
Vol.:(0123456789)1 3

Journal of Neuro-Oncology (2022) 156:1–10 
https://doi.org/10.1007/s11060-021-03807-6

TOPIC REVIEWS

Sonodynamic therapy for gliomas

Adomas Bunevicius1   · Stylianos Pikis1 · Frederic Padilla2,3 · Francesco Prada1,2,4 · Jason Sheehan1,5 

Received: 12 April 2021 / Accepted: 8 July 2021 / Published online: 12 July 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Introduction  Glioma remains incurable and a life limiting disease with an urgent need for effective therapies. Sonodynamic 
therapy (SDT) involves systemic delivery of non-toxic chemical agents (sonosensitizers) that accumulate in tumor cells or 
environment and are subsequently activated by exposure to low-frequency ultrasound to become cytotoxic agents. Herein, 
we discuss proposed mechanisms of action of SDT and provide recommendation for future research and clinical applica-
tions of SDT for gliomas.
Methods  Review of literature of SDT in glioma cell cultures and animal models published in Pubmed/MEDLINE before 
January, 2021.
Results  Different porphyrin and xanthene derivatives have proven to be effective sonosensitizers. Generation of reactive 
oxygen species and free radicals from water pyrolysis or sonosensitizers, or physical destabilization of cell membrane, have 
been identified as mechanisms of SDT leading to cell death. Numerous studies across glioma cell lines using various sono-
sensitizers and ultrasound parameters have documented tumoricidal effects of SDT. Studies in small animal glioma xenograft 
models have also consistently documented that SDT is associated with improved tumor control and longer survival of animals 
treated with SDT while avoiding damage of surrounding brain. There are no clinical trials completed to date regarding safety 
and efficacy of SDT in patients harboring gliomas, but some are beginning.
Conclusions  Pre-clinical studies cell cultures and animal models indicate that SDT is a promising treatment approach for 
gliomas. Further studies should define optimal sonication parameters and sonosensitizers for gliomas. Clinical trials of SDT 
in patients harboring gliomas and other malignant brain tumors are currently underway.
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Introduction

Glioblastoma is the most common malignant primary brain 
tumor with an annual incidence rate of approximately 3.21 
per 100,000 population [1]. Glioblastoma is a dismal dis-
ease with overall survival time of approximately 15 months 

[2, 3]. First-line treatment includes gross total resection and 
adjuvant combined chemotherapy with temozolomide and 
fractionated radiotherapy, followed by maintenance temozo-
lomide [2, 4]. Unfortunately, the progression of glioblasto-
mas is inevitable, and efficacy of the second-line treatment 
options is limited [5, 6]. Diffuse astrocytomas typically have 
slower growth rate and a more indolent course than high 
grade gliomas. However, low-grade tumors remain incurable 
and can progress to become high-grade tumors causing rapid 
disease progression and clinical deterioration [7, 8]. There 
remains an urgent need for new treatment strategies that 
could help to optimize prognosis of glioma patients [9, 10].

Sonodynamic therapy (SDT) involves systemic delivery 
of non-toxic chemical agents (sonosensitizers) that accumu-
late in tumor cells or environment. These agents are acti-
vated and become cytotoxic by exposure to low-intensity 
targeted ultrasound. Essentially, both the sensitization and 
ultrasound exposure are not tumoricidal by themselves; 
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instead the cytotoxic events occur when both are combined 
[11]. SDT represents an emerging approach that offers the 
possibility of incisionless eradication of solid tumors in a 
site-directed manner, and this approach is becoming increas-
ingly studied for treatment of gliomas [12, 13].

Focused ultrasound (FUS) is an emerging technology that 
allows controlled, spatially and temporally precise delivery 
of ultrasound energy to intracranial targets [14, 15]. High-
intensity FUS can be used for thermal ablation and is an 
effective method for thalamotomy and subthalamtomy for 
essential tremor [16] and tremor predominant Parkinson’s 
disease [17]. Application of high-intensity FUS for treat-
ment of brain tumors is limited by typically a narrow treat-
ment envelope and long sonication time required to ablate 
significant tumor volume [18, 19]. At lower intensities, FUS 
can be applied without causing tissue damage, can be used 
to sonicate larger volumes and is being actively investigated 
for local and temporary disruption of the blood brain barrier 
to enhance delivery of chemotherapeutics into brain tumors 
[14, 20] with encouraging results in animal models and ini-
tial clinical trials [14, 18]. Therefore, the FUS can be used 
for SDT of intracranial gliomas with excellent spatial preci-
sion and accuracy.

