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Abstract
Purpose Cyclin-dependent kinase-retinoblastoma (CDK-RB) pathway is dysregulated in some diffuse intrinsic pontine glio-
mas (DIPG). We evaluated safety, feasibility, and early efficacy of the CDK4/6-inhibitor ribociclib, administered following 
radiotherapy in newly-diagnosed DIPG patients.
Methods Following radiotherapy, eligible patients received ribociclib in 28-day cycles (350 mg/m2; 21 days on/7 days off). 
Feasibility endpoints included tolerability for at least 6 courses, and a less than 2-week delay in restarting therapy after 1 
dose reduction. Early efficacy was measured by 1-year and median overall survival (OS). Patient/parent-by-proxy reported 
outcomes measurement information system (PROMIS) assessments were completed prospectively.
Results The study included 10 evaluable patients, 9 DIPG and 1 diffuse midline glioma (DMG)—all 3.7 to 19.8 years of age. 
The median number of courses was 8 (range 3–14). Three patients required dose reduction for grade-4 neutropenia, and 1 
discontinued therapy for hematological toxicity following course 4. The most common grade-3/4 toxicity was myelosuppres-
sion. After 2 courses, MRI evaluations in 4 patients revealed increased necrotic volume, associated with new neurological 
symptoms in 3 patients. The 1-year and median OS for DIPG was 89% and 16.1 months (range 10–30), respectively; the 
DMG patient died at 6 months post-diagnosis. Five patients donated brain tissue and tumor; 3 were RB+ .
Conclusions Ribociclib administered following radiotherapy is feasible in DIPG and DMG. Increased tumor necrosis may 
represent a treatment effect. These data warrant further prospective volumetric analyses of tumors with necrosis. Feasibility 
and stabilization findings support further investigation of ribociclib in combination therapies.
Trial registration NCT02607124.
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Introduction

DIPG and DMG with H3K27M mutation are the leading 
cause of brain cancer death in children and young adults 
[1–3]. The standard of care for DIPG and DMG is radio-
therapy. Although radiotherapy can extend survival of DIPG 
patients by 2 to 3 months, no adjuvant therapy has proven 
effective. Similarly, patients with DMG, H3K27M-mutant 
have a poor outcome [3].

CDK4/6 inhibitors have been studied against a variety 
of neoplasms due to the finding that overexpression of 
CDK4/6, CCND1 or deletion of CDKN2A are hallmarks 
of tumorigenesis and invasiveness [4]. Ribociclib (Novartis 
Pharmaceuticals) is an orally bioavailable inhibitor of cyc-
lin D-CDK4/6, which induces cell-cycle arrest by maintain-
ing the tumor suppressor protein retinoblastoma (RB) in a 
hypophosphorylated, active state. Therapeutic feasibility of 
ribociclib for DIPG and DMG is supported by alterations 
of cell-cycle regulators in some tumors [5–10], over 70% 
of DIPG patients express intact RB [7, 11, 12], tolerable 
toxicity in adults and children, [13, 14] and prolonged stable 
disease in a pediatric Phase I study of recurrent rhabdoid 
tumors, neuroblastoma, and tumors with cell-cycle pathway 
aberrations [14].

We report the first safety, feasibility, and early response 
data for ribociclib following radiotherapy in newly diag-
nosed DIPG and  RB+ DMG patients (NCT 02607124) 
using the pediatric RP2D (350  mg/m2) once daily for 
21 days/7 days off [14].

Methods

Study design and objectives

This investigator-sponsored Phase I/II study evaluated ribo-
ciclib administered post-radiotherapy in pediatric patients 
newly diagnosed with DIPG or DMG, K27M-mutant. Pri-
mary objectives were safety, feasibility, and 1-year OS. 
Secondary objectives were median OS and correlative 
assessments.

Patients

Patients were newly-diagnosed with either imaging con-
firmed DIPG (aged 1–30 years) or histologically-confirmed 
DMG. DIPG tumors were defined by neuroimaging (diffuse 
intrinsic involvement and pontine epicenter) without histo-
logical confirmation. Patients with brainstem tumors and 
atypical imaging were eligible if the tumor was histologi-
cally confirmed WHO grade-III/IV glioma according to the 

2016 WHO classification [15] and confirmed RB+ . DMG 
tumors may have extended beyond the brainstem, had to 
be  RB+ and histologically confirmed as DMG, H3K27M-
mutant [15]. Patients with primary spinal cord tumors or 
multi-focal disease within the cerebrum were eligible. Pilo-
cytic astrocytoma, pilomyxoid astrocytoma, pleomorphic 
xanthoastrocytoma, ganglioglioma, mixed glioma without 
anaplasia, oligodendroglioma, or oligoastrocytoma were 
excluded.

