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Abstract
Purpose Since frameless stereotactic radiosurgery (SRS) techniques have been recently introduced, hypofractionated SRS 
(HF-SRS) for large brain metastases (BMs) is gradually increasing. To verify the efficacy and safety of HF-SRS for large 
BMs, we aimed to perform a systematic review and compared them with SF-SRS.
Methods We systematically searched the studies regarding SF-SRS or HF-SRS for large (> 2 cm) BM from databases 
including PubMed, Embase, and the Cochrane Library on July 31, 2018. Biologically effective dose with the α/β ratio of 10 
 (BED10), 1-year local control (LC), and radiation necrosis (RN) were compared between the two groups, with the studies 
being weighted by the sample size.
Results The 15 studies with 1049 BMs that described 1-year LC and RN were included. HF-SRS tended to be performed in 
larger tumors; however, higher mean  BED10 (50.1  Gy10 versus 40.4  Gy10, p < 0.0001) was delivered in the HF-SRS group, 
which led to significantly improved 1-year LC (81.6 versus 69.0%, p < 0.0001) and 1-year overall survival (55.1 versus 
47.2%, p < 0.0001) in the HF-SRS group compared to the SF-SRS group. In contrast, the incidence of radiation toxicity was 
significantly decreased in the HF-SRS group compared to the SF-SRS group (8.0 versus 15.6%, p < 0.0001).
Conclusion HF-SRS results in better LC of large BMs while simultaneously reducing RN compared to SF-SRS. Thus, HF-
SRS should be considered a priority for SF-SRS in patients with large BMs who are not suitable to undergo surgical resection.

Keywords Fractionation · Large brain metastasis · Stereotactic radiosurgery · Tumor control · Radiation toxicity

Introduction

Stereotacic radiosurgery (SRS) in brain metastases (BMs) 
has been performed for decades and is usually confined to 
small tumors. Large BMs have been hindered from SRS and 

treated with either surgical resection or conventional radia-
tion therapy; however, recent advancements in frameless 
and image-guided SRS techniques have allowed fractionated 
SRS, and SRS for large BMs using fractionation has been 
increasingly performed for the last ten years [1].

The local control (LC) of single fraction SRS (SF-SRS) 
for BM has been well known to be linked to the prescrip-
tion dose. Several authors reported that LC was significantly 
improved when the BMs were irradiated using SF-SRS 
with a minimal dose over 18 Gy [2, 3]. Additionally, a dose 
of ≥ 16 Gy is reportedly sufficient to achieve an accept-
able LC, whereas a study that investigated the correlation 
between the prescription dose and the LC in BMs < 26 mm 
in a diameter (< 10  cm3 in a volume) recommended giving 
a dose ≥ 25 Gy to achieve a satisfactory LC [4]. The higher 
the radiation dose delivered to the BM, the better the LC 
attained, and overall, the 1-year LC of BMs after SF-SRS 
has been reported to roughly range from 80 to 90%: > 90% 
for small and non-small cell lung cancer with a median over-
all survival (OS) of 14 to 18 months [5, 6]; 86–94% for 

 * Young Hyun Cho 
 yhyunc@amc.seoul.kr

1 Department of Neurosurgery, Seoul National University 
Hospital, Seoul National University College of Medicine, 
101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea

2 Department of Neurosurgery, College of Medicine, Hanyang 
University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, 
Republic of Korea

3 Department of Neurosurgery, Ulsan University 
Hospital, University of Ulsan College of Medicine, 
877, Bangeojinsunhwando-ro, Dong-gu, Ulsan 44033, 
Republic of Korea

4 Department of Neurological Surgery, Asan Medical Center, 
University of Ulsan College of Medicine, 88, Olympicro 
43-gil, Songpa-gu, Seoul 05505, Republic of Korea

http://orcid.org/0000-0002-3274-5096
http://crossmark.crossref.org/dialog/?doi=10.1007/s11060-021-03805-8&domain=pdf


