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Abstract
Purpose Point mutations of TP53 tumour suppressor are very rare in schwannomas. We aim to characterize the frequency 
of exonic copy-number changes of the gene in the tumour and to examine the association between TP53 alterations, phos-
phorylation status of p53 protein and clinical phenotypes.
Methods The alterations of TP53 were screened by a combination of Sanger sequencing and multiplex ligation-dependent 
probe amplification (MLPA) in a total of 44 vestibular schwannomas. The mutation index (MI) in a tumour was defined as 
the number of exons mutated/ the number of exons tested. Phosphorylation status of p53 protein was investigated by immu-
noblotting and immunofluorescence.
Results MLPA analysis showed single and multi-exon deletion mutations of TP53 in 65.7% of the cases. Comparisons of 
clinical features between mutated and non-mutated patients established an association of TP53 mutations with progressive 
phenotypes, including an earlier formation and a larger tumour. In addition, there were significant correlations between MI 
and both patients’ age and tumour size. The Ser 392 phosphorylation level of p53 varied among tumours, and correlation 
analysis revealed an age-dependent phosphorylation pattern. The majority of tumours with hyperphosphorylated p53 were 
from mutated and young patients, suggesting an association of Ser392 phosphorylation with the mutational status of TP53 
involved in the acceleration of tumour growth in young individuals. Moreover, Ser 392 phosphorylation contributed to a 
nuclear accumulation of p53 in schwannona cultures with TP53 mutation.
Conclusions An interplay between the mutation status of TP53, phosphorylation patterns and tumour behaviors might be 
established in the disease.

Keywords Schwannomas · TP53 · Mutation · Phosphorylation

Introduction

Vestibular schwannomas (VSs) are benign, slowly growing 
encapsulated neoplasms originating from the Schwann cell 
sheath surrounding the vestibular branch of cranial nerve 
VIII. Regarding VSs, their frequency of occurrence is rather 
high in comparison with schwannomas at other regions in 
the head and neck. Although they are benign, their location 
inside the internal auditory canal and growth into the cer-
ebellopontine angle make management difficult, and patients 
experience significant morbidity and mortality. The great 
majority of VSs are sporadic and unilateral schwannomas, 
which usually develop between ages 40 and 60; they also 
occur as bilateral lesions in the context of neurofibromatosis 
2 (NF2), a highly penetrant, autosomal dominant disorder. 
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The growth rates of VSs are highly variable [1, 2], but gener-
ally increase with decreasing patient’s age at onset of symp-
toms [3, 4]. The younger age correlates with larger tumour 
size [3–5]. Mutations in the NF2 tumour suppressor gene, 
which is located on chromosome 22, band q11-13.1, are 
the cause of neurofibromatosis 2, and occur in the majority 
of sporadic VSs [3, 6–8]. Agnihotri et al.  have identified 
additional point mutations in [9]. have identified additional 
point mutations in sporadic schwannomas, including ARID1, 
DDR1, TAB3, ALPK2, CAST, TSC1 and TSC2.

Despite the huge diversity in the genes implicated in 
tumourigenesis, TP53 stands out as a key tumour suppres-
sor and the p53 transcription factor (encoded by TP53 gene) 
serves a master regulator of various signaling pathways 
involved in this process. Phosphorylation of p53 at Ser 392 
is suggested to be critical for its function [10]. A report indi-
cated that Ser 392 phosphorylation was the more frequent 
modification among other possible phosphorylation sites of 
p53 in human tumour tissues and tumour-derived cell lines 
[11]. Sequence analysis of TP53 gene in various tumours 
revealed point mutations in the coding region in majority of 
the cases. Point mutations of TP53 have been identified in 
brain tumours including astrocytomas [12] and gliomas [13], 
but very rare in schwannomas [14–16], with one exception, 
where a point mutation was found in a malignantly trans-
formed vestibular schwannoma [17]. The previous literature 
concerning schwannomas has used direct DNA sequencing, 
which detects point mutations including small intraexonic 
deletions/insertions; however, this technique is not able to 
detect deletions/duplications encompassing ≥ 1 TP53-exons. 
These lesions have been reported to be associated with sev-
eral conditions, such as Li-Fraumeni syndrome [18], Breast 
Cancer [19] and transitional-cell carcinoma [20]. Monoh 
et al. Analyzed loss of heterozygosity (LOH) at the coding 
region of TP53 and demonstrated no LOH in 13 informative 
cases [15]; however, a conflicting result has been reported in 
another research group, which indicated that LOH occurred 
at the first intron of TP53 locus in about half of the informa-
tive cases [21]. To the best of our knowledge, no study has 
been made so far regarding the exonic copy number changes 
of TP53 in sporadic schwannomas.