Within 30 days of radiographic diagnosis or definitive 
surgery, patients must have initiated radiation therapy dosed 
within 10% of standard (54 Gy). Other eligibility criteria 
included the following: Lansky (≤ 16 years) or Karnofsky 
(> 16 years), performance scores (≥ 50%); no prior therapy 
other than surgery, radiation, and/or steroids; adequate 
laboratory data, including bone marrow function (hemo-
globin ≥ 9 g/dL, absolute neutrophil count ≥ 1,000  mm3, and 
platelets ≥ 100,000/mm3 transfusion-independent, defined as 
no platelet transfusion within a 7-day period prior to enroll-
ment), renal function (age-adjusted normal serum creatinine 
or glomerular filtration > 70 ml/min/1.73  m2), liver function 
(total bilirubin < 3X upper limit of normal for age, ALT 
[SGPT] ≤ 2.5X upper limit of normal for age, albumin ≥ 2 g/
dL), and recovered from acute radiation-related toxicities 
(≤ grade 2). Patients with controlled seizures on non-enzyme 
inducing anticonvulsants were eligible.

Patients were excluded for the following: pregnancy; dis-
seminated disease to the spine; received a radiosensitizer, 
investigational agent, or additional adjuvant therapy during 
radiotherapy; on potent CYP3A4 inducers/inhibitors; signifi-
cant active cardiac disease, hypertension, uncontrolled heart 
disease, history of cardiac dysfunction, cardiomyopathy, left 
ventricular ejection fraction < 50%, QTc > 480 ms; on warfa-
rin or other coumadin-derived anticoagulant; and had major 
surgery within 14 days of first ribociclib dose.

Treatment and dose modifications

Two-to-4  weeks post-radiotherapy, patients received 
350 mg/m2 ribociclib daily for 21 days/7 days off every 
28 days for up to 12 courses as capsules or liquid (nasogas-
tric/gastric tube) [13, 14].

One intra-patient dose reduction (280 mg/m2) was per-
mitted for toxicities graded according to the NCI Common 
Terminology Criteria for Adverse Events (v4.03). Hema-
tological toxicities attributable to ribociclib requiring dose 
reductions were ≥ grade-3 thrombocytopenia or grade-4 neu-
tropenia during days 1 to 21; reductions were not made for 
grade-4 neutropenia during the 7-day rest period if patients 
met study parameters for the subsequent course. Non-hema-
tologic toxicities requiring dose reductions were ≥ grade-2 
AST/ALT and/or bilirubin, QTc prolongation, and grade-2 
non-hematologic toxicity persisting for ≥ 7  days and 
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considered medically significant or sufficiently intolerable. 
If a subsequent course was delayed ≥ 14 days, a dose reduc-
tion was warranted. Reductions were not made for the fol-
lowing grade-3 non-hematologic toxicities: nausea, vomit-
ing, fever, or infection lasting < 5 days, hypophosphatemia, 
hypokalemia, hypocalcemia, or hypomagnesemia responsive 
to oral supplementation, and anorexia.

Assessments

Pretreatment evaluations included history, physical examina-
tion, performance status, laboratory, and MRI. Patients were 
monitored for treatment-related toxicities and disease-related 
morbidities using neurological examination and performance 
score (prior to each course), EKG and electrolytes (days 1 
and 15 of course 1, and then prior to subsequent courses), 
complete blood counts (weekly), and echocardiogram (base-
line, prior to course 4, and as clinically indicated thereafter). 
Also monitored were hypothalamic pituitary axis function 
and pubertal status (baseline, prior to course 7, and yearly) 
by Tanner staging, FSH, LH, estradiol and ovarian reserve 
evaluated by anti-Mullerian hormone (AMH; females), and 
testosterone (males).