26 Journal of Neuro-Oncology (2021) 154:25–34

1 3

breast cancer with a median OS of 14.5 months [7]; 75–94% 
for melanoma [8]; and 94% for renal cell cancer [9]. Matsuo 
et al. reported that the minimal dose to the BMs  (Dosemin) is 
the single most significant predictor of LC, and they recom-
mended 25 Gy for BMs < 10  cm3 and 20 Gy for BMs ≥ 10 
 cm3 [4]. Shiau et al. also verified, from their study of the 
correlation between the prescription dose and LC, that the 
higher the dose delivered, the better the LC achieved [2]. 
Similarly, we are able to attain improved LC by radiation 
dose escalation; however, tumor size limits radiation dose 
escalation because the larger the tumor treated with SF-SRS 
is, the more likely local toxicity occurs, such as radiation-
induced edema and radiation necrosis (RN). Therefore, to 
reduce the risk of RN to less than 3%, large tumors have 
generally been treated with a reduced radiation dose than 
the originally required dose, which frequently leads to local 
failure [2, 10–13]. According to a study of the relationship 
between the tumor volume, dose and local control performed 
by Richard et al., the stepwise reduction in marginal dose to 
tumor according to increasing tumor size, from 21–25 Gy, 
18–20 Gy, to 12–15 Gy, caused a remarkable decline of 
1-year LC from 82, 64, to 37%, respectively [13]; however, 
since the introduction of fractionated SRS, SRS practice 
has been shifting towards maintaining an adequate marginal 
dose through fractionation rather than dose reduction for 
large BMs, and favorable LC and toxicity have been reported 
by several institutes. Here, we aimed to perform a systematic 
review of SRS for large BMs over 2 cm in diameter (or 3 
 cm3 in volume) to compare the efficacy and safety of the 
two treatment modalities of SF-SRS and hypofractionated 
SRS (HF-SRS).

Methods

Search strategy

We systematically searched the studies regarding SF-SRS 
or HF-SRS for large (> 2 cm) BM from databases including 
PubMed, Embase, and the Cochrane Library on July 31, 
2018. The detailed search strategy is presented in Supple-
mentary Table 1. A manual search of reference lists from 
previous relevant studies and reviews was also conducted to 
further identify relevant literature.

Eligibility criteria

Both retrospective and prospective studies performed in 
humans were included in this analysis, with case reports, 
conference abstracts, and review articles being excluded. 
Studies written in a language other than English were 
excluded. If the contents of the abstract were considered 
compatible with this study, the full text of the study was 

entirely reviewed by two independent researchers (EJL and 
ESP). This review was focused on large metastatic brain 
tumors ≥ 2 cm in diameter (or 3  cm3 in volume) treated with 
either SF-SRS or HF-SRS. Hypofraction was defined as 
the number of fractions between 2 and 5. We considered 
radiation therapy as SRS if it was performed in a stereotactic 
manner with a safety margin within 3 mm even though it was 
described as “stereotactic radiotherapy”. The primary end 
point was 1-year LC after radiosurgery, and the secondary 
end point was RN. Only studies that reached a consensus 
between the two authors were included in the systematic 
review.

Data extraction

Two reviewers (EJL and ESP) independently reviewed the 
full text of each included study and extracted data using a 
standardized form. The abstracted data included the name of 
the author, publication year, sample size, tumor size (mean 
and range), study design, treatment modality, SRS dosim-
etry, 1-year LC, 1-year number at risk, 1-year OS, RN, and 
medical follow-up period. The biologically effective dose 
(BED) was estimated from the dose prescribed to the iso-
center of the tumor using a linear-quadratic model assuming 
α/β to be 10 Gy [14].

Statistical analysis

After database searching and data extraction, we performed 
a systematic review in which the studies reported treatment 
results after SF-SRS or HF-SRS for large (> 2 cm) BMs. 
Selected study populations were divided into 2 categories 
by treatment modality, SF-SRS and HF-SRS. To compare 
the integrated data of the SF-SRS and HF-SRS groups, 
Mann–Whitney U tests [15] were performed for continuous 
nonparametric variables, with the studies being weighted 
by the sample size. Differences with p values < 0.05 were 
considered statistically significant. All statistical analyses 
were performed using SPSS v.22.0 (SPSS Inc., Chicago, IL).

Results

We found 289 articles from a search of PubMed, 240 from 
EMBASE, 22 from the Cochrane Library, and 1 additional 
article from manual searching. A total of 362 studies were 
identified after removing duplicates, and 347 potentially 
relevant articles were retrieved for full-text review. The 
15 studies selected that described 1-year LC and RN for 
patients treated with SF-SRS or HF-SRS for BM ≥ 2 cm 
(or 3  cm3), and data on 1049 BMs were extracted (Fig. 1) 
[16–30]. Among these 15 publications, five studies covered 
only BMs treated with SF-SRS [26–30], seven studies dealt 
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with only BMs treated with HF-SRS [16, 17, 19–21, 23, 24], 
and three studies included both BMs treated either SF-SRS 
or HF-SRS [18, 22, 25]. For the three studies that included 
both BMs treated with either SF- or HF-SRS, we collected 
data separately for SF- and HF-SRS groups.

