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Abstract
Introduction Glioblastoma multiform (GBM) is a neural stem cell (NSC)-derived malignant brain tumor with complex 
genetic alterations challenging clinical treatments. FAM72 is a NSC-specific protein comprised of four paralogous genes 
(FAM72 A-D) in the human genome, but its functional tumorigenic significance is unclear.
Methods We conducted an in-depth expression and somatic mutation data analysis of FAM72 (A-D) in GBM using the 
comprehensive human clinical cancer study database cBioPortal [including The Cancer Genome Atlas (TCGA)].
Results We established a FAM72 transcription profile across TCGA correlated with the expression of the proliferative 
marker MKI67 and a tissue-specific gene-mutation signature represented by pivotal genes involved in driving the cell cycle. 
FAM72 paralogs are overexpressed in cancer cells, specifically correlating with the mitotic cell cycle genes ASPM, KIF14, 
KIF23, CENPE, CENPE, CEP55, SGO1, and BUB1, thereby contributing to centrosome and mitotic spindle formation. 
FAM72 expression correlation identifies a novel GBM-specific gene set (SCN9A, MXRA5, ADAM29, KDR, LRP1B, and 
PIK3C2G) in the de novo pathway of primary GBM predestined as viable targets for therapeutics.
Conclusion Our newly identified primary GBM-specific gene-mutation signature, along with FAM72, could thus provide a 
new basis for prognostic biomarkers for diagnostics of GBM and could serve as potential therapeutic targets.
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Introduction

Cancer is a highly prevalent disease and a major cause of 
mortality worldwide. Globally, around 14 million people 
were diagnosed and 8.2 million perished due to cancer in 
2012 [1]. Glioblastoma multiforme (GBM) is the most com-
mon malignant tumor of the central nervous system (CNS) 
arising from neural stem cells (NSCs) [2]. FAM72 is a NSC-
specific gene usually not expressed in non-neuronal tissues 

[3]. Expression of FAM72A has been observed in the dentate 
gyrus of the hippocampus, where it is associated with main-
tenance of NSCs [4, 5]. FAM72A displays an on/off switch 
mechanism in NSCs, such that when FAM72 is silenced, the 
NSCs differentiate into post-mitotic neurons [4]. In humans, 
FAM72 consists of four human-specific paralogs (A-D) that 
are specifically associated as gene pairs with Slit-Robo Rho 
GTPase-activating protein 2 (SRGAP2) paralogs on chro-
mosome 1 (chr1) (Supplementary Figs. S1 and S2), where 
they appear to be pivotal players as |-FAM72–SRGAP2-| 
master gene pairs of brain plasticity for control of higher 
brain functions [6–9].

Preliminary data indicate that FAM72 is overexpressed 
in cancerous tissues, but its exact role in oncogenesis has 
not yet been elucidated [5, 10–12]. We thus conducted an 
in-depth investigation of the human FAM72 (A-D) paralogs 
using the comprehensive public cBioPortal human cancer 
database in order to determine the specific role of FAM72 in 
oncogenesis, particularly in GBM. We analyzed the tissue-
specific expression and mutation of the paralogs as well as 
the role of proto-oncogenes and tumor suppressor genes in 
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tissues with high FAM72 expression. We determined the 
putative FAM72-promotor-specific transcription factor (TF)-
binding sites (BS) (TFBS) using the Ensembl and JASPAR 
databases in order to define the regulators responsible for 
FAM72 expression.

Our study reveals that the expression of tumorigenic 
FAM72 (A-D) paralogs is activated by a cancer tissue-
specific gene-mutation signature, represented by pivotal 
mutated cell cycle driver proto-oncogenes or tumor sup-
pressors, and highly correlates with the expression of the 
proliferative marker MKI67 and genes associated with 
the M-phase of the cell cycle. These cell cycle genes and 
the FAM72 (A-D) paralogs share TFBS motifs, implying 
that they are co-regulated. Our study further indicates that 
FAM72 plays a major role in driving the cell through the 
mitotic cell cycle stage, especially in mitotic spindle func-
tion, and its expression profile reveals a new primary GBM-
specific gene mutation signature.

Materials and methods

Human cancer patient data sources

Publicly available human cancer genome datasets (http://
www.cbiop ortal .org/) [13] were analyzed for mutations 
and mRNA expression data. cBioPortal is a human cancer 
genomics database that contains 169 studies with 40,408 
human subject samples (as of January 2018) covering 29 
types of tissue. cBioPortal combines data from The Cancer 
Genome Atlas (TCGA; http://cance rgeno me.nih.gov/), the 
International Cancer Genome Consortium (ICGC; https ://
icgc.org/), the Wellcome Trust Sanger Institute’s (WTSI) 
Cancer Genome Project (http://www.sange r.ac.uk/resea rch/
proje cts/cance rgeno me/), and the Cancer Genomics Hub 
(CGHub; https ://cghub .ucsc.edu/). TCGA is a collabo-
rative effort between the National Cancer Institute (NCI; 
http://www.cance r.gov/) and the National Human Genome 
Research Institute (NHGRI; https ://www.genom e.gov/). 
FAM72A, B, C, and D were queried in the cBioPortal data-
base (provisional data set) across all available tissues to 
screen for gene mutations. Changes in the protein sequences 
of the paralogs were analyzed for the presence of mutation 
hotspots.

