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Abstract
The TNF receptor superfamily member Fn14 is overexpressed by many solid tumor types, including glioblastoma (GBM), 
the most common and lethal form of adult brain cancer. GBM is notable for a highly infiltrative growth pattern and several 
groups have reported that high Fn14 expression levels can increase tumor cell invasiveness. We reported previously that 
the mesenchymal and proneural GBM transcriptomic subtypes expressed the highest and lowest levels of Fn14 mRNA, 
respectively. Given the recent histopathological re-classification of human gliomas by the World Health Organization based 
on isocitrate dehydrogenase 1 (IDH1) gene mutation status, we extended this work by comparing Fn14 gene expression in 
IDH1 wild-type (WT) and mutant (R132H) gliomas and in cell lines engineered to overexpress the IDH1 R132H enzyme. 
We found that both low-grade and high-grade (i.e., GBM) IDH1 R132H gliomas exhibit low Fn14 mRNA and protein levels 
compared to IDH1 WT gliomas. Forced overexpression of the IDH1 R132H protein in glioma cells reduced Fn14 expression, 
while treatment of IDH1 R132H-overexpressing cells with the IDH1 R132H inhibitor AGI-5198 or the DNA demethylating 
agent 5-aza-2′-deoxycytidine increased Fn14 expression. These results support a role for Fn14 in the more aggressive and 
invasive phenotype associated with IDH1 WT tumors and indicate that the low levels of Fn14 gene expression noted in IDH1 
R132H mutant gliomas may be due to epigenetic regulation via changes in DNA methylation.
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Introduction

The cytokine TNF-like weak inducer of apoptosis (TWEAK) 
and its cell surface receptor fibroblast growth factor-induci-
ble 14 (Fn14) are minimally expressed in normal, uninjured 
tissues; however, increased expression of the TWEAK and/

or Fn14 genes has been detected in numerous solid tumor 
types [1–5]. In the setting of glioblastoma (GBM), the most 
prevalent and lethal form of adult brain cancer [6, 7], ele-
vated Fn14 expression is associated with poor patient sur-
vival [8]. Four major transcriptional subtypes of GBM—
classical, mesenchymal, neural and proneural—have been 
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identified [9–11] and we reported previously that Fn14 
mRNA was expressed at the highest levels in the more 
invasive and aggressive mesenchymal subtype tumors [4]. 
Glioma cell invasion into normal brain parenchyma is a 
hallmark of GBM pathophysiology and generally leads to 
tumor recurrence [6, 7]. Interestingly, glioma cells located 
in the invasive rim express Fn14 at higher levels than those 
cells residing in the tumor core [8, 12], and TWEAK:Fn14 
engagement as well as Fn14 overexpression can trigger gli-
oma cell invasion in vitro and in vivo [4, 8, 12, 13].

Recently, the histopathological classification of GBM has 
been modified based on genetic mutations in the isocitrate 
dehydrogenase (IDH) gene [14, 15]. IDH mutations were 
first identified in GBM tumors in 2008 during an analysis 
of 20,661 protein-coding genes in 22 GBM samples [16]. 
This work laid the foundation for more extensive genomic 
analyses, which identified mutations in the IDH1 or IDH2 
isoforms in 60–80% of grade II and III gliomas [17]. These 
mutations are also found in 80% of secondary GBMs, 
which are tumors that have developed from low grade glio-
mas (LGGs), but only 3–7% of primary GBMs (i.e. those 
that have arisen spontaneously) [18]. The most commonly 
identified mutation is the IDH1 R132H gain-of-function 
mutation, which catalyzes the NADPH dependent reduc-
tion of α-ketoglutarate (α-KG) to produce the R enantiomer 
of 2-hydroxyglutarate (2-HG) [19]. In turn, 2-HG inhibits 
α-KG-dependent dioxygenases, with resultant downstream 
effects that mediate tumor cell interactions with the envi-
ronment, collagen modification, responses to hypoxia, and 
immune evasion [18, 20–23]. IDH1 mutant GBMs are more 
likely to involve the frontal lobes, demonstrate less contrast 
enhancement, and produce less peritumoral changes on MRI 
[24]. Patients with IDH1 mutant tumors are, on average, 
younger (33 vs. 53 years) and survive significantly longer 
than those with IDH1 WT tumors [16–18, 25, 26]. Gliomas 
with the IDH1 mutation are found to have a specific cellular 
phenotype, characterized by global DNA hypermethyla-
tion at CpG islands [18, 27]. Evidence suggests that these 
IDH mutation-related epigenetic changes impact a variety 
of biological processes, including metabolic pathways and 
transcriptional programs linked to tumor growth and devel-
opment [18].