The studies that were finally included in this review are 
summarized in Tables 1, 2. All studies had mixed primary 
cancer pathologies, with lung cancer being the majority, 
except the study conducted by Flannery and colleagues 
that included only BM from prostate carcinoma [27]. In the 
SF-SRS group, eight studies were included, encompassing 
463 composite BMs, and ten studies with a composite BM 
number of 586 in the HF-SRS group. HF-SRS was mostly 
delivered daily on consecutive days. Three studies directly 
compared the outcomes of SF-SRS and HF-SRS in large 
BMs [18, 22, 25]. Minniti et al. performed SF-SRS and HF-
SRS as primary treatments for 179 and 164 BMs > 2.0 cm 
in diameter, respectively [22]. The tumor size of the HF-
SRS group ranged from 4.1 to 47.9  cm3, which was sig-
nificantly larger than that of the SF-SRS group (range, 
3.1–24.1  cm3; p = 0.005). In the SF-SRS group, 18 Gy 
 (BED10 = 50.4  Gy10) was delivered for BMs of 2–3 cm 
and 15–16 Gy  (BED10 = 37.5–41.6  Gy10) for BMs ≥ 3 cm, 
whereas in the HF-SRS group, 27 Gy was delivered in 3 
fractions  (BED10 = 51.3  Gy10) at 80–90% isodose line. 

During a median radiologic follow-up of 10 months, BMs 
treated with SF-SRS recurred much more frequently than 
those treated with HF-SRS (16.6 vs 8%, p = 0.03), and the 
1-year LC rate of SF-SRS was also significantly lower than 
that of HF-SRS (77 vs 91%, p = 0.01). On the other hand, 
RN occurred significantly more often in the SF-SRS group 
than in the HF-SRS group (20 vs 8%, p = 0.008). Propensity 
score matching analysis also demonstrated favorable out-
comes in the HF-SRS group in terms of both LC (p = 0.01) 
and RN risk (p = 0.005). Feuvret et al. also reported the 
treatment results of SF-SRS and HF-SRS in BM > 3 cm in 
diameter [18]. In the SF-SRS group, 14 Gy  (BED10 = 33.6 
 Gy10) was prescribed in 24 BMs with a GTV ranging from 
4.5 to 33.1  cm3, whereas in the HF-SRS group, 7.7 Gy per 
day was delivered for 3 consecutive days  (BED10 = 40.9 
 Gy10) in 12 BMs with a GTV ranging from 12.5 to 52.5 
 cm3. The size of tumors treated with HF-SRS was signifi-
cantly larger than those treated with SF-SRS (p = 0.02). 
The 1-year LC rate tended to be superior in the HF-SRS 
group than in the SF-SRS group (100 vs 58%, p = 0.06). No 
RN was recorded in either SRS group during the 7-month 
median follow-up period. In contrast, another study that 
directly compared the SF- and HF-SRS for large BMs did 
not show a difference in either the 1-year LC (67 vs 75%, 
p = 0.27) or 1-year free from RN (85 vs 75%, p = 0.25) rates 

Fig. 1  The flow diagram of 
the literature search and study 
selection
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[25]. For 46 BMs, 15 Gy was delivered in a single frac-
tion  (BED10 = 37.5  Gy10), whereas 24 Gy was delivered in 
3 fractions  (BED10 = 43.2  Gy10) for 65 BMs. The composite 
results of the SF-SRS and HF-SRS groups are compared 
in Table 3. The mean  BED10 (p = 0.021) was significantly 
higher in the composite HF-SRS group, which led to signifi-
cantly improved 1-year LC (p = 0.031) by 17% and 1-year 
OS (p = 0.042) by 22% compared with the composite SF-
SRS group; however, the incidence of radiation toxicity 
was comparable between the two groups. When analyzed 
by applying a weight to each study’s sample size, radiation 
toxicity occurred at a significantly lower rate in the HF-SRS 
group (8.0 versus 15.6%, p < 0.0001) with the higher mean 
 BED10 (51.2  Gy10 versus 44.1  Gy10, p < 0.0001), while and 
1-year LC (81.6 versus 69.0%, p < 0.0001) and 1-year OS 
(55.1 versus 47.2%, p < 0.0001) were significantly higher 
(Table 4).