PROMIS (Patient-reported outcomes measurement 
information system) evaluations were administered to eli-
gible patients or parents by proxy (baseline and monthly). 
PROMIS pediatric measures have validated psychometric 
characteristics for 8-to-17-year-old children and parent 
proxy reports for 5-to-17 year-old children [16]. Domains 
included anxiety, depressive symptoms, fatigue, pain inter-
ference, physical function and upper extremity mobility, 
and social-peer relationships [16]. Each domain utilized 
a 5-point response scale (higher scores represent greater 
effect), 7-day recall, and a “T-score” metric using each 
measure’s item response theory parameters and response-
pattern-based scoring (Mplus 8) [17].

Radiographic (MRI) evaluations

MRIs were obtained at baseline (post-radiotherapy and 
within 2 weeks of starting ribociclib therapy), every 8 weeks 
during therapy, and upon completion. Images were reviewed 
by 2 neuroradiologists (J.L. and B.J.), according to Response 
Assessment in Pediatric Neuro-Oncology [18].

Tumor response was measured using product of perpen-
dicular dimensions (PPD) analysis. PPD was measured 
as the largest tumor dimension and its perpendicular from 
transverse, anterior–posterior, and cranio-caudal planes 
from T1 enhanced, T2 weighted, or FLAIR images used 
for serial and 2-dimensional measurements. Necrosis, dis-
tinguished as a well-defined non-enhancing signal intensity 
(hypointense on T1 and hyperintense on T2) with peripheral, 
rim-like enhancement, was evaluated by position and size: 

if eccentric and small (< 25% of tumor) or eccentric and 
large, only the solid portion of the tumor was measured; if 
central and small, the whole lesion (including necrosis) was 
measured.

Tumor response was assessed as complete response (CR), 
partial response (PR), stable disease (SD), or progressive 
disease (PD). CR was defined by the complete disappear-
ance of tumor and mass effect on MRI, and PR was a 50% 
or greater reduction in tumor size by PPD (vs baseline). 
Patients with CR or PR tumors were on stable or decreasing 
doses of steroids with stable or improving neurologic exams 
(maintained for 8 weeks). SD was defined as stable neuro-
logic exams, maintenance steroid dosing, and imaging that 
did not meet PR or PD criteria (maintained for 16 weeks). 
To qualify as having PD, patients had to meet 1 or more of 
the following criteria: progressive neurologic symptoms not 
explained by causes unrelated to tumor progression, > 25% 
increase in tumor (with smallest PPD as reference), new 
lesions, or increasing steroid dosing to maintain neurologi-
cal status.

Patients showing pseudoprogression on MRI in the first 
6 months of treatment remained on study at the physician’s 
discretion—repeating the MRI after 4 to 6 weeks. If this 
MRI demonstrated tumor regression or SD, and neurological 
examination remained stable, the patient remained on treat-
ment; if it showed PD, treatment was discontinued. Steroids 
were allowed as long as the patient maintained on decreas-
ing doses.

Tumor and necrotic volumes As a secondary objective, 
tumor volume (T2 signal) and necrotic volume (T1 or T2 
signal) were measured. Volumetric analyses were performed 
via MINT lesion (Mint Medical GmbH) to compare against 
the standard, PPD [19].

Pathology and genomics

Immunohistochemistry for RB and mutation-specific histone 
H3K27M was performed as previously described [20, 21], 
in a CLIA-certified laboratory. Tumors were  RB+ if 20% or 
more of nuclei were immunopositive in at least 3 20X fields; 
 RB+ endothelial cells served as an internal positive control. 
DNA extraction and Sanger sequencing were performed as 
previously described [22]. Whole-genome sequencing (WGS) 
was performed on tumor tissue (vs normal), WGS data ana-
lyzed by VIVA (CCHMC), somatic mutations identified 
using GATK and MuTact2, annotated using VEP [23–25], 
and those in coding regions with moderate-to-high impact 
selected.

Statistical analyses

Feasibility endpoints were toxic death or grade-3/4 tox-
icities that resulted in discontinuation of ribociclib, delays 
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(> 2 weeks) in starting a treatment course, or discontinua-
tion of therapy after dose reduction. For a patient surviving 
6 months after initiation of ribociclib, feasibility was con-
firmed if 5 of 6 courses were completed and they received at 
least 80% of therapy administered including 1 dose reduc-
tion to 280 mg/m2. If more than 2 of the first 12 enrolled 
evaluable patients were infeasible, the study stopped and 
ribociclib was deemed infeasible for this population. In the 
event of early closure of the study, less than 25% of patients 
with dose-modifying toxicities after 1 dose reduction would 
be considered feasible. Patients were evaluable for safety 
and feasibility if they completed all clinical and laboratory 
monitoring requirements before ribociclib discontinuation 
due to toxicity or disease progression. Patients were evalu-
able for safety if they received any ribociclib therapy and no 
additional anticancer therapy or supportive care to confound 
interpretation—even if they were removed for progression 
or toxicity after dose reduction.