Human cancer tissue‑specific mRNA expression 
analysis of FAM72 (A‑D) paralogs

mRNA expression z-scores (RNA sequencing (RNASeq V1/
V2) or microarray) were locally computed on the founda-
tion of raw expression data available on cBioPortal from all 
available TCGA studies across various human cancer tis-
sues. Studies not containing expression data were excluded 

from analysis (Supplementary Table S1). TCGA studies on 
cBioPortal contain ‘provisional’ and ‘published’ data, where 
published data is a static subset of provisional data. We 
chose to use the provisional studies to maximize the number 
of samples. A z-score is a statistical measurement indicating 
how many standard deviations the element is from the mean. 
The formula is z = (X −m)∕� , where z is the z-score, X is 
the value of the element, m is the numerical mean of the 
population, and σ is the standard deviation [14]. The relative 
expression changes across cancer tissues compared to a nor-
mal control set were visualized using the Wanderer interac-
tive viewer [15]. Control was either adjacent non-cancer tis-
sues or leukocytes. mRNA expression data for FAM72C was 
unavailable for the tissues of interest on cBioPortal; hence, 
it could not be considered in the expression data analysis. 
Each tissue represented one TCGA study unless otherwise 
indicated. mRNA expression data was sorted by tissue, and 
the z-score was normalized for all samples so that they sum 
to zero. Linear regression was determined first between the 
FAM72 (A-D) paralogs and then between all available genes 
in the studies, for all available samples across all tissues. The 
regression curve analysis was visualized with the Python-
based Bokeh online visualization tool [16].

Human cancer tissue‑specific gene mutation—
FAM72 (A‑D) paralog mRNA expression correlation 
analysis—establishing the tissue‑specific 
gene‑mutation signature

Complete mutation data for all genes was retrieved from 
all available TCGA studies across various human cancer 
tissues. Each tissue was represented by one TCGA study, 
unless otherwise indicated. Data were sorted by the mRNA 
expression z-score of FAM72 (A-D) paralogs and then by 
the number of gene-specific mutations across individual 
tissue-specific studies. The five most frequently mutated 
genes in each tissue-specific study were presented as the 
cancer tissue-specific gene-mutation signature. Mutations 
in well-known non-oncogenic genes, as described by Law-
rence et al. and Greenman et al., were not considered for 
analysis [17, 18]. Data were visualized with the Xena func-
tional genomics explorer [19]. Null samples and some tis-
sues (such as mesothelioma (MESO), colorectal adenocar-
cinoma (COADREAD), and uterine endometrial carcinoma 
(UCEC)) were excluded from the Xena visualization analy-
sis due to mismatched or insufficient data on cBioPortal. 
As the Xena genomics explorer utilizes its own methods to 
process TCGA data, there is an absence of somatic mutation 
data for some genes in certain tissues such as cholangiocar-
cinoma (CHOL), head and neck squamous cell carcinoma 
(HNSC), kidney chromophobe (KICH), hepatocellular car-
cinoma (LIHC), pheochromocytoma and paraganglioma 
(PCPG), prostate adenocarcinoma (PRAD) and testicular 

http://www.cbioportal.org/
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https://icgc.org/
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germ cell cancer (TGCT), which is present in cBioPortal. 
In such cases of mismatches between Xena and cBioPortal 
somatic mutation data, we have relied on cBioPortal for our 
analysis. Clinical data from the TCGA GBM study (provi-
sional data set) was retrieved from cBioPortal for patient-
gene-specific analyses.

Human cancer tissue‑specific gene mutation—
FAM72 (A‑D) paralog mRNA expression correlation 
analysis visualized by the bucket method

The mRNA expression z-scores for FAM72 (A-D) paralogs 
were grouped in buckets with a size of 0.7 z-score units 
and correlated with genes showing high numbers of tissue-
specific gene mutations. The y-axis denotes the z-score 
buckets for the selected FAM72 gene. Genes whose muta-
tion numbers are to be visualized lie on the x-axis. The data 
were visualized with the Python-based Bokeh interactive 
visualization tool [16]. Numbers of mutations in a gene in 
the samples within a bucket were denoted by a color code. 
Color intensity of the buckets is directly proportional to 
number of samples, while the colors visualize the relation 
of samples with a mutation to the total number of samples. 
Brighter colors indicate more samples in the bucket, while 
paler colors indicate fewer samples. Colors tending to the 
red side of the spectrum indicate increase in samples with 
a mutation in relation to the total number of samples in the 
bucket. Colors tending to the blue side of the spectrum indi-
cate decreasing numbers of samples with a mutation in the 
bucket. Black bands denote absence of mutations or lack of 
expression data in the gene, while bright grey bands indi-
cate absence of samples within the group. Bright pink boxes 
indicate that only one sample is present in the bucket that 
contains one mutation in the gene of interest.

Gene‑specific survival analysis

The prognostic significance of selected genes from GBM 
was analyzed using available Kaplan–Meier curves from the 
cBioPortal database (provisional data set) and comparison 
was performed by log-rank test [20].

In‑silico determination of the regulatory mechanism 
of human FAM72: Genomic transcription factor 
(TF)‑binding site (TFBS) analysis for FAM72 using 
JASPAR

TFs are proteins that regulate gene transcription by bind-
ing to genome sequences usually located upstream of the 
coding sequence (CDS), thereby either enhancing or inhib-
iting the binding of RNA polymerase II and leading to a 
corresponding increase or decrease in gene transcription 
[21]. TFs are expected to bind upstream of the two genes 