Although the TWEAK-Fn14 axis and the IDH1 mutation 
have both been shown to have important effects on glioma 
cell biology and patient outcome, the inter-relationship 
between these patho-biological systems has not been stud-
ied. Recent work has shown that forced overexpression of 
the IDH1 R132H protein in glioma cells reduces migration 
[28] and invasion [28, 29] in vitro. Given the role that Fn14 
may play in promoting glioma cell invasion [4, 8, 12, 13], we 
investigated Fn14 gene expression levels in IDH1 WT and 
R132H mutant low-grade gliomas (LGGs) and GBM tumors 
as well as IDH1 R132H-overexpressing glioma cell lines. 

We report that resected gliomas and glioma cell lines carry-
ing an IDH1 R132H mutation express Fn14 at relatively low 
levels compared to their IDH1 WT counterparts, supporting 
a possible link between low Fn14 levels, reduced cell inva-
sion, and improved patient prognosis associated with the 
IDH1 mutation.

Materials and methods

Normal (non‑neoplastic) brain and glioma mRNA 
expression analysis

TWEAK (queried as TNFSF12) and Fn14 (queried as 
TNFRSF12A) mRNA expression data corresponding to 10 
normal brain and 548 GBM specimens were downloaded 
from the TCGA data portal (Level 3 data) [30]. In addi-
tion, Fn14 mRNA expression data from 286 LGGs and 240 
GBMs whose IDH1 mutational status was available were 
downloaded from cBioPortal [31]. Among the LGG dataset, 
65 IDH1 WT tumors and 221 IDH1 mutant tumors were 
identified, while among the GBM dataset, 227 IDH1 WT 
and 13 IDH1 mutant tumors were identified (12 containing 
the R132H point mutation, and 1 with an R132G mutation). 
Additionally, GBM subtype data (including samples with 
unknown IDH1 mutational status) were downloaded from 
the UCSC Cancer Genomics Browser [32]. Among this 
dataset, 144 classical, 155 mesenchymal, 87 neural, and 138 
proneural tumors were identified. All 13 IDH1 mutant GBM 
samples were of the proneural subtype; these were analyzed 
as a distinct subset relative to the 125 proneural tumors 
with either WT (n = 45) or unknown (n = 80) IDH1 status. 
Gene expression data is presented as normalized z-scores, 
which reflect the number of standard deviations away from 
the mean of expression in the reference population. In this 
context, the reference population refers to either all tumors 
that are diploid for the gene in question, or matched normal 
brain tissue.

Immunohistochemical analysis of Fn14 expression 
in glioma patient samples

Formalin-fixed, paraffin-embedded (FFPE) gliomas were 
obtained from both the University of Maryland School of 
Medicine Department of Pathology and the Dignity Health/
St. Joseph’s Hospital and Medical Center Department of 
Neuropathology (Phoenix, AZ). Samples were categorized 
into 4 groups: (1) IDH1 WT LGG, (2) IDH1 mutant LGG, 
(3) IDH1 WT GBM and (4) IDH1 mutant GBM. The IDH1 
mutational status was assessed during each patient’s clinical 
workup via immunohistochemistry with an IDH1 R132H-
specific antibody (Dianova GmbH, Hamburg, Germany), 
and was identified via chart review. Six IDH1 WT LGGs, 
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five IDH1 mutant LGGs, five IDH1 WT GBMs, and three 
IDH1 mutant GBM samples were retrieved. Institutional 
Research Board (IRB) approval was obtained prior to col-
lecting the archived tissue.

