that FUS BBB/BTB-D induced elevated DC frequency in 
GL261 tumors and draining cervical LN, as well as the 
frequency of CD86 + DC in tumors. Consistent with previ-
ous reports, we did not observe changes in the percentage 
or GMF of CD86-expressing DC in tumors or DLN [28]. 
As DC percentages in tumors and DLN did not change, but 
trends in DC numbers did, we postulated that FUS may be 
increasing the accessibility of the tumor and DLN to the 

panoply of immune cells. Interrogation of these compart-
ments for fluctuations in overall immune cells revealed 
that 0.4 MPa FUS indeed elevated CD45.2 + cells in DLN 
(Fig. S10B), but not in tumors (Fig. S10C).

The trends toward elevation of DC frequency in tumors 
and DLN were inversely recapitulated in the meninges. Stud-
ies in other disease models have shown that accumulation of 
DCs in the meninges can precede their accumulation in the 
CNS parenchyma [49]. This is consistent with the hypothesis 
that the decreasing trends in both overall and CD86 + menin-
geal DC frequencies, as well as the trend toward reduced DC 
percentage in the meninges, may have been the compensa-
tory result of DCs trafficking from the meninges to a differ-
ent site following FUS.

Fig. 3   T cell representation in tumors and draining cervical lymph 
nodes. A–H Fold change in percentage of CD8 + and CD4 + T cells 
out of CD45.2 + immune cells in GL261 tumors (A, B, E, F) and 
draining cervical lymph nodes (C, D, G, H) at Days 21 (A–D) and 28 

(E–H) post-implantation. Day 21 panels: n = 12–16 per group. Data 
reported for 2 independent experiments. Day 28 panels: n = 7–15 per 
group. Data reported for 1–2 independent experiments



117Journal of Neuro-Oncology (2022) 156:109–122	

1 3

Innate inflammation in the CNS can also be driven 
by free drainage or trafficking of antigens to secondary 
lymphoid organs, most prominently the cervical lymph 
nodes [50, 51]. While 0.4 MPa FUS conferred significant 
elevation in DC numbers within the draining cervical LN, 
0.6 MPa FUS left this population unaltered. These find-
ings are difficult to reconcile, but one possible explanation 
is that 0.4 MPa FUS may have promoted a better envi-
ronment for exposure to cytokines and DAMPs capable 
of regulating DC trafficking to the LN—one that was not 
recapitulated at the higher PNP.

The changes that FUS mediated in DC frequency and 
maturity in tumor and LN compartments prompted us to 
assess de novo T cell responses to GL261 tumors. Our 
time points were selected with the intent of capturing early 
and later stages of adaptive immunity. However, across 
these time points, we did not observe BBB/BTB-D-medi-
ated changes in the magnitude of CD8 + and CD4 + T cell 
populations within tumors or DLN. Though GL261 tumors 
were poorly infiltrated by CD8 + T cells, T cell activation 
was modulated by FUS exposure. Within 1 week of FUS, 
percentage of PD1 and TIM3 expression on CD8 + T cells 
saw significant elevation with TIGIT expression trend-
ing similarly. As these molecules can reflect either T cell 
activation or exhaustion, we additionally evaluated T cell 
function in order to contextualize the impact of FUS on 
T cells. At this time point, we did not observe changes 
in functional molecules such as GzB and IFNγ suggest-
ing that the proportion of cytokine-producing cells in the 
GL261 tumor microenvironment did not increase with 
FUS.

We also evaluated checkpoint ligand expression within 
the GL261 tumor microenvironment, specifically PD-L1 
and CD155. PD-L1 interacts with PD1 on lymphocytes 
to attenuate effector T cell responses and enable immune 
escape [52]. CD155 (also known as poliovirus receptor) 
serves as the ligand for TIGIT, and its overexpression 
on tumor cells has been shown to promote tumor cell 

invasion, migration and ultimately, tumor progression 
[53]. These molecules are tightly associated in glioma 
and have been implicated as biomarkers of poor prog-
nosis [54]. At Day 21, consistent with the alleviation of 
immunosuppressive checkpoint phenotypes on T cells, 
co-expression of CD155 and PD-L1 on non-immune 
(CD45.2-) tumor/stromal cells decreased following FUS 
BBB/BTB-D at both PNPs. CD155 expression trended 
similarly. By Day 28, FUS-recipient groups saw increased 
CD155 expression on CD45.2- cells, most prevalently in 
the 0.6 MPa FUS group. Concordantly, at Day 21, TIGIT 
expression on CD4 + T cells displayed a decreasing trend 
in the DLN, which ultimately reversed 1 week later, also 
reaching significance at 0.6 MPa. Our efforts to contex-
tualize these changes by interrogating T cell function 
revealed increasing trends in IFNγ GMF on CD8 + T 
cells. However, neither PNP conferred robust changes in 
IFNγ expression by CD8 + or CD4 + (data not shown) T 
cells. Though CD8 + T cells in GL261 tumors had higher 
IFNγ levels as compared with meninges and draining cer-
vical LN—suggesting a richer abundance of functional T 
cells at baseline—BBB/BTB-D did not influence this dif-
ference. Thus, more detailed assessments of T cell func-
tion are needed in future studies.

Our investigation of the impact of PNP on immune 
response did not delineate a clear differential immune 
response across pressures. 0.4 MPa FUS was generally 
noted to confer more favorable anti-tumor stimuli at the 
1-week time point. Future investigations should consider 
the role of immunological adjuvants to elaborate a more 
robust T cell response with FUS BBB/BTB-D. To this end, 
our systematic assessment herein has unveiled potential 
therapeutic targets that may be well suited for delivery 
with FUS BBB/BTB-D. For example, aligning FUS with 
inhibitors of the TIGIT/CD155 and/or PD1/PD-L1 axes 
may be a promising approach. Indeed, a recent study has 
demonstrated that dual checkpoint blockade with αTIGIT 
and αPD1 is a promising approach in glioma [55].
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Fig. 4   Checkpoint molecule expression on intratumoral CD8 + T cells. A–C Fold change in absolute number and percentage of PD1-expressing 
CD8 + T cells in GL261 tumors at Day 21 (A, B) and Day 28 (C) post-implantation. D–F Fold change in absolute number and percentage of 
TIGIT-expressing CD8 + T cells in GL261 tumors at Day 21 (D, E) and Day 28 (F) post-implantation. G–I Fold change in absolute number and 
percentage of TIM3-expressing CD8 + T cells in GL261 tumors at Day 21 (G, H) and Day 28 (I) post-implantation. n = 12–16 per group. Day 21 
panels: n = 7–16 per group. Data reported for 2 independent experiments. Day 28 panels: n = 6–8 per group. Data reported for 1 representative 
experiment
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Fig. 5   Functional assessment of intratumoral T cells. A–D Fold 
change in percentage of CD8 + T cells expressing interferon-γ (IFN-
γ) or granzyme-B (GzB) in GL261 tumors at Day 21 (A, B) and Day 
28 (C, D) post-implantation. E–H Geometric fluorescence intensity 
(GMF) of IFN-γ or GzB on CD8 + T cells in GL261 tumors at Day 
21 (E, F) and Day 28 (G, H) post-implantation. I–L GMF of IFN-γ 

or GzB on CD4 + T cells in GL261 tumors at Day 21 (I, J) and Day 
28 (K, L) post-implantation. Data from one representative experi-
ment reported in (E–L). Percentage panels: n = 7–16 per group. Data 
reported for 1–2 independent experiments. GMF panels: n = 5–9. 
Data reported for 1 representative experiment
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