FAM72 and SRGAP2 and thus to the intergenic region 
between the CDS of the specific FAM72 and SRGAP2 gene 
pair. The |-FAM72–SRGAP2-| gene pairs were extracted 
from NC_000001.11 (chr 1, genome reference consor-
tium human build 38 patch release 13 (GRCh38.p13 pri-
mary assembly) taking the regions 206205970–206202026 
(|-FAM72A–SRGAP2A-|), 121187446–121183490 
(|-FAM72B–SRGAP2C-|), 143972638–143971142 
(|-FAM72C–SRGAP2D-|) and 145092902–145096847 
(|-FAM72D–SRGAP2B-|) from the National Center for Bio-
technology Information (NCBI) database. These were used 
for TFBS prediction using the JASPAR database. Briefly, 
the JASPAR CORE collection is a high-quality database 
of curated profiles of experimentally validated eukaryotic 
TFBS derived from published data [22]. PHYLOFACTS is 
an online database created by the Berkeley phylogenom-
ics group [23]. The database integrates structural, phylo-
genic, and alignment information for more than 15,000 
protein families [23]. The intergenic regions between the 
|-FAM72–SRGAP2-| gene pairs are similar to each other 
[6]; hence, we used the |-SRGAP2A–FAM72A-| intergenic 
region as the model for TFBS analysis. The intergenic region 
between the CDS of the |-SRGAP2A–FAM72A-| gene pair 
was aligned with all motifs of the JASPAR CORE-collection 
and PHYLOFACTS-collection, labeled with respect to spe-
cies “human”. For the alignment process, we relied on the 
motifs-module of BioPython [24]. The position-weighed 
matrices of each TF were assigned a score and only those 
TFs that showed a 100% match were selected.

Human FAM72 genomic TFBS prediction 
with the Ensembl database

Ensembl is a joint project between the European Bioin-
formatics Institute (EBI), an outstation of the European 
Molecular Biology Laboratory (EMBL), and the WTSI 
[25]. The Ensembl browser (March 2016 version) was 
used to visualize the various putative features present in 
the promoter region of |-SRGAP2–FAM72-|, which are the 
intergenic regions between SRGAP2 and FAM72 paral-
ogs (206205970–206202026 for |-FAM72A–SRGAP2A-|, 
121187446–121183490 for |-FAM72B–SRGAP2C-|, 
143972638–143971142 for |-FAM72C–SRGAP2D-| and 
145092902–145096847 for |-FAM72D–SRGAP2B-|).

Results

FAM72 (A‑D) paralog mutations in human cancer 
tissues

We analyzed the distribution of all mutations in the human 
FAM72 (A-D) paralogs across all available human cancer 
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tissues from 169 studies, comprising 29 tissues and 40,408 
patient samples. A total of 34 non-synonymous mutations 
and three synonymous mutations in all four human FAM72 
paralogs across all tissues were identified, with the highest 
number observed in FAM72A (Supplementary Table S2). 
The maximum numbers of mutations were observed in uterus 
and lung cancer tissues, with six cases in each tissue. Cholan-
giocarcinoma, skin, gallbladder, and pheochromocytoma and 
paraganglioma (PCPG) each showed only one case of FAM72 
mutation (Supplementary Fig. S3).

We observed that missense mutations were predominant, 
representing 88% of all mutations across all tissues. In tissue-
specific cases, the four tissues that showed mutations other 
than missense were PCPG (one case, nonsense mutation), liver 
(one case, frameshift insertion), kidney (one case, frameshift 
insertion), and stomach (one case, frameshift insertion) (Sup-
plementary Fig. S4). In order to determine the significance of 
observed mutations in all four human FAM72 paralogs, we 
compared them with the mutations in an established proto-
oncogene, the tumor protein p53 (TP53). Mutations in FAM72 
paralogs were rare compared with those in TP53 (Supplemen-
tary Fig. S5).

Amino acid changes in FAM72 (A‑D) paralogs 
in human cancer tissues

We analyzed the amino acid (AA) changes in mutated human 
FAM72 (A-D) paralogs across all human cancer tissues, both 
by individually affected AAs and by the frequency of muta-
tion of an AA at a specific position (Supplementary Tables 
S3–S6). We found that, in 14% of cases, mutations occurred 
at serine residues (Supplementary Fig. S6). With regard to the 
frequency of mutations at a specific position, we found no bias 
toward a particular AA.

Human cancer tissue‑specific mRNA expression 
changes in FAM72 (A‑D) paralogs

Increased expression of FAM72A has been reported previ-
ously from breast, lung, ovary, kidney, and uterine cells [5, 
10]. Our detailed analysis of FAM72 paralog expression 
revealed a significant increase in mean expression levels in 
human tumors as compared to control tissues (Supplemen-
tary Figs. S7a–S9b, Supplementary Tables S7–S9). The 
exceptions were kidney chromophobe (KICH), PCPG, and 
skin cutaneous melanoma (SKCM), where tumor samples 
show a decrease or equivalence in expression.

Correlation of FAM72 (A‑D) paralog expression 
with expression of cell proliferation marker gene 
MKI67 across various human cancer tissues

We performed a comparative expression analysis of 
FAM72 (A-D) paralogs with the established marker of 
proliferation Ki-67 gene (MKI67) [26]. As seen in Sup-
plementary Fig. S10, the expression of MKI67 is highly 
correlated with that of FAM72A, B, and D across nearly 
all human cancer tissues. This high correlation implies that 
MKI67 and FAM72 paralogs are co-expressed in prolifer-
ating cells, particularly cancer cells.

Correlation of FAM72 (A‑D) paralog expression 
with expression of selected cell cycle‑specific genes 
across various human cancer tissues

As FAM72 mRNA expression was elevated in all prolifer-
ating cells across various human cancer tissues, we deter-
mined whether the expression of FAM72A was correlated 
to the expression of specific cell cycle genes. Accordingly, 
we selected cell cycle genes across the entire cell cycle 
and correlated their expression across the selected tissues 
(Supplementary Fig. S11).