The FFPE glioma samples were immunostained using the 
UltraVision Quanto (HRP) detection system (Thermo Fis-
cher Scientific; Waltham, MA). After routine deparaffiniza-
tion with a series of xylene and alcohols, antigen retrieval 
was performed using 90% formic acid. Slides were then 
rinsed with distilled water and wash buffer. Endogenous per-
oxidase activity was blocked with hydrogen peroxide solu-
tion (TA-125-HP, Thermo Fisher Scientific) for 10 min prior 
to incubation with a rabbit anti-TWEAKR (Fn14) monoclo-
nal antibody (ab109365, Abcam; Cambridge, MA) at 1:200 
for 60 min at room temperature. The primary antibody sig-
nal was developed with Quanto detection reagents and DAB 
chromogen as per manufacturer’s instructions. Finally, the 
sections were counterstained with hematoxylin, rinsed, and 
mounted in Cytoseal XYL (Thermo Fischer Scientific). The 
immunostained slides were scanned using the Aperio CS2 
digital pathology scanner (Leica Biosystems Inc; Buffalo 
Grove, IL).

Cell culture and western blot analysis

U138 and LN18 human glioma cell lines stably transfected 
with either vector or IDH1 R132H plasmid DNA [33] were 
obtained from Dr. Craig Horbinski (Northwestern Univer-
sity, Evanston, IL) and grown at 37 °C in a humidified incu-
bator (95% air, 5% CO2) in DMEM supplemented with 10% 
fetal bovine serum and 1% penicillin–streptomycin (1000 
units/l). For the AGI-5198 treatment experiment, LN18 
IDH1 R132H cells were either treated with vehicle (DMSO) 
or AGI-5198 (1 µM; MedChem Express; Monmouth Junc-
tion, NJ) for 1, 2 or 3 days. For the 5-aza-2`-deoxycytidine 
(5-aza-dC) treatment experiment, LN18 IDH1 R132H cells 
were either treated with vehicle (DMSO) or three concen-
trations of 5-aza-dC (Millipore Sigma; St. Louis, MO) for 
3 days. Cells were harvested by scraping, snap frozen, and 
lysed in HNTG buffer (20 mM HEPES, 150 mM NaCl, 
1.5 mM MgCl2, 10% glycerol, and 1% Triton X-100) supple-
mented with a protease inhibitor cocktail (Millipore Sigma) 
and two phosphatase inhibitor cocktails (Millipore Sigma). 
The protein concentration of each lysate was determined by 
BCA protein assay (Pierce; Rockford, IL). Equal amounts 
of protein were subjected to SDS-PAGE (Life Technolo-
gies; Carlsbad, CA) and electrotransferred to PVDF mem-
branes (Thermo Fischer Scientific). Immunoblotting was 
performed as previously described [34] using the following 
primary antibodies: IDH1 R132H (Dianova GmbH; Ham-
burg, Germany), Fn14 (Cell Signaling Technology (CST); 
Danvers, MA), PAR-4 (CST), MLH1 (CST), and GAPDH 

(CST). Densitometric analysis of the Western blot data was 
performed using Image J software and all Fn14 expression 
values were normalized to GAPDH values.

Statistical analysis

A statistical analysis was performed using a two-tailed 
Student’s t test or an analysis of variance (ANOVA) with a 
post-hoc Tukey’s honest significance difference (HSD) test, 
as appropriate. All tests were performed using JMP Pro 12 
(SAS Institute Inc., Cary, NC) and R 3.2.2 (R Foundation 
for Statistical Computing, Vienna, Austria) software. p val-
ues < 0.05 were considered significant.