Discussion

The prolonged survival of cancer patients due to advance-
ments of molecular biology and targeted therapies has 
inevitably led to a gradual increase in the incidence of 
brain metastasis including large-sized tumors [31, 32]. 

Such chemotherapy developments have raised the expec-
tation that even patients with advanced disease status can 
be treated, which subsequently increases the requirement 
to treat BM actively compared to the past. Meanwhile, as 
patients inappropriate for surgical resection increase due to 
age, comorbidities, multiple lesions, and the need for con-
tinuity of chemotherapy, demand for SRS as an attractive 
alternative to surgery is increasing. Additionally, SRS has 
become the preferred treatment over WBRT for patients with 
a limited number of BMs because it is less likely to cause 
neurocognitive decline as a late adverse effect of radiation 
[33]; however, SRS, in which a single high-dose radiation 
is delivered to the target in the conventional approach, can 
cause radiation toxicity by irradiating a correspondingly 
large amount of surrounding normal tissues for the treat-
ment of a large BM [34–36]. The development of radiation 
necrosis is correlated with the volume of normal brain tissue 
irradiated with a dose ≥ 12 Gy [37, 38]. Therefore, before the 
era of hypofractionated SRS, SRS was performed using a 
reduced radiation dose to avoid radiation toxicity; however, 
it may lead to treatment failure. Irradiation in fractionation 
is a basic strategy of conventional radiation therapy. Frac-
tionation allows for tumor cells to be redistributed in the cell 
cycle and reoxygenated to make them radiosensitive, which 
enhances therapeutic efficacy and permits injured normal 

Table 3  Comparison between the integrated results of SF-SRS and HF-SRS studies

BED biologically effective dos, HF-SRS hypofractionated stereotactic radiosurgery, SF-SRS single fraction stereotactic radiosurgery

Variables SF-SRS (no. of study = 8) HF-SRS (no. of study = 10) p value (exact)

Composite sample size 463 586
Tumor size 3.0–33.06  cm3 (2–4.7 cm) 3–52.52  cm3 (2–5.95 cm)
Marginal dose 11–20 Gy 18–40 Gy in 2–5 fractions
Mean  BED10 40.38 ± 6.52  Gy10 (32.15–50.40  Gy10) 50.07 ± 8.04  Gy10 (40.89–65.63y10) 0.021
1-Year local control 63.64 ± 13.06% (38–84%) 81.52 ± 15.67% (59–100%) 0.031
1-Year overall survival 29.65 ± 17.70% (10–53%) 51.61 ± 14.68% (31–69%) 0.042
Radiation toxicity 9.46 ± 9.07% (0–20%) 6.63 ± 7.97% (0–25%) 0.606
Median follow-up period (month) 10.89 ± 8.15 (3–29) 11.22 ± 7.66 (5.0–29) 0.965

Table 4  Comparison between the integrated results of SF-SRS and HF-SRS studies weighted by sample size

BED biologically effective dos, HF-SRS hypofractionated stereotactic radiosurgery, SF-SRS single fraction stereotactic radiosurgery

Variables SF-SRS (# of study = 8) HF-SRS (# of study = 10) p value (Exact)