The objectives of this study were to use Multiplex liga-
tion-dependent probe amplification (MLPA), a PCR-based 
semiquantitative gene dosage assay, to characterize the 
pattern and frequency of copy-number changes of TP53 in 
patients with sporadic vestibular schwannomas and to exam-
ine the association between the TP53 mutations, phospho-
rylation status of p53 protein and clinical phenotypes.

Materials and methods

Study population

A total of 44 patients who presented with a unilateral vestib-
ular schwannoma were treated surgically in our department 
between March 2018 and September 2018. The duration 
between the onset of the first symptoms and preoperative 
clinic visits was 2.14 ± 2.32 years. Tumour volume of a ves-
tibular schwannoma by magnetic resonance imaging (MRI) 
was calculated according to the following method [22]. Max-
imum tumour diameter was measured in three dimensions 
(transverse and longitudinal on the axial images, and vertical 
on the coronal images) using fine calipers. Measurements 
were defined as x, y, and z, respectively. Tumour volume 
was xyz/2. Tumour size was evaluated by both maximum 
tumour diameter and tumour volume. All patients had at 
least one MRI examination before surgery (Table S1, Sup-
porting Information). For patients with MRI scans at least 
6-month intervals, their tumour growth rates were calculated 
on the basis of the measured changes in the maximum axial 
diameter in millimeters per year. Informed written consent 
was obtained from all patients donating tissue. Five cases of 
vestibular nerves from vestibular neurectomy for Meniere’s 
disease were included as controls. This study was conducted 
in compliance with institutional policy to protect patients’ 
private information, and was approved by the Institutional 
Review Board of the ethics committee of Shanghai Jiao 
Tong University.

Polymerase chain reaction (PCR) and sanger 
sequencing

Sanger sequencing was conducted to detect microlesions 
in the genes. DNA extraction from the tumour (fresh and 
paraffin fixed) specimens was performed using the TIAN-
amp Genomic DNA Kit (Tiangen Biotech, Beijing, China). 
The whole coding sequence and exon–intron boundaries 
of the genes were amplified by the polymerase chain reac-
tion (PCR) using standard methods. The sequence data 
were analyzed using the Sequencer 4.9 software (Gene-
code, MI, USA) and compared with the sequences of NF2 
(NM_016418) and TP53 (NM_016418) in GeneBank. Muta-
tions were described according to the standard nomenclature 
for DNA sequence changes reported by the Human Genome 
Variation Society (HVGS).

Multiplex ligation‑dependent probe amplification 
analysis (MLPA) analysis

To identify exonic alterations in the TP53 locus, we used 
a commercial MLPA kit for analysis (SALSA P056 TP53; 
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MRC-Holland, Amsterdam, The Netherlands). The probe-
mix contains probes for each of the exons of TP53. The 
MLPA PCR products of test samples were separated on a 
3500 Genetic Analyzer (Applied Biosystems, CA, USA), 
and peak heights for each PCR product were compared to a 
normalized average of 3 independent nerves to determine the 
dosage quotient (DQ) for each individual exon. A range of 
0.7 < DQ < 1.2 was considered normal, and 0.4 < DQ < 0.6 
was considered to show a heterozygous deletion. A subset of 
probes located on the regions of 17q 13 were also included 
as positive controls. Eleven reference probes were also used 
to detect different autosomal chromosomal regions.