Results

Patients

Between March 31, 2016 and November 8, 2017, 18 
patients were screened, and 11 patients (61%) enrolled. 
Reasons for not enrolling included parental decision, 
 RB− status, delay in starting radiation therapy, insuffi-
cient tissue for screening, and disseminated disease to the 
spine. Upon additional review, 1 of the 11 patients was 
deemed ineligible due to evidence of disseminated dis-
ease discovered after enrollment (but prior to receiving 
any investigational agents). Of the 10 remaining enrolled 
patients (4 male, 6 female), the median age at diagnosis 

was 7.3 years (range 3.7 to 19.8; Table 1); 9 were diag-
nosed with DIPG, 1 with DMG. Patient 9 (DIPG) had a 
diagnostic biopsy due to atypical features extending to the 
left midbrain and thalamus; pathology revealed grade-IV 
infiltrating glioma in the pons, with intact RB. Patient 1 
was enrolled with a midline tumor and what appeared to be 
a non-contiguous cerebellar lesion, pathology consistent 
with H3K27M-mutant DMG, and intact RB (later autopsy 
analysis revealed that the midline and cerebellar tumors 
were, in fact, contiguous).

Treatment and dose reductions

The median number of courses for all 10 patients was 8 
(range 3–14), with 6 receiving at least 6 courses. Dose 
reductions were required in 3 patients—2 for grade-4 
neutropenia following course 4, and 1 for a patient with 
confounding viral upper-respiratory illness at the time of 
initial grade-4 neutropenia following course 1 who, despite 
dose reduction, came off therapy for hematological toxic-
ity following course 4. The primary feasibility endpoint 
could not be determined due to an amendment investigat-
ing ribociclib and everolimus therapy (NCT03355794). 
Nonetheless, ribociclib post-radiation therapy was deemed 
feasible, given that fewer than 25% of patients had dose-
modifying toxicities after 1 dose reduction, and 6 patients 
received 6 or more courses. Two of these 6 patients com-
pleted therapy (≥ 12 courses) and 4 came off treatment (3 
with disease progression, 1 with toxicity). The most com-
mon grade-3/4 toxicities were neutropenia (90%), lympho-
penia (50%), and leukopenia (70%; Table 2). No patients 
died due to toxicity.

Table 1  Patient demographics

a Autopsy donation

Patient Age at diagnosis 
(years)

Gender Cycles com-
pleted

Subsequent therapy Overall 
survival 
(months)

1a 7.6 F 2 None 6
2a 7 F 3 Radiotherapy, bevacizumab 10.7
3a 14.7 M 14 Intra-arterial therapy in Mexico (specific agents unknown) 30.1
4a 17.2 M 3 Radiotherapy, bevacizumab 12
5a 3.7 F 11 VORINOSTAT and etoposide

temozolomide, bevacizumab
28.5

6 5 F 12 None 15.5
7 7.6 F 7 Panobinostat 16.6
8 19.8 F 8 N/A; patient withdrew consent; no subsequent therapies during 

30-day follow up
17.5

9 4.5 M 2 Radiotherapy, bevacizumab, everolimus 15.1
10 5.8 M 9 Bevacizumab 16.1



515Journal of Neuro-Oncology (2020) 149:511–522 

1 3

Outcome

Nine patients developed disease progression, and 1 elected 
to discontinue therapy after course 14 to pursue another 
clinical trial. Necrosis was observed in baseline MRIs of 
9 patients; 4 exhibited increasing necrosis—3 after cycle 
2 and 1 after cycle 3. For 1 of the 4 patients, necrosis, as 
measured volumetrically, increased steadily through cycle 
4, and then decreased, nearly resolving by cycle 12 (Fig. 1, 
and data not shown). The volumetric increase in necro-
sis, from baseline to just after cycle 2, ranged from 0.1 
to 2.1 ml (0.3–21.9%)—with the largest increases occur-
ring in 2 patients that continued therapy through cycles 
10 and 13. The 1-year and median OS for DIPG was 89% 
and 16.1 months (range 10–30 mo), respectively; 2 DIPG 

patients survived 28 and 30 months post-diagnosis. OS for 
the DMG patient was 6 months.