Correlation of FAM72 (A‑D) paralog expression 
with expression of selected cell cycle‑phase‑specific 
genes across various human cancer tissues

Noting that FAM72 paralogs were co-expressed with genes 
expressed in the G2/M-phases of the cell cycle, we further 
narrowed the list of genes to those specifically expressed 
during the M-phase. We found that FAM72 (A-D) para-
logs showed the highest correlation with each other and 
genes specifically involved in the M-phase of the cell cycle 
(Fig. 1), but not with genes involved in the G1-/S-phases 
(Supplementary Fig. S12). FAM72A showed the highest 

Fig. 1  Correlation of FAM72A expression with expression of marker 
of proliferation MKI67 and selected genes specifically involved in the 
M-phase of the cell cycle across various TCGA human cancer tis-
sues. The x-axis represents mRNA expression z-scores for FAM72A, 
and the y-axis represents mRNA expression z-scores for MKI67 and 
selected cell cycle genes. The blue dots represent FAM72 sample val-
ues, and pink dots represent mutations in MKI67. The key explain-
ing the color code for each linear regression graph is on the bottom 
left. The mRNA expression correlations between FAM72A and 
selected genes are consistently high across all selected cancer tissues. 
The highest mRNA expression correlation is observed with KIF14, 
indicating FAM72A mRNA co-expression with KIF14 during the 
M-phase of the cell cycle, in particular the prophase to metaphase 
stages. Sample size, standard error, slope, and p-values for the graphs 
are provided in Supplementary Table S12

◂
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expression correlation with the kinesin family member 14 
(KIF14) (Fig. 1).

Correlation of FAM72 paralog expression 
with proto‑oncogenes and tumor suppressor genes 
frequently mutated in GBM: the GBM‑specific 
gene‑mutation signature

With FAM72 specifically expressed in brain NSCs, we 
looked at the aggressive cancer GBM in the brain (Fig. 2). 
The largest number of mutations was observed for the proto-
oncogene epidermal growth factor receptor (EGFR) and the 
tumor suppressor TP53 across all samples in the TCGA 
GBM study, yet the mRNA expression level of FAM72 
paralogs was not correlated with these mutations (Fig. 2a). 

Figure 2b corroborates this observation, where mutations 
in TP53, phosphatase and tensin homolog (PTEN), NF1, 
SPTA1 and EGFR are spread through the samples, with no 
clear single driver oncogene that causes cellular prolifera-
tion. An accumulation of mutations across various genes 
may be responsible for GBM [27]. The MKI67-FAM72 
mRNA expression correlation graph clearly demonstrates 
that FAM72 is highly expressed in proliferating GBM cells 
(Fig. 2c). We compared the list of frequently mutated genes 
overall with genes which were mutated only in deceased 
patients. We found six genes, SCN9A, MXRA5, ADAM29, 
KDR, LRP1B, and PI3KC2G, which showed a significant 
number of mutations and thereby defining a novel GBM-
specific gene mutation signature (Fig. 2g). We also observed 
a potential gender effect: mutations in ADAM29 were 
observed mainly in men, with a ratio of eight male patients 
to one female patient (8:1). Mutations in SCN9A also tends 
to affect rather male patients (8:3; Supplementary data 
file 2), which hints at a gender-specific role of these genes 
in GBM. Patient data and list of genes mutated solely in 
deceased patients is provided in Supplementary data file 2.

Correlation of FAM72 (A‑D) paralog mRNA 
expression and genes frequently mutated in other 
human cancer tissues—other tissue‑specific 
gene‑mutation signatures

Since mutations in a single driver gene or a combination of 
genes (the tissue-specific gene-mutation signature) appeared 
to be responsible for triggering high FAM72 expression that 
correlates with cancer cell proliferation, we also investigated 
the mRNA co-expression of FAM72 with the proliferative 
marker MKI67 and mitotic cell cycle genes in other tissues 
and correlated the level of FAM72 expression with the fre-
quency of tissue-specific gene mutations. A combination 
of well-known cancer drivers was observed in tissues such 
as bladder urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC), lymphoid neoplasm 
diffuse large B-cell lymphoma (DLBC), head and neck 
squamous cell carcinoma (HNSC), acute myeloid leuke-
mia (LAML), low grade glioma (LGG), liver hepatocel-
lular carcinoma (LIHC), lung adenocarcinoma (LUAD), 
pancreatic adenocarcinoma (PAAD), prostate adenocarci-
noma (PRAD), sarcoma (SARC), testicular germ cell cancer 
(TGCT), and uveal melanoma (UVM) (Supplementary Figs. 
S13–S15, S17, S19, S23–26, S29, S31, S32, S35, and S39), 
while a single gene was the primary oncogenic driver in 
tissues such as esophageal carcinoma (ESCA), kidney chro-
mophobe (KICH), renal clear cell carcinoma (KIRC), lung 
squamous cell carcinoma (LUSC), ovarian serous adeno-
carcinoma (OV), skin cutaneous melanoma (SKCM), stom-
ach adenocarcinoma (STAD), papillary thyroid carcinoma 

