
Vol.:(0123456789)1 3

Journal of Neuro-Oncology (2018) 140:509–517 
https://doi.org/10.1007/s11060-018-2990-6

LABORATORY INVESTIGATION

Characterization of genomic alterations in primary central nervous 
system lymphomas

Soheil Zorofchian1 · Hanadi El‑Achi1 · Yuanqing Yan2 · Yoshua Esquenazi2  · Leomar Y. Ballester1,2 

Received: 18 June 2018 / Accepted: 22 August 2018 / Published online: 31 August 2018 
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Purpose Primary central nervous system lymphoma (PCNSL) is a non-Hodgkin lymphoma that affects the central nervous 
system (CNS). Although previous studies have reported the most common mutated genes in PCNSL, including MYD88 and 
CD79b, our understanding of genetic characterizations in primary CNS lymphomas is limited. The aim of this study was to 
perform a retrospective analysis investigating the most frequent mutation types, and their frequency, in PCNSL.
Methods Fifteen patients with a diagnosis of PCNSL from our institution were analyzed for mutations in 406 genes and 
rearrangements in 31 genes by next generation sequencing (NGS).
Results Missense mutations were identified as the most common mutation type (32%) followed by frame shift mutations 
(23%). The highest mutation rate was reported in the MYD88 (33.3%), CDKN2A/B (33.3%), and TP53 (26.7%) genes. Inter-
mediate tumor mutation burden (TMB) and high TMB was detected in 13.3% and 26.7% of PCNSL, respectively. The most 
frequent gene rearrangement involved the IGH-BCL6 genes (20%).
Conclusions This study shows the most common genetic alterations in PCNSL as determined by a commercial next genera-
tion sequencing assay. MYD88 and CD79b are frequently mutated in PCNSL, IGH-BCL6 is the most frequent gene rear-
rangement and approximately 1/4 of cases show a high TMB. Mutations in multiple genes, in addition to high TMB and 
gene rearrangements, highlights the complex molecular heterogeneity of PCNSL. Knowledge about genetic alterations in 
PCNSL can inform the development of novel targets for diagnosis and treatment.

Keywords Primary central nervous system lymphoma · Diffuse large B-cell lymphoma · MYD88 · Gene fusions · Next 
generation sequencing · Tumor mutation burden

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most preva-
lent type of non-Hodgkin B-cell lymphoma (B-NHL), rep-
resenting roughly 30–40% of all cases worldwide. Patients 
commonly present with fast growing tumors which can 
involve single or multiple, nodal or extranodal sites [1]. 
DLBCL can virtually develop in any primary tissue site from 
two major cellular subtypes: activated B cell-like (ABC) or 
germinal center B cell-like (GCB). The respective subtypes 
have different mechanisms of development, genetic altera-
tions, and treatment response; with the ABC subtype show-
ing an inferior prognosis [1, 2].

Primary central nervous system lymphoma (PCNSL) is 
a rare subtype of DLBCL that arises and is confined to the 
central nervous system (CNS) [3]. This non-Hodgkin aggres-
sive B-cell lymphoma is distinguished from extra-cerebral 
DLBCL by its poorer prognosis. PCNSL can occur in the 
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setting of immunosuppression (HIV/AIDS, post-transplant) 
or in immunocompetent individuals [4–6]. While treatment 
response rates are high, relapses are frequent and prognosis 
after recurrence is poor with 5-year survival rates ranging 
from 22 to 40% [7, 8]. The genomic alterations (GAs) under-
lying PCNSL have not been comprehensively studied.