Correlative findings

The hypothalamic-pituitary axis and pubertal develop-
ment were evaluated at baseline for all 10 patients. Of the 
6 patients who received at least 6 courses of therapy, 5 had 
follow-up endocrine function labs prior to course 7; 3 were 
pre-pubertal (Tanner I). For all 5 patients, endocrine func-
tion did not change, and none developed hypothyroidism. 
AMH assessments were performed in 3 of the 4 patients, 
and all values were within reference range.

PROMIS assessments were completed for 8 patients: 
6 by proxy only, 1 by self-report, and 1 by both. Patients 

Table 2  Therapy-related 
adverse events occurring in all 
patients (n = 10)

a Met DMT criteria for 3 patients for grade-4 neutropenia. One of the 3 patients came off study due to 
recurrent grade-4 neutropenia despite dose reduction

Adverse event Grade 1 Grade 2 Grade 3 Grade 4

Abdominal pain 1 (10%) 0 0 0
Alanine aminotransferase increased 4 (40%) 0 0 0
Alopecia 1 (10%) 0 0 0
Anemia 3 (30%) 2 (20%) 0 1 (10%)
Anorexia 3 (30%) 2 (20%) 0 0
Anxiety 0 1 (10%) 0 0
Aspartate aminotransferase increased 3 (3%) 0 0 0
Constipation 1 (10%) 1 (10%) 0 0
Creatinine increased 7 (70%) 3 (30%) 0 0
Diarrhea 1 (10%) 0 0 0
Edema limbs 1 (10%) 0 0 0
Ejection fraction decrease 0 2 (20%) 0 0
Electrocardiogram QT corrected interval 

prolonged
1 (10%) 1 (10%) 0 0

Fatigue 3 (30%) 5 (50%) 0 0
Gastroesophageal reflux disease 0 1 (10%) 0 0
Headache 0 2 (20%) 0 0
Hypocalcemia 1 (10%) 0 0 0
Hypokalemia 1 (10%) 0 2 (20%) 0
Hyponatremia 1 (10%) 0 1 (10%) 0
Hypophosphatemia 0 1 (10%) 1 (10%) 0
Insomnia 0 1 (10%) 0 0
Irregular menstruation 0 1 (10%) 0 0
Lymphopenia 0 5 (50%) 4 (40%) 1 (10%)
Leukopenia 1 (10%) 2 (20%) 7 (70%) 0
Nausea 4 (40%) 4 (40%) 0 0
Neutropenia 0 1 (10%) 6 (60%) 3 (30%)a

Thrombocytopenia 4 (40%) 1 (10%) 0 0
Rash 1 (10%) 2 (20%) 0 0
Sinus tachycardia 1 (10%) 0 0 0
Sore throat 1 (10%) 0 0 0
Vomiting 5 (50%) 3 (30%) 0 0
Weight loss 1 (10%) 1 (10%) 0 0
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and proxies reported similar patterns. Patients completed 
a mean of 8 assessments during therapy. Patients did 
not report elevated anxiety (mean = 44.39), depressive 
symptoms (mean = 44.39), fatigue (mean = 46.96), pain 
interference (mean = 44.43), or impaired social relation-
ships (mean = 54.39)—but did report poor physical func-
tion mobility (mean = 37.43) and physical function upper 
extremity (mean = 39.06). While self- and proxy-reports 

had frequent item non-response across domains, proxy 
reports had larger proportions of missing data. Question-
naire items presented later were more often incomplete 
with some exceptions. Although missing data were not 
used to calculate a score for that measure, poorer function-
ing was strongly correlated with more missing data. For 
example, the correlation between proxy report anxiety and 
the percent of skipped items was 0.81.