Results

Fn14 mRNA, but not TWEAK mRNA, is highly 
expressed in GBM

We first examined both TWEAK and Fn14 mRNA expres-
sion levels in 10 normal brain specimens and 548 GBM 
specimens by interrogating the TCGA GBM dataset. We 
found that Fn14 mRNA levels, but not TWEAK mRNA lev-
els, were significantly elevated in GBM specimens (Fig. 1).

Fn14 mRNA is expressed at relatively low levels 
in the proneural, IDH1 mutant GBM subtype relative 
to the other molecular subtypes

We recently reported that the highest level of Fn14 mRNA 
expression occurred in mesenchymal subtype tumors [4]. 
However, this prior analysis utilized a relatively small GBM 
subtype sample size and did not distinguish between IDH1 
WT and R132H mutant tumors. Therefore, we conducted 
additional Fn14 expression profiling studies using GBM 
subtype data obtained from the UCSC Cancer Genomics 
Browser. We identified 144 classical, 155 mesenchymal, 
87 neural, and 138 proneural tumors. We also identified 13 
IDH1 mutant GBM samples in the proneural group, which 
were analyzed as a distinct subset relative to the 125 proneu-
ral tumors with either WT (n = 45) or unknown (n = 80) 
IDH1 gene status.

We found that the Fn14 transcript was expressed at the 
highest levels in the classical and mesenchymal GBM sub-
types (Fig. 2). The neural subtype demonstrated signifi-
cantly lower Fn14 expression than tumors of the classical 
(p = 0.0013) and mesenchymal subtypes (p < 0.0001). Fn14 
mRNA levels were even lower in GBMs of the proneural 
subtype compared to the neural subtype (p = 0.0022). Simi-
larly, IDH1 mutant GBMs demonstrated lower Fn14 expres-
sion than GBMs of the classical (p < 0.0001), mesenchymal 
(p < 0.0001), and neural subtypes (p = 0.0016). Fn14 mRNA 
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in the 13 proneural, IDH1 mutant GBMs showed a trend 
toward lower expression when compared to the other 125 
proneural GBM subtype tumors, but this difference was not 
statistically significant (p = 0.2234).

Fn14 mRNA is expressed at relatively low levels 
in IDH1 mutant LGGs and GBMs

Since IDH1 mutations are most frequently found in sec-
ondary GBMs (defined as those that develop from LGGs) 
[35], we next examined the relative levels of Fn14 expres-
sion in IDH1 WT and mutant LGGs. Of the 286 LGGs 
with sequencing data in the TCGA database, 221 samples 
(77.3%) exhibited an IDH1 mutation. Fn14 mRNA expres-
sion was significantly lower in LGGs with mutant IDH1 
relative to those with WT IDH1 (p < 0.0001) (Fig. 3a). 
Within the GBM dataset, 524 samples were identified: 
the IDH1 mutational status of 284 samples (54.2%) was 

unknown, 227 (43.3%) were IDH1 WT, and 13 (2.5%) 
exhibited an IDH1 mutation. GBM tumors with the IDH1 
mutation had, on average, significantly lower Fn14 mRNA 
levels than those with WT IDH1 (p < 0.0001) (Fig. 3b).

Fn14 protein is also expressed at low levels in IDH1 
mutant gliomas

As our Fn14 gene expression profiling analysis identified 
relatively low Fn14 mRNA levels in IDH1 mutant low and 
high-grade gliomas, we next studied whether this relation-
ship was also present at the protein level in 19 resected 
glioma specimens. Immunohistochemistry revealed mod-
erate Fn14 levels in IDH1 WT LGGs, low Fn14 levels 
in IDH1 mutant LGGs, moderate-to-high Fn14 levels in 
IDH1 WT GBMs, and perhaps most strikingly, low-to-
moderate Fn14 levels in IDH1 mutant GBM samples. Rep-
resentative immunohistochemistry images for these four 
tumor types are shown in Fig. 4.