Immunoblotting analysis

The tumour tissues were ultrasonicated in Cell Lysis Buffer 
(Beyotime, Shanghai China) containing a protease inhibitor 
(phenylmethanesulfonyl fluoride). Immunoblotting analy-
ses were performed with antibodies specific for total p53 
(# P6874, Sigma-Aldrich), phospho-p53-Ser 392 (#9281, 
Cell Signaling) and cyclinD1 (#2922, Cell Signaling). The 
β-actin antibody (#AA128, Beyotime) was used to ensure 
equal loading of total protein. The protein bands were 
detected using a chemiluminescence HRP substrate (Mil-
lipore). The band densities were quantified using Imager Lab 
Software (Bio-Rad). The band intensities of target proteins 
(p53, phospho-p53 and cyclinD1) in tumour specimens were 
expressed relative to those in the nerve controls to obtain 
relative values.

Cell culture and immunofluorescence

Human Schwann cells (HSCs) were purchased from Scien-
Cell Research Laboratories (catalog no., 1700), and cultured 
in Schwann Cell Medium (ScienCell, Cat. No.1701). For 
primary cultures, schwannomas were cut to 1  mm3 in size 
and digested with 0.25% trypsin as previously described [3]. 
Cells were then collected and re-suspended in the Schwann 
Cell Medium. Schwannoma cells were plated on glass slides, 
fixed with 4% paraformaldehyde, and then permeabilized 
in 0.3% Triton X-100. The glass slides were blocked with 
bovine serum albumin before the incubation with an anti-
phospho-p53  (pSer392) antibody (# ab134190, Abcam). An 
Alexa-594–conjugated anti-rabbit antibody was used as the 
secondary antibody. The Alexa Fluor® 488 Phalloidin (# 
A12379, Thermo) was used to stain the F-actin cytoskel-
eton in schwannoma cells. Finally, the sections were nuclear 
counterstained with 4, 6-diamidino-2-phenylindole (DAPI, 
Beyotime, China).

Statistical analysis

Results are expressed as mean ± SD ranges. Normally dis-
tribution and homogeneity of variance tests were performed 
on the data using SPSS statistics software (SPSS, Chicago, 
IL). The statistical analyses of clinical/ genetic parameters 
and expression/phosphorylation profiles were assessed 
using Chi-square test, two-tailed t test, bivariate correlations 
(Pearson’s for continuous variables), and multivariate linear 
regression. P values of less than 0.05 were considered to be 
statistically significant.

Results

Patients

The cohort of patients consisted of 16 males (36.4%) and 28 
females (63.6%) with a median age at diagnosis of 47.8 years 
(range from 11 to 69 years). The most frequent symptoms 
were hearing impairment (31 patients, 70.5%) and tinnitus 
(23 patients, 52.3%). Details regarding the clinical charac-
teristics and the results of Sanger sequencing in all tumours 
analyzed were given in Table 1. Mutations throughout the 
whole coding sequence of the NF2 gene were detected in 
30 (68.2%) out of 44 cases. The majority of these mutations 
were truncating mutations, which were distributed along 
almost the entire NF2 sequence. As expected, no point muta-
tions of TP53 were observed in schwannomas by Sanger 
sequencing.

Age‑dependent multi‑exon deletion mutations  
of the  TP53 gene in sporadic VSs

The exonic copy number changes of TP53 in the tumour 
were investigated by MLPA analysis. As shown in Figs. 1 
and 2, the heterozygous exonic deletion mutations of TP53 
were identified in 29/44 tumour samples (65.7%). Of these 
deletions, nine were single exon and twenty were multi-
exons. The frequency of mutation in a specific exon was 
determined using the methylation values, defined as the 
number of tumour mutated /the number of tumour tested. 
These mutations were more likely to occur in exons 9, 1, 6, 
with respective frequencies of 50.0%, 45.5%, and 45.5%. 
Exons 2, 4 and 11 had lower mutation frequencies (27. 2%, 
25.0%, and 2.3%, respectively), and none of the mutations 
were found in exons 7 and 10.