Fig. 1  Changes in necrotic volume in patient 3. MRI images obtained 
at baseline, and after cycles 4 (C4) and 12 (C12)- 113 and 355 days 
after diagnosis, respectively. Images: T2 weighted (T2), fluid-atten-
uated inversion recovery image (FLAIR), and T1 + C weighted after 

contrast administration (T1). Small region of necrosis in left pons 
at diagnosis had increased markedly by 113  days post- diagnosis 
(arrow) and was nearly resolved by 355  days. NV necrosis volume, 
TV tumor volume
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Table 3  Characteristics of patients donated to autopsy

Patient (age)a Initial diagnosis Autopsy findings RB+ tumor cells mean 
(range)b

K27M (IHC) Sanger sequencing OS (mo)

1 (7.6 year) DMG Variably pleomorphic HGG 
features involving entire 
brainstem and upper 
cervical cord, bilateral 
thalami/basal ganglia, 
septum pellucidum, optic 
chiasm, hippocampus, and 
cerebellum → DMG, H3 
K27M-mutant

Leptomeningeal metastases
Grossly separate cerebellar 

nodule with histology of 
malignant ganglioglioma 
(unique finding)

Minimal treatment-related 
changes

10% (0–20) Note both main 
tumor and nodule yield 
similar results

Positive H3F3A (H3.3): K27M
HIST1H3B (H3.1): WT

6

2 (7 year) DIPG Glioblastoma histology (min-
imally pleomorphic) with 
parenchymal involvement 
of entire brainstem, upper 
cervical cord, bilateral thal-
ami, optic nerves/chiasm, 
cerebellum (hemispheres 
and vermis), and ventricle 
(septum pellucidum) → 
DMG, H3K27M-mutant

Leptomeningeal metastases
Minor treatment-related 

changes

10% (1–15) Positive H3F3A (H3.3): K27M
HIST1H3B (H3.1): WT

10.7

3 (14.7 year) DIPG Variably pleomorphic highly 
infiltrative HGG involv-
ing brainstem, cerebellum, 
bilateral thalami/basal gan-
glia, cerebral hemispheres 
(mainly infiltrative single 
cells) → DMG, H3K27M-
mutant

Extensive leptomeningeal 
and intraventricular metas-
tases

Minimal treatment-related 
changes

50% (35–75) Positive H3F3A (H3.3): K27M
HIST1H3B (H3.1): WT

30.1

4 (17.2 year) DIPG Glioblastoma histology 
(rare highly pleomorphic 
single infiltrating tumor 
cells) with involvement of 
entire brainstem, cerebel-
lum, right thalamus and 
caudate, left hippo, and 
bilateral frontal periven-
tricular regions → DMG, 
H3K27M-mutant

Leptomeningeal and intra-
ventricular metastases

Treatment effect (≈ 30% 
overall) limited to brain-
stem, peri-caudate and 
right frontal periventricular 
regions

25% (15–35) Positive H3F3A (H3.3): K27M
HIST1H3B (H3.1): WT

12



518 Journal of Neuro-Oncology (2020) 149:511–522

1 3

Autopsy findings

Of the 5 patients who donated their brain and tumor 
(Table 3), 3 were  RB+; the percentage of  RB+ nuclei varied 

within each of the 3 tumors (Fig. 2). The 2 patients (1 DIPG, 
1 DMG) with the lowest  RB+ tumor cell numbers (10%) 
had the shortest OS (< 11 mo) supporting that intact RB 
is needed for ribociclib to induce cell-cycle arrest [26]. 

Table 3  (continued)

Patient (age)a Initial diagnosis Autopsy findings RB+ tumor cells mean 
(range)b

K27M (IHC) Sanger sequencing OS (mo)

5 (3.7 year) DIPG Glioblastoma histology (min-
imally pleomorphic) with 
parenchymal involvement 
of entire brainstem, upper 
cervical cord, cerebellum, 
and right thalamus → 
DMG, H3K27M-mutant

Leptomeningeal extension 
focal; not metastatic

Focal treatment effect in 
brainstem (≈ 20%)

25% (15–40) Positive H3F3A (H3.3): K27M
HIST1H3B (H3.1): WT

28.5

HGG high-grade glioma
a Age at diagnosis
b 2–5 slides per tumor, and 10–30 hpf per slide

Fig. 2  Frequency of RB+ cells in a single tumor. Postmortem tumor from patient 4 was immunostained for RB. Representative images of hpfs 
from 2 sections illustrating a low and b high frequencies of RB+ cells
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Autopsy also revealed the H3F3A mutation in all 5 patients 
analyzed. WGS, completed on 4 patients, revealed upregula-
tion of cell-cycle pathways in 2 (patients 4 and 5) (data not 
shown). The Sanger sequencing data corroborated the IHC 
data (Table 3).