Fig. 1   Comparison of TWEAK and Fn14 mRNA expression levels 
in normal brain (NB) versus GBM. a TWEAK and b Fn14 mRNA 
expression data in 10 NB and 548 GBM specimens were downloaded 
from the TCGA data portal and converted to z-scores. Patients used 
in this analysis were limited to the provisional TCGA dataset with 
gene expression availability for those two genes. Patient/sample sets 
for each expression cluster were plotted as box and whisker plots for 
each gene. The whiskers of the plot map the maximum and mini-

mum z-score for each expression cluster. The bar and dotted bar in 
each box represent the median and mean value, respectively, for the 
expression z-score of each group. The top and bottom of each box 
represents the 25th and 75th percentile, respectively, of the expres-
sion z-score values for each group. TWEAK expression was not sig-
nificantly different (NS, p = 0.419) while Fn14 expression was sig-
nificantly different (p < 0.0001) between NB and GBM as determined 
using Student’s t test (two-tailed)
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Ectopic expression of IDH1 R132H protein 
in glioma cell lines decreases Fn14 expression 
and AGI‑5198 or 5‑aza‑dC treatment of IDH1 
R132H‑overexpressing cells increases Fn14 
expression

We next investigated whether IDH1 R132H overexpression 
in human glioma cells altered Fn14 levels using U138 and 
LN18 cells engineered to overexpress this protein [33]. Con-
trol, vector-transfected cells and the IDH1 R132H cells were 
grown under similar conditions, harvested and Fn14 expres-
sion was assayed by Western blot analysis. We found that 
Fn14 levels were reduced in the IDH1 R132H-overexpress-
ing cells compared to their corresponding vector control cell 
lines, with the greatest difference, an ~ 7.0-fold decrease, 
noted in the LN18 cells (Fig. 5a). To confirm that IDH1 
R132H enzymatic activity was responsible for the observed 
reduction in Fn14 levels, we treated LN18 IDH1 R132H 
cells with the selective IDH1 R132H inhibitor AGI-5198 

[36] for various lengths of time. Cells were harvested and 
Fn14 expression was assayed by Western blot analysis. 
We also blotted for prostate apoptosis response-4 (PAR-4) 
expression as a positive control for a protein regulated by 
IDH1 R132H activity [33]. Drug treatment led to a transient 
increase in Fn14 levels, with the maximal increase in Fn14 
expression (~ 2.2-fold) detected after 2 days of drug treat-
ment (Fig. 5b).

It is well established that the IDH1 R132H metabolic 
product 2-HG promotes DNA hypermethylation [17, 22, 27]. 
Furthermore, it has been reported that the human Fn14 pro-
moter contains a CpG island close to the transcription start 
site [37]. Therefore, to test the hypothesis that DNA meth-
ylation contributes to the IDH1 R132H-mediated decrease 
in Fn14 protein expression, we treated LN18 IDH1 R132H 
cells with several concentrations of the DNA methyltrans-
ferase inhibitor 5-aza-dC [38]. Cells were harvested after 
3 days of treatment and Fn14 expression was assayed by 
Western blot analysis. We also blotted for MutL Homolog 1 
(MLH1) expression as a positive control for a protein whose 
expression is regulated by DNA methylation [39]. We found 
that drug treatment increased Fn14 levels, with the maxi-
mal increase in Fn14 expression (~ 2.3-fold) detected using 
5-aza-dC at a concentration of 10 µg/ml (Fig. 5c).