Single nucleotide mutations in various genes, including 
MYD88, CD79b, PIM1, and BTG2, have been reported as 
the most prevalent genetic alterations in PCNSL [9–11]. 
Among these mutations, an MYD88 substitution mutation 
at c.794T > C resulting in a replacement of leucine 265 by 
proline (L265P) is the most common mutation in PCNSL. 
Myeloid differentiation factor 88 (MYD88) is an adaptor 
molecule in the Toll-like receptor pathway that mediates 
interleukin-1 receptor signaling [12]. Similar to several other 
common mutations in PCNSL, MYD88 mutations lead to 
constitutive activation of the nuclear factor NF-κB signaling 
pathway [13, 14]. Translocation of NF-κB into the nucleus 
subsequently initiates activation of other target genes [13, 
14].

From a molecular perspective, GAs are of great interest 
as they can serve as diagnostic biomarkers or targets for 
personalized therapies. Despite considerable progress in the 
understanding of CNS lymphomas, the majority of existing 
molecular data is derived from locus specific approaches 
targeting single candidate genes for point mutations, like 
MYD88 [15]. Over the past decade, the development and 
affordability of next generation sequencing (NGS) has facili-
tated several studies identifying GAs in CNS lymphomas 
through targeted and whole-exome sequencing [15–18]. 
Nonetheless, the rarity of the disease and the restricted avail-
ability of affected brain tissue hinder the study of molecu-
lar and GAs in PCNSL. Therefore, our understanding of 
this disease remains limited [19]. In addition, discrimina-
tion of PCNSL and secondary CNS lymphomas can be 
very challenging by conventional microscopic examination 
and magnetic resonance imaging (MRI) alone [20]. Better 
understanding of molecular alterations in PCNSL can be of 
clinical utility by facilitating the distinction of PCNSL from 
secondary CNS lymphoma. To increase our understanding 
of GAs in PCNSL, we retrospectively investigated the results 
of a comprehensive NGS assay in a series of 15 PCNSL.

Methods

Patients and tumor samples

This retrospective study was approved by the institutional 
review board of the University of Texas Health Science 
Center at Houston and Memorial Hermann Hospital, Hou-
ston, TX. From January 2010 to December 2017, 50 con-
secutive patients diagnosed with PCNSL were identified in 

the clinical records of the University of Texas Health Sci-
ence Center at Houston and Memorial Hermann Hospital, 
Houston TX. The results of molecular testing were available 
for 15 patients.

All 15 tumor samples were examined by H&E (Supple-
mentary Fig. S1) and immunohistochemistry, and confirmed 
as DLBCLs. Two patients had a history of immunosuppres-
sion (HIV positive). The patients’ ages ranged from 22 to 
80 years, average age of 58 years. There were seven men 
and eight women. Clinical and treatment information was 
available for all patients (Table 1). All patients underwent 
either biopsy or tumor resection. Although treatments were 
variable, high-dose methotrexate (HD-MTX) was the most 
prevalent therapy used in combination with other treatment 
modalities.

Immunohistochemistry

Paraffin-embedded tissue sections were de-paraffinized 
and rehydrated using xylene and graded alcohols. Immu-
nohistochemical staining was performed in a Dako Omnis 
autostainer (Dako North America, Inc. Carpinteria, CA, 
USA). The following primary antibodies were used: CD20 
(L26), CD79a (12E7), CD10 (56C6), CD23 (DAK-CD23), 
BCL2 (124), BCL6 (PG-B6p), MUM1 (MUM1p), cyclin 
D1 (EP12), and Ki67 (MIB-1). The immunohistochemical 
staining was interpreted as positive or negative by a board-
certified pathologist in all cases.

Targeted sequencing and tumor mutation burden

Formalin-fixed paraffin-embedded tumor samples 
were analyzed for genetic alterations by targeted NGS 
(FoundationOne™Heme, Foundation Medicine Inc., Cam-
bridge, MA, USA). The FoundationOne® Heme assay was 
performed in a clinical laboratory improvement amend-
ments (CLIA)-certified laboratory, as previously described 
[21]. Adaptor-ligated sequencing libraries were captured by 
solution hybridization with two custom bait-sets targeting 
406 cancer-related genes, 31 genes frequently rearranged 
by DNA-seq, and 265 genes frequently rearranged by RNA-
seq (Supplementary Table 1). The captured products were 
sequenced on HiSeq2500, Illumina. Sequenced data was 
evaluated for four classes of GAs: base substitution, copy 
number alterations, fusion/rearrangements, and insertion and 
deletions. Final NGS results were acquired from the patients’ 
FoundationOne Heme reports.