Composite sample size 463 586
Tumor size 3.1–33.06  cm3 3–52.52  cm3

Marginal dose 11 − 18 Gy 18–40 Gy in 2–5 fractions
Mean  BED10 44.05 ± 5.05  Gy10 (32.15–50.40  Gy10) 51.23 ± 6.73  Gy10 (40.89–65.63  Gy10)  < 0.0001
1-Year local control 69.01 ± 10.93% (38–84%) 81.57 ± 13.77% (59–100%)  < 0.0001
1-Year overall survival 47.18 ± 12.21% (10–53%) 55.10 ± 13.02% (31–69%)  < 0.0001
Radiation toxicity 15.64 ± 6.21% (0–20%) 7.98 ± 7.22% (0–25%)  < 0.0001
Median follow-up period (month) 10.53 ± 7.23 (3–29) 14.77 ± 9.61 (5–29)  < 0.0001
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tissues to be repaired and repopulated between treatments, 
decreasing radiation toxicity. Such a fractionation concept 
has also been applied to SRS in the form of HF-SRS in 
the hope of minimizing the risk of RN while maintaining 
BED to the tumors [33, 39]. Keeping a rigid frame on the 
head for several days was a considerable barrier to perform-
ing HF-SRS; however, since the frameless SRS system’s 
advent more than a decade ago, HF-SRS has become a 
popular treatment for large BM. HF-SRS started with the 
hypothesis that it would lessen RN risk while achieving LC 
comparable to SF-SRS in treating large BM [18, 23, 32, 
40, 41]. To verify these assumptions, we performed a sys-
tematic review of the efficacy and safety of HF-SRS com-
pared to SF-SRS. Fifteen studies of large BM SRS were 
selected in total, including three studies directly comparing 
SF-SRS and HF-SRS. The composite data estimated that 
higher  BED10 was delivered in the HF-SRS group, leading 
to a significant improvement in 1-year LC and 1-year OS, 
whereas decreasing the radiation toxicity rate, compared to 
the SF-SRS group. Also, planning target volume expansion 
with the 1–3 mm margin in HF-SRS may be associated with 
better LC in the HF-SRS group than the SF-SRS group that 
mainly did not include a margin. Lehrer et al. have recently 
performed a meta-analysis to compare the efficacy and safety 
between SF-SRS and HF-SRS for large BMs > 2 cm [32]. 
Fifteen studies with 1157 large BMs were included to ana-
lyze 1-year LC, including two studies that directly compared 
SF-SRS and MF-SRS. The authors stratified the analysis of 
1-year LC by dichotomizing the tumor size between 2–3 cm 
diameter (4–14  cm3) versus > 3 cm diameter (> 14  cm3). 
Overall, meta-analyses did not confirm the superiority of 
HF-SRS in tumor control compared to SF-SRS; however, 
in the tumor size group of 2–3 cm diameter, there was a 
trend of better 1-year LC in the HF-SRS group than the SF-
SRS group (92.9 versus 77.1%, p = 0.18). On the other hand, 
HF-SRS significantly reduced RN risk compared to SF-SRS 
in the tumor size group of 2–3 cm diameter, while there 
was a trend of reduced RN incidence in HF-SRS groups in 
the tumor size group of > 3 cm diameter. Since the present 
study included only three studies that directly compared the 
results between SF-SRS and HF-SRS, we were concerned 
that meta-analysis with limited data would provide unsat-
isfactory or biased results. Instead, we integrated the data 
from the SF-SRS and HF-SRS groups and compared the 
two groups via the Mann–Whitney U tests, which weighted 
the study sample size, resulting in a significant improvement 
in 1-year LC and decreased RN in the HF-SRS group over 
the SF-SRS group. Meanwhile, a recent prospective study 
comparing SF-SRS (n = 67, median dose 20 Gy) and HF-
SRS (n = 38, median cumulative dose 35 Gy in 5 fractions) 
for 2.5–3 cm sized BMs reported a significant decrease in 
the incidence of RN (29.9 vs. 5.3%, p < 0.001) and improve-
ment in 1-year LC (66.6 vs. 92.4%, p = 0.028) in the HF-SRS 

groups with no difference in OS (median 13 months vs. 
18 months, p = 0.239) between the two regimens [42].