In this article, we will provide comprehensive review of 
the concept and biological actions of SDT, review published 
pre-clinical studies of SDT for gliomas, and discuss poten-
tial clinical applications and future directions of SDT for 
gliomas.

The concept of sonodynamic therapy

Activation of a non-toxic compound by an external physi-
cal stimulus was first discovered back in 1900 s [21], by 
interaction of certain dyes with light, and was termed pho-
todynamic therapy (PDT). It is worth reviewing some of 
the well-established concept of PDT, as some of these are 
shared with SDT.

PDT relies on the activation of photosensitizers by 
absorption of a photon of light with the appropriate wave-
length. In the presence of oxygen, the excited photosensitizer 
forms reactive oxygen species (ROS) that can directly induce 
cellular damage by rapidly oxidizing cellular components. 
Most photosensitizers used for anti-cancer PDT operate 
more via creation the type II ROS rather than type I. Sev-
eral compounds have received clinical approval for PDT, 
including tetrapyrrole structures, such as porphyrins, chlo-
rins, bacteriochlorins and phthalocyanines. Synthetic dyes 
and natural products, such as hypericin, riboflavin and cur-
cumin, have been investigated [22]. The selective nature of 
tumor targeting in PDT is thought to occur through tumoral 
accumulation via the EPR (enhanced permeability and reten-
tion) effect in tumors with leaky vasculature and defective 

lymphatic drainage [23].The most effective photosensitiz-
ers are typically hydrophobic compounds that accumulate 
in tumor cells and intercalate into membrane structures. The 
three main cell killing mechanisms of PDT are apoptotic, 
necrotic and autophagy-associated cell death that are related 
to photosensitizer localization in the different organelles.

Sonodynamic therapy (SDT) relies on the activation of 
sonosensitizers (non-toxic compounds) that upon ultrasound 
activation become cytotoxic by generation of ROS. Other, 
broader, definition of SDT have been proposed, to include 
non-chemical-based forms of non-thermal ultrasound ther-
apy as well [24], with one of the most important biological 
effects being drug delivery [25] and direct destabilization 
of the plasma membrane, a mechanism known as sonopora-
tion, that can enhance compound transport across the cell 
membrane [26].

In this review, we restrict SDT to the ultrasound activa-
tion of photochemical sensitizers.

Similar to PDT, SDT requires the combination of inter-
action of a chemical, ultrasound, and oxygen. The major 
advantage of SDT is the ability to provide more than ten 
of centimeters of penetration of ultrasound energy into soft 
tissues depending on the ultrasound frequency, and the pos-
sibility of delivering a tightly focused ultrasound beam for 
focal treatment.

SDT started by evaluating tumor localizing porphyrins in 
ultrasound-induced reactions [27]. These early studies sug-
gested that cell damage enhancement was probably mediated 
via single oxygen generated by activation of hematoporfirin 
by sonoluminescence, the generation of light by collapsing 
cavitation bubbles [28]. Since then, many different sonosen-
sitizers have proven to be effective sonosensitizers, including 
(i) porphyrin derivatives, such as hematoporphyrin mono-
methyl ether (HMME), protoporphyrin IX disodium salt 
(PpIX), pheophorbide A, Photofrin, Photofrin II, ATX-70, 
ATX-S10, Ce6 and DCPH-P-Na(I); (ii) xanthene derivates, 
including erythosien B, rose Bengal; (iii) and inorganic 
sonosensitizers, such as Ti02 [29]. Several mechanisms of 
action of the ultrasound have since been identified (Fig. 1). 
In addition to direct activation of sonosensitizers by sonolu-
minescence and the subsequent generation of free radicals, 
mechanisms also include direct generation of free radicals by 
pyrolysis-mediated processes also taking place in the close 
vicinity of hot collapsing cavitation bubbles [27, 30]. Free 
radicals are formed via direct pyrolysis of the sonosensitiz-
ers, breaking apart the sensitizer generating free radicals 
that can react with other endogenous substrates to generate 
ROS, or by interaction with hydroxyls and hydrogen radicals 
formed by pyrolysis of water. Another possible mechanism 
of action of SDT relies on physical destabilization of the 
plasma membrane by the sonosensitizer, due to cell suscep-
tibility to the mechanical action of the ultrasound, such as 
local shear force. While the activation process by ultrasound 
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during SDT is generally considered to be induced by cavita-
tion, and potentially via sonoluminescence, cell apoptosis, 
and pyrolysis, the exact mechanism of SDT is probably not 
governed by a universal phenomenon, and still needs to be 
analyzed based on the ultrasound treatment conditions and 
the formulation of a sonosensitizer [31–33]. Two major 
sonochemical products arise from ultrasonically-induced 
cavitation: free radicals and singlet oxygen, although the 
role of this later has been controversial in SDT [31]. Free 
radicals can induce a chain reaction of lipid peroxidation 
and cell damage, while singlet oxygen, once entering excited 
singlet state, is capable of oxidizing cellular contents. Avail-
able evidence strongly suggests a pivotal role for ROS in 
SDT [33] and the remaining questions mostly are concerned 
with the mechanism of ROS generation and which ROS are 
mainly responsible for mediating cytotoxic effects of SDT. 
Immune-modulation anti-tumor effect of SDT was also sug-
gested [34].