Fig. 2  GBM-specific gene-mutation—FAM72-expression signa-
ture. Correlation between mRNA expression of human FAM72 
(A-D) paralogs and proto-oncogenes/tumor suppressor genes fre-
quently mutated in the TCGA GBM study, comprised of 165 sam-
ples containing mRNA expression and mutation data. a Comparison 
between the tumor samples sorted by sample in descending order of 
FAM72A expression (on the left hand), and the GBM-specific gene-
mutation signature represented by the five most frequently mutated 
genes (EGFR, TP53, PTEN, NF1, SPTA1) in the same GBM sam-
ples sorted by number of mutations (on the right hand; sorted from 
left to right). The FAM72A expression and gene-mutation signa-
ture comparison was visualized with the Xena interactive browser 
[19]. Red bands indicate increased expression, green bands indicate 
decreased expression, and black bands indicate no change in expres-
sion. Blue dots (a right hand) represent missense or in-frame muta-
tions in the indicated gene in a sample, while red dots represent 
nonsense or frameshift indel mutations in that gene in the sample. 
EGFR is the most frequently mutated gene in GBM. The data dem-
onstrate that accumulation of mutations in cancer-driver genes, such 
as EGFR, PTEN, TP53, and neurofibromin 1 (NF1), leads to onco-
genesis. b Bucket-wise distribution of mutations in the five most fre-
quently mutated genes in GBM, sorted by FAM72A expression. The 
grey areas in the heat maps and bucketed diagrams indicate lack of 
data. c High gene expression correlation between FAM72A and the 
proliferative marker MKI67 as well as other M-phase-specific cell 
cycle genes indicates that FAM72A is highly expressed in prolifer-
ating GBM cells. Standard error, slope, and p-values for the graphs 
are provided in Supplementary Table  S13. d Mutations in selected 
genes across all 287 patients with mutation data in the GBM study. 
e Most frequently mutated genes in 59 survivors with mutation 
data. f Most frequently mutated genes in 223 deceased patients with 
mutation data. g Somatic mutations observed uniquely in deceased 
patients highlights a novel GBM-specific gene-mutation signature. 
h OncoPrint data from the GBM study on cBioPortal for visualiza-
tion of the relationship between somatic mutations in genes from 
g and survival of patient. d reflects genes mentioned in a–c. Muta-
tions in the genes stated in d–f are well-established oncogenic driv-
ers. However, the genes mentioned in g are—thus far—not reported 
to be oncogenic drivers, but may assist in metastasis. OncoPrint data 
in h clearly shows that mutations occurred in separate patients, all of 
whom are deceased, and did not overlap, implying that all genes from 
this novel gene-mutation signature from g could have each played a 
pivotal lethal role as primary driver oncogene in the de novo pathway 
of primary GBM or in metastasis in conjunction with other driver 
oncogenes

◂
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(THCA), thymoma (THYM), and uterine carcinosarcinoma 
(UCS) (Supplementary Figs. S18, S20, S21, S27, S28, S33, 
S34, S36, S37 and S38). No obvious single driver genes 
could be conclusively identified in cancerous tissues such as 
cholangiocarcinoma (CHOL), renal papillary cell carcinoma 
(KIRP), and pheochromocytoma and paraganglioma (PCPG) 
(Supplementary Figs. S16, S22, and S30).

Gene‑specific survival analysis in GBM

Kaplan–Meier survival curves for SCN9A, MXRA5, 
ADAM29, KDR, LRP1B, and PI3KC2G showed that 
patients with mutations in SCN9A and PIK3C2G had 
a worse prognosis compared to all other GBM patients, 
including those with EGFR and TP53 mutations (Fig. 3). 
However, similarly to EGFR, mutations in MXRA5, 
ADAM29, LRP1B and KDR did not significantly alter prog-
nosis. Although mortality in GBM patients is high, with 
the average survival being about 15 months [28], mutations 
in the new gene set (Fig. 2g) seem to be particularly lethal 
(Fig. 2h) and inducing the de novo pathway leading to pri-
mary GBM, independent of mutations in any of the other 
well-established GBM-associated oncogenes such as EGFR, 
TP53 or PTEN.

In‑silico determination of the regulatory mechanism 
controlling FAM72 expression: An |‑SRGAP2–
FAM72‑| master‑gene intergenic region‑TFBS 
analysis

Since the promoter regions, i.e., the intergenic region among 
the four paralogous |-SRGAP2–FAM72-| master-gene pairs, 
are highly similar [6], it could be assumed that the same 
putative TFBS should be present in the intergenic regions 
of all four |-SRGAP2–FAM72-| master-gene pairs. Accord-
ingly, we selected the |-SRGAP2A–FAM72A-| intergenic 
region for our TFBS analysis.

Ensembl provided us potential TFBS in the promoter 
region of all FAM72 (A-D) paralogs. For further detailed 
analysis, we aligned putative human TFBS along the 
|-SRGAP2A–FAM72A-| intergenic region using the JAS-
PAR database. This revealed multiple regions where TFs 
could bind: multiple spleen focus forming virus (SFFV), 

pro-viral integration oncogene (SPI1), and myeloid zinc fin-
ger 1 (MZF1)-binding sites were detected, as were sites for 
SP1 TF (SP1), GATA-binding protein 2 (GATA2), nuclear 
factor I C (NFIC), and ETS proto-oncogene 1 (ETS1) (Sup-
plementary Fig. S40). A common TFBS site was deter-
mined for the TFs MAX dimerization protein and T-box 
genes (MGA/TBX1/TBX4/TBX15), which could mean they 
share a motif. Most TBX family members bind to the AGG 
TGT GA ‘‘half-site’’ palindromes, and this motif is shared 
by MGA [29].

Most strikingly, the BS motifs for the TF GATA-binding 
protein 2 (GATA2) are common for all human FAM72 para-
logs and those M-phase-specific cell cycle genes that dem-
onstrated high expression correlation with those paralogs 
(Supplementary Table S14). GATA2 expression is critical 
for hematopoietic cell development, and ectopic expression 
of GATA2 is associated with megakaryocyte proliferation 
[30].