An overview regarding clinical and genetic characteris-
tics of mutated (n = 29) and non-mutated (n = 15) patients is 
shown in Table 2. There was no predilection for sex, tumour 
side or tumour type of the lesion in both groups. Notably, we 
found that patients with mutant TP53 had an earlier age at 
diagnosis (mean 25.4 ± 9.5 vs. 55.2 ± 12.1 years, P = 0.001) 
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compared to patients with no TP53 mutations, and muta-
tion carriers were more likely to suffer from larger tumours 
(maximum diameter, mean 26.8 ± 7.4 vs. 22.4 ± 8.9 mm, 
P = 0.120; volume, mean 7.0 ± 5.6 vs. 5.6 ± 6.0  cm2, 
P = 0.460). The mutation index (MI), defined as the number 
of TP53-exons mutated/ the number of TP53-exons tested 
in a tumour, showed a negative correlation with the patient’s 
age (Fig. 3a; Spearman’s rho = -0.35, P = 0.02). Moreover, 
there were a significant positive correlation between MI 
and both maximum tumour diameter (Fig. 3b; Spearman’s 
rho = 0.42, P = 0.002) and tumour volume (Fig. 3c; Spear-
man’s rho = 0.34, P = 0.024). Younger the age of patients 
or large tumor size is known to be associated with higher 
growth rate of VSs [3–5]. The growth rates of three TP53-
mutated patients (T351, T360 and T380; marked in red; 
Table S1) was 3.7 ± 3.2 mm/ year, while the growth rates of 
three non-mutated patients (T365, T422 and T406; marked 
in green) was 0.63 ± 1.1 mm/ year. These patients under-
went MRI studies at least 6-month intervals. Although the 
sample size was very small, the data showed that TP53-
mutated tumours grow faster than non-mutated counterparts 
(p = 0.087). Thus, exonic deletion mutations of TP53 may 
play a role in the acceleration of tumour growth, thus con-
tributing to an early age at symptom in patients with spo-
radic VSs.

Phosphorylation patterns of p53  in correlation 
with mutational status of  TP53 in schwannomas

Function of the wild-type p53 protein is known to be 
dependent on the conformation and phosphorylation of its 
serine residues, Ser 392 in particular [10]. High levels of 
phospho-Ser392-p53 have been observed in tumours with 
mutant p53 [23]. Next, we investigated if TP53 mutations 
influenced Ser 392 phosphorylation of p53 in schwanno-
mas. As shown in Fig. 4a–c, the levels of total/phospho-
rylated p53 and its downstream cyclin D1 varied between 
the 26 cases of tumour samples. The band intensities of 
target proteins in tumours were expressed relative to those 
in the nerve controls to obtain relative grey scale values. 
As indicated in Fig. 4d, the phosphorylation levels of p53 
were changed in positive correlation to its total protein lev-
els  (r2 = 0.6, P < 0.001), suggesting that p53 was frequently 
phosphorylated at Ser 392 in schwannomas. There was a 
highly negative correlation between the patient’s age and 
levels of both total and phosphorylated p53  (r2 = 0.21, 
P = 0.018;  r2 = 0.27, P = 0.006; respectively). The mutation 
index (MI) and patient’s age were also correlated  (r2 = 0.29, 
P = 0.043). Thus, an age-dependent phosphorylation pattern 
of p53 in correlation with its mutation status was suggested 
in schwannomas. No statistically significant correlation was 
observed between the level of cyclin D1 and patient’s age 
(Spearman’s rho = 0.08, P = 0.71). As shown in Fig. 4a–c, Ta
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four cases (T364, 384, 406 and 402) exhibited no marked 
levels of total/ phosphorylated p53; these patients were 
above 50 years of age and 3 out (75%) of them had no TP53 
mutations. By contrast, an appreciable amount of phospho-
Ser392-p53 was observed in five mutated tumours (T381, 
378, 424, 385 and 408), most of which were from young 
patients with an average age of 33.8 years. Altogether, these 
findings indicated that Ser 392 phosphorylation of p53 in 
correlation with its mutation status was more likely to occur 
in young patients.