Tumor mutation burden (TMB) was calculated based on 
the number of somatic mutations in sequenced genes and 
extrapolating the value to the genome as a whole using a 
validated algorithm [22, 23]. TMB was reported as a num-
ber of mutations per megabase (mb) of genome. Based on 
the FoundationOne™Heme reports, TMB results were also 
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categorized into three groups: low (1–5 mutations/mb), 
intermediate (6–19 mutations/mb), and high (≥ 20 muta-
tions/mb). Values were rounded to the nearest integer.

Gene ontology

To do the gene ontology (GO) analysis, we downloaded GO 
gene sets from Molecular Signatures Database (MSigDB) 
[24]. A total of 5917 gene sets, including 4436 biological 
process, 580 cellular components, and 901 molecular func-
tion gene sets, were used in this study. The size of each 
gene set (N size) was calculated and the number of mutant 
genes in our dataset (50 genes) within each gene set was 
determined. To evaluate the enrichment of mutant genes in 
GO dataset, we computed the fraction of mutant genes in 
each gene set (50 genes/N size). All the analysis was done 
in R (version 3.4.2).

Results

Patient characteristics

Clinicopathologic characteristics for all patients are summa-
rized in Tables 1 and 2. Four patients underwent resection; 
all others underwent needle biopsy. All tumors were posi-
tive for CD20 and CD79a by immunohistochemical stain-
ing. Employing the immunohistochemical algorithm of Hans 
et al. [25], all cases were sub-classified as either ABC (n = 7, 
47%) or GCB subtype (n = 7, 47%), with the exception of 
one case for which immunohistochemical staining was not 
available. Both HIV positive patients were diagnosed with 
PCNSL of the ABC subtype. The results of cerebrospinal 

fluid (CSF) cytology were available for eight patients, all 
of them had a negative CSF-cytology result. Among nine 
CSFs tested by flow cytometry, four cases had a diagnosis 
of B-cell lymphoma, four cases were reported as non-diag-
nostic and one case was negative. One patient developed 
recurrence with diffuse osseous metastases. At the time of 
the study 2/15 (13.3%) patients had died of lymphoma, both 
patients had declined treatment and received comfort care 
only.

Genomic alterations

A total of 79 GAs were detected in 50 genes (Fig. 1). The 
median number of GAs detected by the assay per patient 
was 5 (range 1–10). In 8 (10.1%) events, single genes har-
bored more than one GA. In the two HIV positive cases, 
only a single mutation was detected in MLL3 (KMT2C) 
and TUSC3 tumor suppressor genes. The rate of muta-
tion frequency in HIV positive patients was lower than 
other PCNSLs. The most prevalent mutations were mis-
sense (n = 25, 32%) followed by frame shift (n = 18, 23%) 
(Fig. 1a). The most commonly mutated gene was MYD88 
(n = 5, 33.3%), followed by alterations in CDKN2A/B (n = 5, 
33.3%), and TP53 (n = 4, 26.7%). Fusion or rearrangement 
of the IGH gene with Bcl2, Bcl6, and MALT1 genes was 
also identified in 33.3% of cases (n = 5). It is worth to men-
tion that all gene loss mutation was reported in CDKN2A/B 
gene (Fig. 1b). All cases with alterations in MYD88 (33.3%) 
had a missense mutation, the p.L265P substitution affect-
ing exon 5, except one case that showed the less common 
p.V217F mutation. MYD88 mutations occurred more com-
monly in DLBCL of the ABC subtype (42.9%) versus the 
GCB subtype (28.6%). Of the 15 patients, 4 cases (26.7%) 