  In Vitro studies of SDT

In vitro studies using a variety of sonosensitizers and differ-
ent human and rat glioma cell lines generated evidence for 
the suggesting effectiveness of SDT for gliomas. SDT has 
been evaluated in in vitro studies using a variety of sonosen-
sitizers, including porphyrin derivatives, such as hematopor-
phyrin monomethyl ether (HMME) [35, 36], and Photofrin 
[37–39], aluminum phthalocyanine disulfonate [40] and 

5-aminolevulinic acid (5-ALA) [41–43]. Glioma cell lines 
used in several published studies include the C6 [35, 36, 41] 
and the F98 rat glioma cell lines [40], the U251 [37–39, 43], 
U105 [37], U87 [41, 43] malignant glioma cell lines and 
the U251Oct − 3/4 glioma stem-like cells [43]. Variable FUS 
parameters were utilized across studies (Table 1).

Hao et al. reported an improved apoptotic rate of HMME-
SDT treated C6 rat glioma cells as compared to HMME or 
ultrasound alone. Ca+ 2 overload played a primary role in the 
apoptotic process which was associated with an increased 
production of ROS, decreased mitochondrial membrane 
potential (MMP), and increase in cyt-c [35]. In the study by 
Dai et al., the apoptotic effect of hematoporphyrin mono-
methyl ether (HMME)-SDT on C6 glioma cells was greater 
than HHME or ultrasound treatment alone. HMME-SDT 
induced apoptosis of C6 glioma cells due to increased ROS 
production and decreased mitochondrial membrane poten-
tial (MMP). Upregulation of caspase-9, caspase-3, and Bax 
expression and downregulation of Bcl-2 expression sug-
gested a pivotal role of the mitochondrial signal pathway in 
the apoptotic process [36].

Hayashi et al., reported sensitivity to low-level ultra-
sound of both U251 and U105 human glioma cells. 
Photofrin enhanced ultrasound-induced cell death of 
the U251 cells expressing LRP/α2MR, but not in U105 
cells not expressing LRP/α2MR [37]. Xu et al. reported 
decreased susceptibility of glioma stem-like cells to SDT 
than the U251 glioma cell line due to ABCG2 protein 

Fig. 1   Mechanisms of SDT (illustrated with 5-ALA as sonosensi-
tizer). ROS can be produced by (1) pyrolysis of the compound (in this 
example ppIX) or water, (2) activation of the sonosensitizer by light 
produced during sonoluminescence. (3) Alternatively, compound 

affinity for the plasma membrane could make the cells more suscep-
tible to mechanical stresses caused by the ultrasound. All three routes 
will lead to downstream signaling leading mainly to apoptosis
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over expression causing efflux of the sonosensitizer 
[39]. Addition of fumitremorgin C, an ABCG2 inhibi-
tor, resulted in a significant increase in the Photofrin-
SDT mediated relative production of ROS suggesting the 
usefulness of fumitremorgin C in the SDT treatment of 
ABCG2-expressing malignant glioma cells [38].