Taken together, the results of SRS studies on large BMs 
indicate that HF-SRS may be a better treatment option 
for large BMs when considering efficacy and safety [43]. 
HF-SRS combines the advantages of SRS, which is pre-
cise administration of high-dose radiation to the target, and 
fractionation that allows repair, repopulation, redistribution, 
and reoxygenation [39, 44]. Whether it would be possible 
to lower the RN incidence even with a fraction number of 
2–5 that is significantly smaller than that of conventional 
radiation therapy was unclear. Additionally, there was a 
concern that decreased dose per fraction in HF-SRS might 
lead to deteriorating tumor control in comparison with 
SF-SRS because high dose radiation in a single fraction is 
thought to be preferable to fractionated radiation therapy 
to control radioresistant tumors, such as BMs from hepa-
tocellular carcinoma and melanoma. High-dose radiation 
is also believed to elicit severe damage in the tumor ves-
sels, by which it exerts an additional antitumor effect [39]. 
Therefore, whether a decreased dose per fraction in HF-
SRS would still preserve its influence on the vasculature 
was uncertain. However, a myriad of studies of HF-SRS has 
recently reported that fractionation with a limited number 
not only reduces RN risk even with administration of higher 
BED but also may improve tumor control despite decreased 
dose per fraction compared to SF-SRS. Radiation-induced 
DNA damage leads to accelerated senescence or cell death 
(apoptosis, autophagy, or necrosis) [45–47], depending on 
the radiation dose and radiosensitivity of the exposed tissue, 
with higher doses causing necrosis [48–50]. Unlike apopto-
sis, the necrosis process is associated with inflammation in 
surrounding normal tissue [51, 52]. The dose per fraction 
currently used in the HF-SRS seems to be high enough to 
treat malignant tumor cells but low enough not to induce the 
necrotic process well. Meanwhile, better LC in the HF-SRS 
group is generally considered to result from irradiation with 
higher BED. In addition to this point of view, we speculate 
that the acquisition of tumor cells radiosensitivity due to 
redistribution in the cell cycle and reoxygenation may play 
an important role in the local control of large BMs than 
expected [53, 54]. How large tumors can be safely and effec-
tively treated using HF-SRS instead of surgical resection 
and whether HF-SRS will be more beneficial than SF-SRS 
even in small tumors remains unclear. Thus, the window of 
tumor size in which HF-SRS is helpful and the optimal dose 
per fraction and dose rate according to tumor size need to 
be established.

Meanwhile, as large peptide molecules such as monoclo-
nal antibodies have recently been revealed to partially pene-
trate the blood–brain barrier in BM patients and exert tumor 
control effect, a combinational approach of SRS plus tar-
geted or immunotherapy (TT/IT) has attracted attention [55]. 
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Although data are limited and mostly retrospective, SRS may 
potentially synergistically affect LC and OS when combined 
with certain TT (in patients with EGFR-mutated NSCLC; 
HER 2-mutated breast cancer; and  BRAFV600E-mutated 
melanoma) or IT, compared to SRS alone [56–58]. ITs are 
profitable to patients lacking a driver mutation who do not 
benefit from novel targeted therapies. Regarding the opti-
mal timing of IT treatment in BM patients, several stud-
ies demonstrated that concurrent administration of IT with 
SRS or immediately after SRS conferred better LC or OS 
than IT prior to SRS [58–60]. There are conflicting results 
in the toxicity issue of combining SRS with TT/IT in BM, 
with symptomatic RN and intra-tumor hemorrhage being 
increased especially those with melanoma [57, 61]. Unfor-
tunately, the studies included in this review did not specify 
adjuvant therapies, including TT/IT, except the study con-
ducted by Flannery and colleagues [27]. Therefore, it was 
not possible to compare the effects of TT/IT on the treatment 
outcomes of SF-SRS and HF-SRS. The synergistic pros and 
cons of SRS with TT/IT need to be compared between the 
HF-SRS and SF-SRS groups in the future.

Limitations

The tumor α/β ratio may vary with the pathology: 10–30 Gy 
for squamous cell cancer and 4–5 Gy for breast cancer [62]. 
However, the studies except one included in this review had 
mixed primary cancer pathologies, with lung cancer being 
the majority. Given the complexity of calculating the BED 
with different α/β according to pathology, we used an α/β 
of 10 as the representative value for metastatic brain tumors 
to conceptually compare the difference in BED between the 
SF-SRS and HF-SRS groups. Moreover, we estimated the 
BED based on a linear-quadratic model, which does not suf-
ficiently represent the complexity of the underlying biol-
ogy, although it is widely used. Whether the linear-quadratic 
model is applicable to estimate the BED in HF-SRS has not 
been verified. The time between fractions in HF-SRS may 
influence BED; however, we considered the effect of tumor 
proliferation during the short fractionation schedule to be 
imperceptible in general and did not reflect it in the BED 
calculation formula. Due to these limitations of BED esti-
mation, it is necessary to be cautious when comparing BED 
between the SF-SRS and the HF-SRS groups.

Conclusions

Hypofractionation in SRS enables higher  BED10 adminis-
tration to the target, resulting in better local control of large 
BMs, and simultaneously reduces radiation toxicity, com-
pared to SF-SRS. Thus, HF-SRS should be considered a 

priority for SF-SRS in patients with large BMs who are not 
suitable to undergo surgical resection.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11060- 021- 03805-8.
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