Discussion

NSC-specific FAM72 gene expression can be localized 
to the hippocampal dentate gyrus, one of the two sites of 
neurogenesis in the adult brain, where it is associated with 
maintenance of NSCs as part of the |-SRGAP2–FAM72-| 
master-gene responsible for brain plasticity [4–8]. Our 
group reported high protein expression correlation between 
FAM72A and protein kinase C (PRKC) in cancer cells, 
such as neuroblastoma and breast adenocarcinoma (MCF-7 
and MDA-MB-231 cells), and we established that in can-
cer cells FAM72A acts downstream of PRKC [5]. We also 
described FAM72A interaction with epigenetically modified 
tumor suppressors along with influence of TP53 signaling 
pathways [3]. Other studies also point at FAM72A as being 
linked to tumorigenic effects in breast, colon, and lung cell 
lines [3, 5, 11]. In the present study, we established a cancer 
tissue-specific FAM72 expression profile further clarifying 
the biological significance of FAM72 expression in cancer 
and unravelling a novel primary GBM-specific gene-muta-
tion signature.

Figure 4 shows the various integrated cancer gene-muta-
tion signature-activated cell cycle pathways, with the poten-
tial cell cycle-specific role of FAM72 being highlighted.

In most human cancer tissues, however, a single 
mutated gene may not be responsible. Proto-oncogenic 
mutations in two (or more) driver genes, thus character-
izing the tissue-specific gene-mutation signature, may 
lead to cell cycle activation, cell transformation, and cell 
proliferation [31]. The small number of non-synonymous 
mutations in FAM72 across all cancer tissues indicates 
that such mutations could not cause FAM72 to become an 
oncogenic driver gene (Supplementary Fig. S3). FAM72 

Fig. 3  Survival plots showing the prognosis of GBM patients with 
somatic mutations in SCN9A, MXRA5, ADAM29, KDR, LRP1B 
and PIK3C2G, respectively. Interestingly, SCN9A, MXRA5, 
ADAM29, KDR, LRP1B and PIK3C2G are the genes with high-
est number of somatic mutations observed only in deceased GBM 
patients. Patients with mutations in SCN9A and PIK3C2G show 
worse prognosis compared to all other GBM patients. EGFR and 
TP53 survival plots are shown as control comparison. Red line: cases 
with alterations in query gene, blue line: cases without alterations in 
query gene

◂
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(A-D) paralogs themselves are mutated at a very low level 
across all cancer tissues and not at a specific site. This 
lack of mutations in a gene functionally associated with 
cellular proliferation (in NSCs) [4–7] is surprising. One 
reason could be that the cells in which FAM72 becomes 
mutated are fated to differentiate, to age or to die (as 
assumed for neural FAM72 activity in non-neuronal tis-
sue) and thus cannot be detected. It has been hypothesized 
that the two genes within the |-SRGAP2–FAM72-| master-
gene act in an antagonistic manner in NSCs: activation of 
SRGAP2 (and concurrent inactivation of FAM72) when 
the cell decides to mature and differentiate and activation 
of FAM72 (and simultaneous inactivation of SRGAP2) 
when the cell decides to proliferate [4, 7, 9]. However, 

this dual role for the neural-specific |-SRGAP2–FAM72-| 
master-gene is currently restricted to neural tissue/NSCs.

Our current analysis shows that any master gene activity 
in non-neuronal tissues may cause cell differentiation/death 
(SRGAP2 active) or cancer (FAM72 active, e.g., due to an 
upstream cell cycle driver oncogene). This finding is under-
scored by the high correlation of human FAM72 expression 
with expression of the proliferative marker MKI67, indi-
cating that neural FAM72 (A-D) paralogs are co-expressed 
with MKI67 during cellular proliferation also outside neural 
tissue, i.e., in cancer cells. Moreover, our study clearly dem-
onstrates that genes with the highest correlation of expres-
sion with FAM72 paralogs are involved in the late G2- to 
M-stages of the cell cycle (Fig. 1 and Supplementary Fig. 

Fig. 4  Integrated cancer tissue gene mutation signature-activated cell 
signaling pathways with schematic hypothesis of FAM72 action dur-
ing the cell cycle in proliferating NSCs or cancer cells. Mutations 
in proto-oncogenes or tumor suppressors (gene X) lead to activa-
tion of cell proliferation pathways, bypass of cell cycle checkpoints, 
and inhibition of the pro-apoptotic pathway. This leads to increased 
expression of FAM72, especially during the prophase to metaphase 
stages of the M-phase of the cell cycle. An accumulation of such gene 
mutations or a single driver-gene mutation triggers the cell cycle, 
leading to high FAM72 expression. The tumor cell formed as a result 
continues to proliferate, and FAM72 is expressed repeatedly once the 
cell enters the M-phase, especially during the prophase to metaphase 