Suehiro et al. and Sheehan et al. demonstrated greater 
tumoricidal effect of 5-ALA-SDT than FUS and 5-ALA 
alone on the U251 [43], C6 [41], U87 [41, 43] glioma 
cell lines and U251Oct − 3/4 glioma stem-like cells [43]. 
Bilmin et  al. reported significant cytotoxic effects of 
5-ALA-SDT on RG2 rat glioma cells [44]. Ju et al. dem-
onstrated increased apoptosis, increased production of 
ROS, and loss of MMP with the addition of hyperthermia 
to 5-ALA-SDT in vitro. Higher levels of proteins Bax 
and cleaved caspase-3, 8, and 9 and lower level of bcl-2 
were noted in the SDT-hyperthermia group than in the 
SDT alone group, the hyperthermia alone group and the 
control group [42]. In the study by Gonzales et al. com-
pared to FUS alone or bleomycin alone, aluminum phth-
alocyanine disulfonate -SDT and bleomycin significantly 
inhibited growth of F98 glioma cells as three-dimensional 
tumor spheroids [40].

Animal models of SDT

SDT has been studied in small animal intracranial and sub-
cutaneous glioma xenograft models (Table 2). An immuno-
deficient murine intracranial glioma model was used in one 
study [43]. The majority of studies used C6 glioma cells. 
Other cell lines included human glioblastoma U87 MG-
Red-FLuc [42, 43, 45], U-118 MG [46] and SNB19 cells 
[42] ,and F98 rat malignant glioma cells [47]. The most 
commonly used radio-sensitizers were 5-ALA followed by 
sinoporphyrin. Fluorescein, hematoporphyrin monomethyl 
ether, Rose Bengal and iRGD modified DVDMS liposome 
were also tested. FUS parameters (intensity, duty cycle etc.) 
varied across studies and were reported inconsistently thus 
making challenging to make reliable comparisons between 
studies.

In all published studies, treatment with SDT was associ-
ated with inhibition of glioma growth and/or tumor prolifer-
ation of intracranial and subcutaneous glioma models across 
multiple tumor cell lines, cell lines, tested sonosentizers and 
FUS parameters. SDT was associated with decreased tumor 
growth and with longer survival of animals treated with 
SDT when compared to control animals [43, 45, 48–50]. 

Table 1   In vitro studies evaluating sonodynamic therapy of glioma cell lines

HMME hematoporphyrin monomethyl ether, 5-ALA 5 amino levulanic acid, SDT sonodynamic therapy, US ultrasound, FUS focused ultrasound, 
BLM bleomycin, MMP mitochondrial membrane potential

Author, year Cell culture Sonosensitizer Ultrasound parameters Main findings

Dai et al. 2009 [36] C6 HMME Frequency: 1 MHz Intensity: 1 W/
cm2 Exposure time: 1 min

MMP may play a pivotal role in the 
SDT induced apoptosis process.

Hayashi et al. 2009 [37] U251   U105 Photofrin Intensity: 0.3 W/cm2 Exposure 
time: 5, 15 or 30 s

Photofrin-SDT enhanced US cell 
killing in LRP/α2-MR-expressing 
glioma cells

Xu et al. 2012 [39] U251
Glioma stem-like cells

Photofrin Frequency: 1 MHz Intensity: 2 W/
cm2 Exposure time: 10 min

Glioma stem cells were less suscep-
tible to SDT than U251 glioma 
cells.

Hao et al. 2014 [35] C6 HMME Frequency: 0.5 MHz  Intensity: 
1 W/cm2 Exposure time: 1 min

Apoptosis was associated with 
increased ROS production, MMP 
decrease, and cyt-c release.

Gonzales et al. 2016 [40] F98 Aluminum 
phthalocyanine 
disulfonate

Frequency 1 MHz
Intensity: 0-0.6 W/cm− 2

Exposure time: 3 min

FUS with/without sonosensitiz-
ers can potentiate the cytotoxic 
effects of BLM compared to drug 
alone.