Nuclear accumulation of p53 protein associated 
with its Ser 392 phosphorylation in mutated 
tumours

It was reported that the modification of Ser 392 could stabi-
lize p53 by blocking the nuclear export of p53, thus inhibit-
ing proteasome-mediated degradation via MDM2 [24]. To 

characterize the subcellular localization of phospho-Ser392-
p53 in schwannomas, we performed fluorescence analyses 
of cultures from one mutated tumour (#T381) with hyper-
phosphorylated p53, one non-mutated tumour (#T406) with 
underphosphorylated p53 and human Schwann cells (HSCs). 
The phospho-Ser392-p53 was predominantly stained in the 
nucleus of HSCs (Fig. 5, upper). The diffuse nuclear and 
cytoplasmic staining of phospho-Ser392-p53 was observed 
in the schwannoma cultures # T406 (Fig. 5, center). Addi-
tionally, this finding was consistent with a previous study 
showing a diffuse pattern of p53 staining with a p53-specific 
antibody in schwannomas [25]. By contrast, schwannoma 
cells from tumour # T381 exhibited strong localization of 
phospho-Ser392-p53 to the nucleus (Fig. 5, lower). Thus, 
we demonstrated an enhanced stability of phospho-Ser392-
p53, which was characterized by nuclear accumulation in 
schwannoma cultures with p53 mutations.

Fig. 1  MLPA analyses of copy number changes of TP53 in schwan-
nomas. In the graph, the y-coordinate represented the Dosage Quo-
tient (DQ) and 0.4 < DQ < 0.6 was considered to have a heterozygous 

deletion. MLPA showed one tumour (# T363) with normal TP53 
alleles and one tumour (# T351) with heterozygous deletions of exon 
1, 6, and 9 at the TP53 locus
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Discussion

Sequence analysis have revealed that the point mutations 

of TP53 are the most frequent alterations in the transitional 
stage during which a tumour progresses; these mutations 
are distributed in all coding exons of TP53 [26]. Our results 
confirmed the previous reports on the absence of point 

Fig. 2  Clinical and genetic characteristics of patients with sporadic 
VSs aged from 21 to 65 years. The clinical parameters including the 
age at diagnosis, gender and tumour size were present in the upper 
panel. Point mutations in the NF2 gene were demonstrated in the 

majority of tumours, whereas no point mutations of TP53 were found 
by direct sequencing. The mutation index (MI) for each tumour (bot-
tom) and the mutation frequencies (indicated as ‘mutation values’; 
right) for each exon of TP53 were shown

Table 2  Clinical characteristics 
in patients with or without 
exonic deletion mutations of 
TP53 

Tumor characteristics Mutated (n = 29) Non-mutated (n = 15) P value Statistical methods

Mean age (years) 25.4 ± 9.5 55.2 ± 12.1 0.001 Two tailed t test
Gender
 Male 11 5 0.117 χ2 test
 Female 18 10

Tumour side
 Right side 17 9 0.577 χ2 test
 Left side 12 6

Tumour type
 Solid 23 11 0.846 χ2 test
 Cystic 6 4

Tumour volume  (cm2) 7.0 ± 5.6 5.6 ± 6.0 0.460 Two tailed t test
Size (mm) 26.8 ± 7.4 22.4 ± 8.9 0.120 Two tailed t test
 Stage 2 (1–15 mm) 2 6
 Stage 3 (16–30 mm) 21 7
 Stage 4 (31–40 mm) 4 1
 Stage 5 ( > 40 mm) 2 1

NF2 alterations 22 (75.9%) 10 (66.7%) 0.722 χ2 test
Nonsense 8 3
Frameshift 8 5
Splicing site 5 2
Missense 1 0
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mutations at TP53 locus in schwannomas; instead exonic 
deletion mutations were noted in 64% of tumours. Unlike 
the malignancies where point mutations of TP53 frequently 
occur in exons 5 through 8 [26], the exonic deletion muta-
tions in schwannomas were demonstrated to be clustered 
within exons 9, 6 and 1. There are several reports on the 

role of TP53 alterations in relation to the clinical/pathologi-
cal features of tumours. Niederacher et al.  correlated LOH 
[27]. correlated LOH of TP53 with younger patients and 
a higher histological grading in sporadic endometrial can-
cer. NF2-TP53-double mutant mice exhibited an increased 
predisposal to neoplasms compared with each of the single 

Fig. 3  Correlation between the mutation index of TP53 and both tumour size and patient’s age. The mutation index showed a significant correla-
tion with the patient’s age (a) and tumour size, which was measured by the maximal tumour diameter (b) and tumour volume (c)