Discussion

There is increasing recognition of a significant role for the 
TWEAK receptor Fn14 in the molecular pathogenesis of 
GBM [4]. Prior studies have revealed major contributions 
related to tumor cell migration, invasion, and chemother-
apy resistance [8, 12, 13, 40–43]. Here, we first examined 
TWEAK and Fn14 gene expression levels in normal brain 
and GBM samples. We found that TWEAK mRNA levels 
were not elevated in GBM compared to normal brain tis-
sue, consistent with our prior study evaluating TWEAK 
gene expression in many fewer samples (one normal brain 
and 10 GBM tumors) by real-time quantitative PCR [43]. 
In contrast, Fn14 was significantly overexpressed in GBM, 
consistent with our earlier reports using smaller sample sizes 
and either quantitative PCR [43] or analysis of human GBM 
gene expression databases [4, 8]. In our prior report, we 
found that GBM tumors of the mesenchymal subtype exhib-
ited a statistically significant higher level of Fn14 expression 
when compared to the classical, neural, and proneural sub-
types [4]. Of note, a recent report indicates that the neural 
subtype is not a tumor-intrinsic transcriptional subtype in 
IDH WT GBMs [44]. Here, we evaluated ~ 3X more tumor 
specimens and found that the Fn14 expression level was 
similar in the classical and mesenchymal subtypes although 
there was a trend toward higher expression in the mesenchy-
mal tumors. The Fn14 expression level in both the classical 

Fig. 2   Analysis of Fn14 mRNA expression levels in GBM subtypes. 
a Fn14 mRNA expression data in 524 GBM specimens were down-
loaded as z-scores from cBioPortal. The z-scores were computed 
by cBioPortal relative to the expression distribution of each gene in 
tumors that are diploid for this gene. Samples within each subtype 
(classical n = 144, mesenchymal n = 155, neural n = 87, proneural 
n = 125, IDH1 mutant = 13) were plotted as box and whisker plots. b 
Table showing p values for significance of mean across GBM sub-
types for Fn14 expression (ANOVA followed by the Tukey–Kramer 
HSD test)
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and mesenchymal subtypes was significantly higher than the 
other three subtypes examined.

We then focused on the analysis of Fn14 gene expres-
sion levels in IDH1 WT and mutant (R132H) gliomas. As 
mentioned above, the IDH mutation in gliomas has con-
siderable prognostic implications, where mutated LGG 
patients live ~ 2.3X longer [45] and mutated GBM patients 
live ~ 2.0–3.5X longer [17, 45] than IDH1 WT patients. 
Emerging evidence suggests that these tumors co-opt numer-
ous different biological processes compared to their WT 
counterparts [18, 20–23]. One of these differentially adapted 
processes is tumor cell invasion. IDH mutated tumors have 
more discrete imaging patterns, intraoperative borders, and 
histological margins [46, 47]. We report here that expression 
of the pro-invasive receptor Fn14 is lower in GBM tumors 
carrying the IDH1 gene mutation compared to those with 
an IDH1 WT gene. In the first analysis, where we exam-
ined Fn14 mRNA levels in the five GBM subtypes using 
data from the UCSC Cancer Genomics Browser (Fig. 2), 
proneural, IDH1 mutant GBMs showed a trend toward lower 
expression when compared to the other proneural GBM 

subtype tumors, but this difference was not statistically 
significant (p = 0.2234). This most likely reflects the fact 
that this proneural group contained 80 tumors of unknown 
IDH1 gene status, and if some of these were IDH1 mutant 
tumors, then we predict that the difference between the two 
groups would be masked. In any case, in the second analysis 
where we examined Fn14 mRNA expression in IDH1 WT 
and mutant GBMs using data from the cBioPortal (Fig. 3), 
the difference between Fn14 mRNA levels in IDH1 WT and 
mutant GBM tumors was highly significant (p < 0.0001). Of 
note, in this analysis we found a 5.4% incidence of the IDH1 
mutation in GBMs and we did not classify GBMs as primary 
or secondary. The difference between Fn14 mRNA levels 
in IDH1 WT and mutant LGGs was also highly significant 
(p < 0.0001) (Fig. 3). We identified a 77.3% incidence of the 
IDH1 mutation in LGGs, which agrees with the incidence 
cited by prior studies [18, 26].