Bilmin et al. 2016 RG2 5-ALA Frequency: 1 MHz Intensity: 
2–6 W/cm2 Exposure time: 
3 min

Cytotoxic effects of 5-ALA evident 
at US intensity of 6 W

Ju et al. 2016 [42] SNB19
U87MG

5-ALA Frequency: 1 MHz Intensity: 1 W/
cm2 Exposure time: 1–4 min

Hyperthermia enhances SDT 
induced apoptosis and tumor 
growth delay

Suehiro et al., 2018 [43] U87    U251
U251Oct − 3/4

5-ALA Frequency: 3 MHz Intensity: 2 W/
cm2 Exposure time: 3 min

5-ALA-SDT was cytotoxic toward 
malignant gliomas

Sheehan et al., 2020 [41] C6     U87 5-ALA Intensity ISPTA: 10 W Duration: 
3 min

Increased tumoricidal of 5-ALA-
SDT compared to 5-ALA or FUS 
alone
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Upregulation of apoptotic cell death mechanisms after 
SDT was the most widely studied mechanisms of action of 
SDT in in vivo glioma models. Overexpression of Termi-
nal deoxynucleotidyl transferase dUTP-mediated nick-end 
labeling (TUNEL) and upregulation of caspase-3, 8, 9, Bax 
and Cyto-C and downregulated expression of Bcl-2 were 
demonstrated with SDT [1, 3, 6, 8]. SDT was also shown to 
downregulate glioma angiogenesis as evident by reduction 
of micro-vessel density and expression of vascular endothe-
lial growth factor (VEGF) [50].

SDT and FUS sonication of normal and peritumoral brain 
tissue was proven to be generally safe [47, 51, 52]. Ohmura 
with colleagues explored long term-effects of FUS apply-
ing 10 and 15 W/cm2, 1.04 MHz, 5-minute exposure, and 
found that at sonication at 15 W/cm2 caused brain lesions 
in all treated animals while sonication at 10 W/cm2 did not 
cause any lesions at 4-weeks post-sonication [52]. On the 
other hand, Nonanka with colleagues reported that soni-
cation of rat brain caudoputamen region at 25 W/cm2 at 
1 MHz for 5 min did not cause brain damage on histologi-
cal examination independently from sonosensitizer (Rose 
Bengal) use. However, sonication at 110 W/cm2 at 1 MHz 
for 3 min induced sharply delineated coagulation necrosis 
in the majority of animals with greater dose of sonosensiter 
being associated with greater risk and size of a lesion [51].

Clinical evidence

  Notwithstanding the great number of pre-clinical studies 
that yielded very promising results, efforts to translate this 
therapeutic approach into clinical practice has been limited 
to date. The first evidence of the effect of SDT in clinical 
practice has been described by Inui et al. in a case-report 
in which SDT was combined with GcMAF-based immuno-
therapy to treat a patient with terminal breast cancer (inva-
sive ductal carcinoma, grade 3, ER+, PR+, HER2+, right 
axillary tumor, spinal metastases, intrapleural nodular tumor 
and right pleural effusion) [53]. SDT was performed using 
chlorin e6 and 5-ALA as sonosensitizers, and a total of 19 
treatments of SDT were conducted in a three-month time 
span. This treatment protocol gave surprising results–the 
axillary tumor and intra-pleural nodular tumor disappeared 
completely; tumor markers were dramatically reduced; and 
no appreciable side effects were reported. The mechanism 
that is proposed to be behind the efficacy of this combined 
approach is the initiation of direct inflammatory necrosis 
inside tumors, coupled with the production of antitumor 
immunity via antigen-presenting cells to prevent immune 
escape [53]. A similar approach was used by the same 
research group to treat a patient with NSCLC (lung adeno-
carcinoma, stage 3B), using sonodynamic therapy coupled 
with GcMAF-based immunotherapy, TTF therapy and ozone Ta
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therapy. The average survival of such patients with standard 
treatment protocols is only 8 months, while using this new 
approach no tumor growth was reported at 15 months with-
out side effects [54].

A recent phase II clinical trial investigated the effect 
of DVDMS-SDT for peripheral artery disease (PAD) and 
demonstrated reduced plaque inflammation and improved 
walking performance of patients treated with SDT when 
compared to placebo [55]. Inflammation plays a central role 
in the development of atherosclerosis, and SDT is well-
known for its immunomodulatory action, such as induction 
macrophage apoptosis, promotion of cholesterol efflux, and 
stabilization of atherosclerotic plaques.