stages. Metastasis and angiogenesis may be enhanced by mutations in 
genes such as KMT2A or TG (Supplementary Fig. S36), which are 
not oncogenic themselves (gene Y). A loss of function mutation in 
FAM72 could disrupt the M-phase, thereby inhibiting spindle forma-
tion and mediating cell aging, senescence, differentiation, or mitotic 
cell death. Targeting FAM72 could thus be a viable treatment method 
for GBM and other cancer types outside the CNS. The cell cycle is 
divided into several phases: G0, quiescent or differentiated stage; G1, 
Gap1 phase; G2, Gap2 phase; M, mitotic phase; S, synthesis phase; 
CCNA1, cyclin A; CCNB1, cyclin B; CCND1, cyclin D; CCNE1, 
cyclin E; CDK, cyclin-dependent kinase
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S11) and could associate FAM72 action with genes acting 
during the M-phase of the cell cycle, in particular the pro-
phase to metaphase stages (Fig. 4). High correlation between 
two genes may indicate that they act together as a complex 
for a particular cellular function or are involved in the same 
biological process [32]. Based on our results, FAM72 para-
logs are specifically co-expressed with genes involved in the 
prophase/metaphase stages of the cell cycle. These genes 
include ASPM, CENPE, CENPF, KIF14, KIF23, BUB1, 
SGO1, NUF2, CEP55, and NEK2. This may mean that the 
human FAM72 (A-D) paralogs also act in the prophase to 
metaphase stages, possibly being involved with the cen-
tromere-kinetochore complex or mitotic spindle formation. 
These genes also share the same TFBS motif, GATA2, indi-
cating that their expression is co-regulated in concert with 
the FAM72 paralogs and thus implying a common temporal 
and spatial function [33]. GATA2 has differing functions 
during hematopoietic cell development, and GATA2 over-
expression has been shown to increase cellular quiescence 
[34]. However, GATA2 is required for RAS-pathway driven 
non-small cell lung cancers [35] and leads to poor prognosis 
in leukemia [36]. GATA2 regulation of FAM72 paralogs 
thus suits their proliferative function.

GBM develops either de novo from NSCs into GBM stem 
cells and primary GBM or develops through a multistep pro-
cess into secondary GBM arising from NSCs by means of 
aggregated mutations, different from the triggering muta-
tions in GBM stem cells of primary GBM [2]. The differen-
tiation of these two distinct forms, primary and secondary 
GBM, depends on the presence of different triggering muta-
tions in pivotal genes such EGFR or CDKN2A in primary 
GBM and PDGFRA or PTEN (and others) in secondary 
GBM [2]. Our identified primary GBM-specific gene-muta-
tion signature is comprised of the five genes EGFR, TP53, 
PTEN, NF1, and SPTA1. The first four are well-studied 
oncogenes associated with GBM while somatic mutations 
in the cell motility protein SPTA1 have been reported from 
glioblastoma as well as other cancers [27]. The gene set 
with somatic mutations observed solely in deceased GBM 
patients (SCN9A, MXRA5, ADAM29, KDR, PIK3C2G and 
LRP1B) (Fig. 2g, h) is intriguing, as they could be oncogenic 
by themselves or act fatally in combination with other onco-
genic driver genes (Fig. 2d). Sodium voltage-gated channel 
alpha subunit 9 (SCN9A) codes for an ion channel subu-
nit protein, which is highly expressed in primary sensory 
and sympathetic ganglion neurons. Mutations in SCN9A 
have been reported to be the causative factor behind pri-
mary erythromelagia [37], but thus far have no known role 
in cancer. Matrix remodeling associated 5 (MXRA5) codes 
for a proteoglycan and is possibly involved in cell adhe-
sion. In addition to its probable role in matrix remodeling 
and cell adhesion, MXRA5 function is regulated by trans-
forming growth factor -β1, implying an anti-inflammatory 

role [38]. Mutations in MXRA5 have been reported from 
non-small cell lung and pleural cancers [39]. ADAM metal-
lopeptidase domain 29 (ADAM29) belongs to the ADAM 
disintegrin and metalloprotease family. The ADAM family 
members are transmembrane and secreted proteins, most 
of whom encode functional proteases. The functional role 
of ADAM29 is not clarified, but increased expression was 
observed on breast cancer cells in vitro and mutations in 
ADAM29 led to increased proliferation of breast cancer cells 
[40]. ADAM29 is also highly mutated in melanoma and may 
have a role in integrin-dependent cell adhesion and increas-
ing cell migration ability [41]. Kinase insert domain receptor 
(KDR) encodes for a VEGF receptor (VEGFR2). VEGFR2 
phosphorylation activates the MAPK pathway, stimulates 
the RAS pathway as well ensuring cellular survival via 
activation of the protein kinase B (PKB), thus mediating 
VEGF-induced endothelial proliferation [42]. Phosphati-
dylinositol-4-phosphate 3-kinase catalytic subunit type 2 
gamma (PIK3C2G) is a class II PI3K, primarily expressed 
in pancreas, liver and prostate tissues. Little is known about 
its exact function, but other members of the class II PI3Ks 
such as PI3KC2A and PIK3C2B are involved in angiogen-
esis, cell cycle progression and endocytosis [43]. LRP1B 
mutations have been previously reported from glioblastoma 
and deletions in LRP1B are associated with worse prognosis 
[44], which matches with our data. It is clear that mutations 
in these genes are significant for GBM metastasis as they 
may assist the tumor cells in proliferation, migration and 
angiogenesis. This novel FAM72 expression profile-associ-
ated gene set (SCN9A, MXRA5, ADAM29, KDR, LRP1B 
and PIK3C2G) is thus a critical gene-mutation signature for 
GBM prognosis and—as cell membrane receptors (SCN9A, 
ADAM29, LRP1B and KDR)—these genes are preor-
dained targets for therapeutics. Although EGFR inhibitors 
are widely used chemotherapeutics, evidence suggests that 
resistance to EGFR inhibitors is high. mTOR inhibitors are 
also ineffective due to incomplete inhibition of the targets 
[28]. Thus in this context our novel gene set emerges as new 
potential drug targets. Since mutations in these genes show 
very poor prognosis and seems to be lethal as associated 
with the de novo pathway of primary GBM (irrespective 
of mutations in EGFR or TP53), targeting mutant variants 
of this new gene set in combination with established drugs 
could significantly extend patients’ lifespan.