Table 2  Results of 
immunohistochemical stains for 
PCNSL

Patients/
marker

CD20 CD79a CD10 Bcl-6 MUM1 CD23 Bcl-2 cyclin D1 Ki67% Subtypes

1 + + − + + − NA NA 70–80 ABC
2 + + − + + NA + − 90 ABC
3 + + − − + NA NA − > 95 ABC
4 + + + + + − − − 70 GCB
5 + NA − + − NA + − > 90 GCB
6 + NA − + + NA + − 70–80 ABC
7 + + − + − + NA − 80 GCB
8 + + + NA NA − + − 50 GCB
9 + + + + + − − − 80 GCB
10 + + + + + − NA − > 80 GCB
11 + + − − + NA + − 80–85 ABC
12 + + − − + NA NA NA 60–70 ABC
13 + + − + − + − − 90 GCB
14 + + − + + NA + − 80–90 ABC
15 + NA NA NA NA NA NA NA 70–80 NA
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had high TMB (≥ 20 mutations/mb), 2 cases (13.3%) had an 
intermediate mutation burden (8–12 mutations/mb), and 9 
cases (60%) had a low TMB (1–5 mutations/mb). Both HIV 
positive patients demonstrated a low TMB. The GO analy-
sis revealed that genes mutated in PCNSL were enriched in 
pathways involved in “Cell Death”, “Positive Regulation of 
Transcription from RNA Polymerase II promoter”, “Mitotic 
DNA Integrity Checkpoint”, “Chromosome Organization”, 
“Cellular Response to Endogenous Stimulus”, and “Regula-
tion of Smooth Muscle Cell Proliferation” (Fig. 1c).

Discussion

In the current study, we report the results of a comprehen-
sive analysis of GAs in PCNSL, using a targeted NGS assay 
that evaluates more than 400 cancer-related genes. Among 
DLBCLs from different sites, PCNSL has the highest fre-
quency of MYD88 mutations [26], which is in agreement 
with our results showing a high MYD88 mutation rate 
(33.3%) in PCNSLs. We also detected a higher frequency 
of MYD88 mutations in PCNSL of the ABC subtype, com-
pared to the GCB subtype, in accordance with previous 
studies [12, 27]. Nonetheless, Fukumura et al. [3] reported 
no significant differences in MYD88 mutations between 
ABC- and GCB-lymphomas. Due to the low prevalence of 
PCNSLs, the majority of studies include a small cohort of 
patients, which can be partially responsible for variations 
in the reported frequencies of GAs. Although we report 
genomic mutations in a limited number of patients, our 
study includes evaluation for TMB and gene rearrangements, 
which have been neglected in the majority of previous stud-
ies on PCNSL. Previous studies have reported the absence 
of concurrent CXCR4 and MYD88 mutations in PCNSLs, 
in contrast to Waldenstrom macroglobulinemia, in which 
a significant number of patients show coexisting CXCR4 
and MYD88 mutations [28, 29]. In our study, we identified 
one case of PCNSL with CXCR4 and MYD88 mutations. 
A recent study on genomic characterization of lymphomas 
also established the presence of the respective mutations 
in PCNSLs [30]. Waldenstrom macroglobulinemia patients 
who have MYD88 and CXCR4 mutations have been reported 
to be more resistant to ibrutinib treatment due to the activa-
tion of the AKT and ERK pathways [31–33]. The effects 
of CXCR4 mutations in PCNSL are currently unknown. 
However, an FDA-approved CXCR4 antagonist AMD3100 
(Plerixafor/Mozobil) could potentially be a candidate ther-
apy for patients with CXCR4 mutated malignancies [34, 35].