Fig. 4  Expression and phosphorylation status of p53 protein in 
schwannomas with and without TP53 mutations. a–c The expression 
levels of cyclinD1 and both total and phosphorylated p53 were inves-
tigated by immunoblotting analysis. d The band intensities of target 

proteins in tumours were expressed relative to those in the nerve 
controls to obtain relative grey scale values. The correlations of the 
patient’s age with both relative grey scale values and mutation index 
of TP53 were analyzed
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mutant mice [28]. In a cohort of meningiomas, whose 
tumourigenesis was also related to NF2 mutation, TP53 
polymorphism increased the risk of tumour progression 
[29]. Consistent with these studies, we found that schwan-
nomas with exonic deletion mutations of TP53 exhibited 
rapid growing behaviors including larger tumour size and 
younger patient’s age. It has been reported that the wild-type 
p53 functions optimally when it binds to DNA as a tetramer; 
the wild type and mutant p53 can form hetero-tetramers of 
attenuated activity, via their tetramerization domains [30, 
31]. In this mechanism, the severer phenotype of TP53-
mutated schwannomas might be explained by the fact that 
the mutant p53 could disturb a functional tetramer and was 
therefore able to override wild-type p53 tumor suppressor 
activity.

Phosphorylation of p53 at Ser 392 can activate the spe-
cific DNA binding function of p53, presumably by stabiliz-
ing its tetramer [10]. Ser 392 phosphorylation of mutant p53 
protein might promote its dominant negative effects through 
hetero-oligomerization, thereby contributing to the aggres-
sive behaviors of tumours [32]. An increased percentage of 
the Ser 392 phosphorylated form of p53 was found only 
in histological high-grade gliomas (grades III and IV). On 
the contrary, a lower percentage of the Ser 392 phospho-
rylated form of p53 was present in histological low-grade 
gliomas, meningiomas and other brain tumour types [33]. 
In present study we suggested that hyperphosphorylated 
p53 appeared to occur more often in mutated schwannomas 

in young patients. Down-regulation of p53 protein is com-
monly seen in schwannoma tissues and in vitro cultures [25, 
34]; these studies showed that p53 was abnormally seques-
tered in the cytoplasm of p53-deficient schwannomas. It has 
been suggested that merlin neutralizes the inhibitory effect 
of MDM2 on p53 [35], and, merlin loss by NF2 mutation 
confers an enhanced nuclear accumulation of MDM2 and 
thereby induces nuclear export of p53 for degradation in 
schwannomas [25]. We show that p53 deficiency along with 
its hypophosphorylation at Ser 392 is frequently observed 
in schwannomas with no TP53 mutation. In addition, some 
studies have reported a subset of schwannomas character-
ized by p53 overexpression [14, 21, 25]. This current study 
suggests that this deregulation may be independent of merlin 
loss and linked to the occurrence of exonic deletion mutation 
of TP53. It is possible that the deficiency of wild-type p53 
due to merlin loss by NF2 mutations may play a role on the 
early biological changes during schwannnoma tumnourigen-
esis. The exonic deletion mutation of TP53 may occur as a 
second genetic hit, leading to the phosphorylation and stabi-
lization of p53 protein with attenuated tumour-suppression 
activity, thus promoting tumour growth and resulting in early 
clinical symptoms.

Using several lines of investigation, therefore, our stud-
ies propose a connection between the mutation pattern of 
TP53 and phosphorylation status of p53 and clinical char-
acteristics in human sporadic VSs. These studies deserve 
further investigations to uncover mechanisms underlying 

Fig. 5  The subcellular localization of Ser 392 phosphorylated p53 
in schwannoma cultures and human Schwann cells (HSCs). Phos-
pho-Ser392-p53 was predominantly stained in the nucleus of HSCs 
(upper). The diffuse nuclear and cytoplasmic staining of phospho-

Ser392-p53 was observed in the schwannoma cultures # T406 
(center). By contrast, schwannoma cells from tumour # T381 exhib-
ited strong localization of phospho-Ser392-p53 to the nucleus (lower)
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the biological effect of TP53 mutation characterized by Ser 
392 phosphorylation of p53 on the growth of schwannoma. 
Unlike genetic mutations, phosphorylation is a reversible 
process, and thus countering the effects of Ser 392 phospho-
rylation of p53 protein could be a novel target for therapeutic 
purposes to reduce the growth of schwannomas.
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