Human FAM72 paralogs are driven and overexpressed in 
GBM by these genes, confirming FAM72’s important role in 
proliferating GBM cells (Supplementary Figs. S7a, S8a, and 
S9a). An inactivating mutation in the FAM72 paralogs may 
not have any effect in the master gene |-SRGAP2–FAM72-| 
on SRGAP2 expression as long as the SRGAP2 promo-
tor itself is not affected. A mutation-induced inactivation 
of FAM72, however, may cause a defect in mitotic spindle 
formation and cellular apoptosis. In the case of SRGAP2 
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activation, however, as SRGAP2 expression is required for 
neuronal NSCs differentiation and for functional neurons 
(synaptic activities) but not in glial cells [7, 9], the glial cells 
will arrest the cell cycle, differentiate, or undergo apoptosis. 
Accordingly, not all such cells will be isolated and detected 
by sequencing methods in large-scale cancer cell studies. 
Still, as |-SRGAP2–FAM72-| is a master gene, we also ana-
lyzed the change in expression in SRGAP2 in GBM, similar 
to that in FAM72 paralogs. SRGAP2 shows no change in 
expression in GBM, as compared to normal tissue, indicat-
ing that SRGAP2 is inactive in GBM (Supplementary Fig. 
S41). SRGAP2 is reported to be a tumor suppressor and its 
expression may lead to apoptosis of the cancerous cell [45]. 
In development and progression of GBM, SRGAP2 itself 
may not play a causative role as its expression will cause the 
cells to undergo apoptosis or to differentiate. This stands in 
direct contrast with FAM72, and further serves to reinforce 
the proliferative function of FAM72 in cancer. Only those 
FAM72 mutations that have no effect on the cell function 
of FAM72 would be detected, which could be a reason why 
only a small number of mutations are observed in human 
FAM72 (A-D) paralogs in all cancer samples across all tis-
sues (Supplementary Table S2).

Moreover, we observed genomic hypomethylation within 
the FAM72A promoter region in GBM, correlating with 
increased FAM72A expression in tumor tissues (Supple-
mentary Fig. S42). This raises the possibility that epigenetic 
regulation via methylation could also be a factor in the dif-
ferential expression of FAM72 paralogs in other cancer tis-
sues, though our analysis could not confirm this hypothesis. 
Although non-CpG methylation occurs inside the first intron 
of SRGAP2A, cancer-specific methylation has been reported 
to occur at so-called ‘shores’, i.e., regions of 2–4 kb distance 
from CpG islands [46]. Non-CpG methylation has also been 
reported from neurons and is associated with repression of 
gene activity [47]. This aligns with the role of FAM72A in 
NSCs, as its expression should decrease in differentiated 
neurons [4]. Investigation into the methylation of FAM72 
paralogs in non-neuronal cancer tissues is underway.

Expression levels of FAM72 (A-D) paralogs depend on 
the cell cycle stage. If the cell was in G1-/S-phase, expres-
sion of FAM72 would be low. This was verified by determin-
ing if FAM72 co-expresses with certain genes specifically 
active during the G1- or S-phase of the cell cycle (Supple-
mentary Figs. S11, 12 and Supplementary Table S15). In 
contrast, all the genes that show high expression correlation 
with FAM72 paralogs could be associated with the G2-/
M-phase (prophase to metaphase stages of the M-phase) 
and have been reported as prognostic markers in cancer or 
as being upregulated during oncogenesis. These include 
ASPM, BUB1, CENPE, CENPF, CEP55, KIF14, KIF23, 
NEK2, NUF2, and SGO1 [48, 49]. During mitosis, chro-
mosome segregation is a critical process regulated by the 

mitotic spindle, and the centrosome is the organelle con-
trolling mitotic spindle formation. Upregulation of mitosis-
specific cell cycle genes has been reported from cancer 
tissues. KIF14, ASPM, KIF23, BUB1, NEK2, and CEP55 
are involved either with spindle formation or with regula-
tion, while CENPE, CENPF, NUF2, and SGO1 are involved 
in the centromere-kinetochore complex. Co-expression 
of FAM72 with these genes strongly suggests functional 
FAM72 involvement either with the mitotic spindle or with 
the kinetochore-centromere complex. The aforementioned 
‘guilt-by-association’ (GBA) principle is attractive and 
has been used to characterize gene function in a variety of 
organisms [33]; however, assigning a biological cell func-
tion to FAM72 based on transcriptomic co-expression alone 
would be fraught with risk. Additional proteomic profiling, 
as described by Wang et al. [50], could be performed to 
corroborate co-expression-based gene function prediction. 
This will require comprehensive FAM72 proteomic data to 
construct a co-expression network. The transcriptomic and 
proteomic networks could then be compared to predict co-
expression-based gene function.

Conclusion

Our study highlights a novel FAM72 expression profile-
associated primary GBM-specific gene-mutation signature 
(SCN9A, MXRA5, ADAM29, KDR, LRP1B and PIK3C2G) 
predestinated as viable targets for therapeutics. It further 
indicates that an increase in mitotic FAM72 expression in 
cancer cells is triggered by upstream mutations in primary 
proto-oncogenes or tumor suppressor genes, such as EGFR, 
BRAF, RAS, or TP53, which leads to increased cellular 
proliferation. Silencing NSC-specific FAM72 could prove 
critical in preventing cancer cells from proliferating. It could 
therefore prove a highly promising therapeutic target for 
treatment of cancer, particularly outside the CNS, as knock-
out neural-specific FAM72 gene function may cause spindle 
assembly defects and mitotic catastrophe, followed by cell 
death in all non-neuronal cancer tissues.
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