MYD88 mutations have been reported in other hemato-
logic malignancies, including Waldenstrom macroglobu-
linemia, chronic lymphocytic leukemia (CLL) and mucosa-
associated lymphoid tissue (MALT) lymphomas [12, 36]. 
In PCNSL, different studies have reported a wide range of 

Fig. 1  Types of mutations observed in PCNSL. a Pie chart showing the 
percentages of different types of somatic mutations in PCNSL. Approxi-
mately, 50% of the mutations in PCNSL are missense or frameshift 
mutations. Gene rearrangements were detected in 10% of cases. b Genes 
mutated in PCNSL. Mutations in MYD88, CDKN2A/B, TP53 and IGH-
BCL6 were the most frequent alterations detected. Asterisk indicates 
information from various sources (e.g., My Cancer Genome, COSMIC, 
Pubmed, and the Foundation Medicine report) were used to determine 
the predicted effect of the mutations on the function of each gene. c GO 
enrichment analysis of 50 mutated genes. The mutant genes were enriched 
in pathways of “Cell Death”, “Positive Regulation of Transcription from 
RNA Polymerase II promoter”, “Mitotic DNA Integrity Checkpoint” and 
“Chromosome Organization”
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mutation frequencies in the MYD88 gene ranging from 33 
to 100% (Table 3). This wide spectrum is partially due to 
variations in sensitivity of the various assays utilized and 
differences in patient population. For instance, Hattori 
et al., reported the MYD88 p.L265P mutation was detected 
in 100% of cases (14/14) using ddPCR. In contrast, they 
could detect the mutation by targeted deep next generation 
sequencing (TDS) in 13 out of 14 cases [37]. In another 
study, whole exome sequencing revealed an MYD88 muta-
tion in 75.6% of cases. However, after manual inspection of 
the negative cases, followed by sanger sequencing confirma-
tion, the percentage or MYD88 mutant cases reached 85.4% 
[3]. Given the high prevalence of MYD88 mutations in 
PCNSLs, treatment with ibrutinib, which inhibits Bruton’s 
Tyrosine Kinase and further suppresses NF-κB and STAT3 
activation and tumor growth, could be considered in patients 
with PCNSL [38, 39]. However, although there are ongoing 
clinical trials (NCT02315326), the efficacy of ibrutinib for 
the treatment of PCNSL remains to be determined. In addi-
tion to the therapeutic implication of the MYD88 mutation in 
PCNSL, its detection in cerebrospinal fluid has been recently 
introduced as a potential minimally-invasive approach for 
diagnosis [40].

CDKN2A and CDKN2B encode p14ARF and p16INK4a, 
and p15INK4b tumor suppressor proteins, respectively. In 
accordance with our study, loss of CDKN2A/B genes have 
been commonly reported in DLBCL, which has been asso-
ciated with reduced mRNA expression and higher tumor 
grades [45–48]. The p16INK4a and p15INK4b proteins 
maintain Rb tumor suppressor activity through suppres-
sion of CDK4 and CDK6 [49]. Therefore, using CDK4/6 

inhibitors, including LY2835219, LEE011, and the FDA-
approved palbociclib has been suggested as a potentially 
helpful therapy for CDKN2A/B mutated tumors [50]. How-
ever, initial clinical results did not provide promising results 
and further investigations for PCNSL is required [51–54]. 
The p14ARF protein is responsible for TP53 activation and 
induced cell death [55, 56]. TP53 was also among the com-
monly mutated genes in our study. A research study on 506 
primary DLBCL patients treated with R-CHOP reported that 
TP53 mutation significantly correlate with worse survival in 
either ABC- or GCB-DLBCL [57].