Discussion

This is the first study to evaluate safety, feasibility, and early 
efficacy of ribociclib following radiotherapy in children 
with newly diagnosed DIPG and DMG. After 19 months, 
this study was amended to include everolimus. Despite this 
amendment, 10 patients were treated and 6 received at least 
6 courses of ribociclib at the pediatric RP2D, [14] thereby 
confirming feasibility post-radiotherapy.

The ribociclib therapy was well tolerated with a safety 
profile similar to prior studies [13, 14]. Grade-3/4 neutro-
penia and lymphopenia were noted more frequently in our 
study compared to the pediatric Phase I study [14]. This was 
expected, given that the median number of courses of the 
Phase I study was 2 vs 8 in our study, and data suggesting 
that ribociclib-induced neutropenia appears to be concen-
tration-dependent, transient, and reversible [13, 14]. Grade-
3/4 thrombocytopenia was not observed in our chemo-naïve 
patients vs 27% in the pediatric Phase I study, where the 
cohort had prior therapy. Our quantitative analysis of necro-
sis volume revealed that 3 of 4 patients had increased necro-
sis; 2 correlated with clinical symptoms and subsequently 
experienced clinical improvement and were able to receive 
4 and 10 additional cycles, respectively, suggesting necrosis 
was a treatment effect rather than a reflection of early tumor 
progression. Interestingly, the 14 year old DIPG patient 
developed significantly increased necrosis and received 14 
cycles of therapy, raising questions regarding the clinical 
meaning of necrosis and how to incorporate necrotic areas 
in future clinical trials.

The median OS was 16.1 months for our DIPG patients, 
and 2 of our 10 patients survived for 28 and 30 months. In 
contrast, the International and European Society for Pedi-
atric Oncology DIPG registries, reported 1008 patients 
with radiographically confirmed DIPG, had a median OS of 
11 months and only 10% survived for 2 years or longer [27]. 
In our study, the ages of the 2 longest surviving patients 
were less than 3 years and more than 14, corroborating prior 
reports that long-term DIPG survivors are more commonly 
diagnosed at the age extremes (age < 3 or > 10) [27] and may 
have confounded prolonged disease stabilization. Further-
more, these 2 patients underwent subsequent therapies that 
may have impacted survival; however, this seems less likely 
given that the therapies were different (Table 1).

Three of the 5 patients’ samples at autopsy had 
RB+ tumor cells, with heterogeneity. Heterogeneity may be 

due to autopsy tissue quality or tumor biology. Given the 
role of the RB pathway in the mechanism of ribociclib, it 
will be important for future studies to determine whether 
lack of uniformity of RB+ cells confirmed post-treatment 
is observed in pre-treatment samples. If observed, it would 
support not mandating biopsy in DIPG in future clinical tri-
als at this time.

Many studies of pediatric brain tumors have demonstrated 
endocrinopathies [28–36] stemming from the tumor, but also 
secondary to treatments (e.g., surgical resection, radiother-
apy, chemotherapy), patient age, and pre-treatment follicular 
pool (females) [37, 38]. In our study, ribociclib did not affect 
pubertal development or AMH, and there were no reports of 
endocrinopathies as adverse events in the Pediatric Phase I 
study [14] suggesting that ribociclib does not significantly 
impact hormonal function.

Our PROMIS assessments were feasible even though 
significant amounts of missing data for each measure were 
observed. We found that the poorer a patient’s health, the 
more likely a respondent was to leave items unanswered. 
Nevertheless, because PROMIS measures were developed 
using item-response theory, we were able to estimate scores 
on the T-score metric for all 8 patients. Non-response did 
not impede our ability to understand a child’s health-related 
quality of life. We found that the patients in our study 
appeared to be functioning relatively well on average across 
domains but did show impaired physical function mobil-
ity and upper extremity most likely due to disease. Our 
amended trial will build on these findings, by utilizing elec-
tronic administration of PROMIS.

The data that we report here, have already led to 2 further 
studies. First, our findings support a combination study, spe-
cifically with everolimus (NCT03355794), given that altera-
tions in the PI3K signaling pathway are frequently observed 
in DIPG [5]; this combination is likely to be tolerable, given 
the non-overlapping single-agent toxicities and clinical 
experience in adults [39]. The second study, which is open 
to enrollment (NCT03387020), is evaluating adequacy of 
ribociclib concentrations reaching target tissue in pediatric 
brain tumor patients.
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