We then examined Fn14 gene expression levels in cell 
lines engineered to overexpress the IDH1 R132H enzyme. 
We found that ectopic IDH1 R132H overexpression in two 
glioma cell lines decreased Fn14 levels. This finding, in 

Fig. 3   Analysis of Fn14 mRNA expression levels in IDH1 WT ver-
sus IDH1 mutant LGGs and GBMs. a Fn14 mRNA expression data 
from 286 LGGs whose IDH1 mutational status was available were 
downloaded from the cBioPortal. LGG samples (IDH1 WT n = 65, 
IDH1 mutant n = 221) were plotted as box and whisker plots. Fn14 
expression levels were significantly lower in IDH1 mutant samples 

relative to IDH1 WT LGG samples (p < 0.0001) using Student’s 
t test (two-tailed). b Fn14 mRNA expression data from 240 GBMs 
were downloaded and analyzed as above. GBM samples (IDH1 WT 
n = 227, IDH1 mutant n = 13) were plotted as box and whisker plots. 
Fn14 expression levels differed significantly between the two groups 
(p < 0.0001) using Student’s t test (two-tailed)
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combination with the prior data linking elevated Fn14 sign-
aling with glioma cell invasive capacity [4, 8, 13], suggests 
that there may be a link between the IDH1 gene muta-
tion, low Fn14 levels, and decreased tumor invasiveness. 
This would be consistent with recent studies demonstrating 
that IDH1 R132H overexpression in human glioma cells 
decreases migration, invasion, and matrix metalloprotein-
ase expression in vitro [28, 29]. Of note, Baldock et al. [47] 
used mathematical modeling to study the invasiveness of 
contrast-enhancing gliomas on MR imaging, and found no 
difference in the net rate of invasion or velocity of radial 
expansion in IDH1 WT and IDH1 mutant tumors. How-
ever, their analysis may have been limited by a reliance 
on MR imaging rather than histology to detect glioma cell 
invasion.

We found that when IDH1 R132H-overexpressing LN18 
glioma cells were treated with an IDH1 R132H-specific 
small molecule inhibitor (AGI-5198), Fn14 expression 
was up-regulated. This result confirms that IDH1 R132 
enzymatic activity, not some other potential undefined 
genetic or metabolic alteration in the cell line, was trigger-
ing the observed decrease in Fn14 levels. Since it is well 
established that the IDH1 R132H metabolic product 2-HG 
promotes DNA hypermethylation [22, 27] and it has been 
reported that the Fn14 promoter contains a CpG island 
close to the transcription start site [37], we also investi-
gated whether DNA methylation might be responsible for 

IDH1 R132-mediated Fn14 down-regulation. IDH1 R132H-
expressing cells were treated with 5-aza-dC, an analogue 
of cytidine that is incorporated into DNA and RNA. This 
compound inhibits DNA methyltransferase leading to a 
reduction in DNA methylation [38]. We observed that Fn14 
expression was up-regulated after 5-aza-dC treatment, but 
the effect was not strictly dose-dependent, consistent with 
a previous report examining 5-aza-dC activity on antigen 
presentation in breast cancer cells [48]. Our results suggest 
that the low level of Fn14 protein expression noted in both 
IDH1 mutant-overexpressing cells and IDH1 mutant tumors 
may be due, at least in part, to transcriptional repression by 
an epigenetic mechanism.

Given the recent efforts to develop TWEAK- or Fn14-
targeted therapeutic agents for the treatment of cancer 
patients [2, 3, 5], including GBM patients [4, 41, 42, 49], 
our findings also suggest that the IDH1 mutation status 
might serve as an important eligibility criterion in GBM 
clinical trials involving Fn14-targeted agents. Furthermore, 
our results support a role for Fn14 in the more aggressive 
phenotype demonstrated by IDH1 WT tumors, consistent 
with our previous reports showing that Fn14 expression 
levels positively correlate with glioma grade and poor GBM 
patient survival [8]. Additional work will be needed to fur-
ther elucidate the connections between the IDH1 R132H 
mutation and Fn14 gene expression, Fn14 signaling and 
glioma cell invasion.

Fig. 4   Analysis of Fn14 protein expression in IDH1 WT and mutant LGG and GBM. Fn14 immunostaining of representative tumor specimen 
sections is shown. The Fn14-positive cells are brown (scale bar = 200 µm)
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