There is a growing body of clinical and experimental 
evidence that TMB could be used as a biomarker for tumor 
prognosis and predicting response to immunotherapy [58, 
59]. Various factors, including microsatellite instability 
[60], cigarette smoke [61, 62], and exposure to mutagens 
like UV light [63] have been associated with TMB in other 
tumors. High-TMB was reported in PCNSLs recently with 
a frequency of 33% [30], which is similar to our results 
(26.7%). From the therapeutic point of view, a high TMB 
was suggested to be associated with better prognosis in dif-
ferent tumors and susceptibility to nivolumab treatment in 
non-small cell lung cancer [58, 59]. A previous study ana-
lyzing 100,00 human cancer genomes showed that TMB 
determination, by comprehensive genomic profiling like the 
one reported in our study, correlated with TMB determined 
by whole exome sequencing [64]. This is clinically useful 
in regards to lymphoma, since it has been shown that high 
TMB and high PD-L1 expression in DLBCL may be linked 
to greater responsiveness to immunotherapeutic agents and 
checkpoint inhibitor therapies like anti-PDL1 [30, 65].

Table 3  Reported mutations in PCNSL in the literature

WES whole exome sequencing, PyroSeq Pyrosequencing, E Seq exome sequencing, TE Seq targeted exome sequencing, Targeted NGS targeted 
next generation sequencing

Study No. of 
samples

Method MYD88 CD79b PIM1 BTG2 TBL1XR1 CARD11

Zheng et al. [9] 54 Sanger 68% 32% N/A N/A N/A N/A
Fukumura et al. [3] 41 WES 85% 37% 100% 93% 32% N/A
Nakamura et al. [11] 71 Targeted NGS, sanger, PyroSeq 76% 83% N/A N/A 23% 18%
Yamada et al. [10] 18 Sanger 94% 61% N/A N/A N/A N/A
Gonzalez-Aguilar et al. [18] 29 Sanger, TE Seq 38% N/A 3% N/A 14% N/A
Bruno et al. [41] 37 WES, sanger, PyroSeq 38% 30% N/A N/A 22% N/A
Vater et al. [17] 22 WES, sanger 33% 44% 44% 22% N/A N/A
Kraan et al. [27] 20 Allele-specific PCR, sanger 75% ~ 20% N/A N/A N/A N/A
Braggio et al. [16] 19 WES 79% 40% 30% 30% N/A 30%
Chapuy et al. [42] 21 WES 86% 64% 71% N/A 36% 29%
Choi et al. [43] 14 Sanger 36% L265P N/A N/A N/A N/A N/A
Takano et al. [44] 41 Sanger 61% L265P N/A N/A N/A N/A N/A
Hattori et al. [37] 14 ddPCR/targeted NGS 100% N/A N/A N/A N/A N/A
Current study 15 Targeted NGS 33.3% 6.7% 6.7% 6.7% 6.7% 0%
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The presence of IGH-Bcl6 rearrangements in 20% of 
PCNSL is in accordance with prior studies (17–47%) 
[66–69]. Overexpression of Bcl6 due to the chromosomal 
translocation with impaired immunoglobulin IGH and fur-
ther arrest in B-cell differentiation was reported to be one 
of the primary contributing factors to PCNSL pathogenesis. 
On the other hand, IGH-Bcl2 rearrangement, resulting from 
the reciprocal chromosomal t(14;18)(q31;q21) translocation 
was detected in one case (6.7%). Multiple studies have tried 
to define a prognostic role for Bcl2 and Bcl6 rearrangement 
in patients with PCNSL, however, the results are conflicting 
[67, 70–72]. A recent FDA approved anti-CD19 CAR T-cell 
therapy, Axicabtagene ciloleucel (KTE-C19) has been rec-
ommended for high-grade B-cell lymphoma with MYC, Bcl2 
and/or Bcl6 rearrangement [73, 74]. However, its utility for 
the treatment of PCNSL remains to be determined. Charac-
terization of GAs in PCNSL is critical for the development 
of non-invasive methods for diagnosis and targeted therapies 
[40]. In addition to point mutations, our study highlights 
other genomic events, including gene deletions, rearrange-
ments or fusions in PCNSLs. While the number of patients 
in the study is limited, our findings broadens our understand-
ing of the molecular heterogeneity of PCNSL.
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