As of 01/02/2021 there is one ongoing phase 0 single 
center, first in human, open-label study that uses ascending 
energy doses of SDT delivered via MRgFUS combined with 
intravenous 5-ALA that aims to assess safety and efficacy 
this approach in up to 30 patients with recurrent high-grade 
gliomas (NCT04559685). Eligible participants who are 
scheduled for tumor resection will be administered intrave-
nous 5-ALA approximately 6–7 h prior to receiving sono-
dynamic therapy (SDT). Another phase 1 clinical trial has 
been recently approved (IRB - IRCCS C.Besta – 70/2020; 
9/16/2020; 9/75) to assess the safety and feasibility of 5-ALA 
mediated SDT in patients with glioblastoma: 10 patients will 
receive SDT and the undergo a clinical and radiological 
follow-up for 3 weeks prior to tumor resection. In another 
Phase 0 single center trial (NCT04559685) ascending energy 
doses of SDT utilizing the MRgFUS combined with intrave-
nous ALA (administered 6–7 h before SDT) will be tested 
in up to 30 patients diagnosed with recurrent high-grade 
gliomas who have measurable disease at recurrence defined 
as at least one contrast-enhancing lesion with a volume of 
at least 6 cm3 and ≤ 20cm3 of targeted treatment area. The 
authors will perform dose-escalation and time-escalation of 
SDT. Two other studies are focused on applying SDT for 
PAD (NCT03967730) and carotid atherosclerotic plaque 
(NCT03871725). Considering the substantial body of prom-
ising pre-clinical evidence documenting efficacy of SDT for 
gliomas and the potential translatability of this approach to 
other malignant brain tumors, clinical trials exploring safety 
and efficacy of SDT in glioma and other brain tumor patients 
are anticipated in the near future.

Future directions

To capitalize on the sonoluminescence mechanisms, novel 
strategies of SDT have recently been proposed, coupling 
sonosensitizer on the membrane of ultrasound contrast 
agents, shelled gas bubbles, lipid stabilized microbubble 
(MB), under the rationale that placing sensitizers in close 
proximity to MBs undergoing inertial cavitation could 

enhance their efficiency at generating ROS through sonolu-
minescence or pyrolysis-mediated processes [56]. Another 
potentially favorable permutation of this approach also 
involves attachment of a sonosensitizer to the surface oxy-
gen-carrying MB to improve the sonodynamic effects under 
hypoxic conditions [57].

Because some sensitizers appear to be sensitive to both 
ultrasound and light, the combination of SDT with PDT 
has been proposed to increase therapeutic efficacy [58] 
and/or reduce required dose of chemicals, and benefit from 
deeper penetration depth and superior focusing capability 
in tissues compared to laser irradiation. Several preclinical 
studies have reported benefit of sonophotodynamic therapy 
(SPDT), showing stronger therapeutic effect and reduction 
in the required dose of chemicals, that could help protect 
peripheral tissue from collateral damage [29].

FUS technology is progressing rapidly. The Exablate 
Neuro (INSIGHTEC, Israel) platform allows spatially pre-
cise delivery of ultrasound energy to intracranial targets 
under MRI guidance. The NaviFUS System (NAVIFUS, 
Taiwan) uses pre-treatment CT/MRI images and neuro-navi-
gation tracking system to target ultrasound energy. However, 
these platforms are used mostly used in the setting of BBB 
opening, and their value for SDT remains to be determined.

Further pre-clinical studies exploring therapeutic and 
immunomodulation actions of SDT are warranted to harness 
the full therapeutic potential of this promising approach.

Conclusions

Abundant pre-clinical studies in glioma in vitro and animal 
models strongly suggest that SDT is a potent and promis-
ing therapeutic approach for gliomas that can induce anti-
tumor effects via activation of apoptosis, anti-tumor immune 
response, and via other biological mechanisms. Safety of 
SDT for surrounding normal brain tissues has been reliably 
documented in pre-clinical studies of using small animal 
glioma models. A fuller understanding of optimal sonica-
tion parameters as well as doses and types of sonosensitizers 
for gliomas is imperative. Clinical experience with SDT for 
gliomas remains limited, but several clinical studies of SDT 
for brain tumor patients are now underway.
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