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Abstract
Introduction  We sought to determine which therapeutically targetable immune checkpoints, costimulatory signals, and 
other tumor microenvironment (TME) factors are independently associated with immune cytolytic activity (CYT), a gene 
expression signature of activated effector T cells, in human glioblastoma (GBM).
Methods  GlioVis was accessed for RNA-seq data from The Cancer Genome Atlas (TCGA). For subjects with treatment-
naïve, primary GBM, we quantified mRNA expression of 28 therapeutically targetable TME factors. CYT (geometric mean 
of GZMA and PRF1 expression) was calculated for each tumor. Multiple linear regression was performed to determine the 
relationship between the dependent variable (CYT) and mRNA expression of each of the 28 factors. Variables associated with 
CYT in multivariate analysis were subsequently evaluated for this association in an independent cohort of newly diagnosed 
GBMs from the Chinese Glioma Cooperative Group (CGCG).
Results  109 TCGA tumors were analyzed. The final multiple linear regression model included the following variables, each 
positively associated with CYT except VEGF-A (negative association): CSF-1 (p = 0.003), CD137 (p = 0.042), VEGF-A 
(p < 0.001), CTLA4 (p = 0.028), CD40 (p = 0.023), GITR (p = 0.020), IL6 (p = 0.02), and OX40 (p < 0.001). In CGCG 
(n = 52), each of these variables remained significantly associated with CYT in univariate analysis except for VEGF-A. In 
multivariate analysis, only CTLA4 and CD40 remained statistically significant.
Conclusions  Using multivariate modeling of RNA-seq gene expression data, we identified therapeutically targetable TME 
factors that are independently associated with intratumoral cytolytic T-cell activity in human GBM. As a myriad of systemic 
immunotherapies are now available for investigation, our results could inform rational combinations for evaluation in GBM.
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Introduction

Immunotherapy, led by programmed cell death-1/pro-
grammed death-ligand 1 (PD-1/PD-L1) immune checkpoint 
blockade, has dramatically altered the landscape of cancer 
treatment in multiple tumor types [1]. However, despite 

promise in preclinical and early phase studies [2, 3], sin-
gle agent programmed death 1 (PD-1) inhibition is ineffec-
tive for recurrent GBM in the absence of a rare, markedly 
hypermutated tumor [4–6]. This is due, in part, to the rela-
tive paucity of intratumoral T cells in GBM compared to 
cancers with carcinogen-induced mutational signatures and 
high tumor mutational burden (TMB) [7–11]. Even in GBMs 
with higher than average TMB, there does not appear to be a 
resultant influx of CD8+ T cells or increase in PD-1/PD-L1 
expression [7]. Furthermore, approaches for increasing intra-
tumoral T cells in GBM, such as vaccines, oncolytic viruses, 
or chimeric antigen receptor (CAR) T cells, are hindered 
by a severely immunosuppressive tumor microenvironment 
[12–14]. An improved understanding of the factors that 
influence both the infiltration and killing activity of CD8+ 
T cells in GBM may allow for rational immunotherapeutic 
targeting in this disease.
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The intratumoral cytolytic T cell activity index [hence-
forth referred to as immune cytolytic activity (CYT)] 
is a validated gene expression signature of granzyme A 
(GZMA) and perforin-1 (PRF1) [10]. GZMA is a tryptase 
that induces caspase-independent programmed cell death, 
and PRF1 is a pore-forming enzyme that mediates entry of 
granzymes into target cells [15]. Both enzymes are produced 
by activated cytolytic CD8+ T cells and are upregulated 
during productive clinical responses to immune checkpoint 
inhibitors [16, 17]. Using in silico RNAseq analysis from 
previously untreated tumor samples, we aimed to determine 
which therapeutically targetable inhibitory and stimulatory 
immune microenvironment factors are associated with CYT 
in newly diagnosed, primary GBM. Because many of these 
factors are correlated with one another and may not truly be 
driving CYT, we used multiple linear regression modeling to 
determine those that are independently associated with CYT.

Methods

GBM samples and RNAseq

Using GlioVis (http://gliov​is.bioin​fo.cnio.es/), a web appli-
cation for data visualization and analysis to explore previ-
ously published brain tumor gene expression datasets [18], 
we downloaded clinical and RNAseq data from The Can-
cer Genome Atlas (TCGA) Project [19]. We included only 
patients with newly diagnosed, treatment-naïve, IDH-wild 
type GBM whose tumors had RNAseq expression data for 
our genes of interest. In addition, we downloaded clinical 
and RNAseq data for 52 patients with these same character-
istics from the Chinese Glioma Cooperative Group (CGCG) 
cohort [20]. RNAseq data is processed in GlioVis through 
normalization of count reads from the pre-processed data 
(sequence alignment and transcript abundance estimation), 
followed by addition of a 0.5 pseudocount (to avoid infinite 
value upon log transformation) and subsequent log2 trans-
formation. CYT for patients in the TCGA cohort was down-
loaded directly from the original Cell publication through 
PubMed Central (https​://www.ncbi.nlm.nih.gov/pmc/artic​
les/PMC48​56474​) [10], and CYT for patients in the CGCG 
cohort [20] was calculated as the geometric mean of GZMA 
and PRF1 mRNA expression according to the method of 
Rooney et al. [10].

We pre-specified 28 immune checkpoints, immune co-
stimulatory receptors, and other immunomodulatory factors 
for analysis, each of which is currently therapeutically targ-
etable with approved or investigational agents and hypoth-
esized to be associated with intratumoral T cell number and/
or effector function [21–24]. The 28 factors are displayed in 
Table 1 and categorized as an immune checkpoint, immune 
co-stimulatory receptor, or other immunomodulatory factor.

Statistical analysis

Patient and tumor characteristics were examined using 
descriptive statistics. The dependent variable CYT in 
the TCGA dataset was heavily right skewed (Fig. 1) and 
therefore log10-transformed for the linear regression 
analysis. In the TCGA cohort, simple linear regression 
was used to screen mRNA expression of each of the 28 
variables, as well as age, sex, O(6)-methylguanine-DNA 
methyltransferase (MGMT) promoter methylation status, 
TCGA molecular subtype (classical, proneural, mesen-
chymal, or neural) and TMB [calculated as the number 

Table 1   List of 28 therapeutically targetable immune checkpoints, 
immune co-stimulatory receptors, and other immunomodulatory 
cytokines and receptors evaluated for an association with immune 
cytolytic activity (CYT) in newly diagnosed, untreated glioblastoma 
(GBM) (alphabetical order)

Category
 Candidate variable

Immune checkpoints
 A2aR (ADORA2A)
 CD73 (NT5E)
 CEACAM1
 CTLA-4
 ICOS
 LAG3
 PDL1
 PDL2
 PVRIG
 TIGIT
 TIM3 (HAVCR2)

Immune co-stimulatory receptors
 CD40 (TNFRSF5)
 CD137 (TNFRSF9)
 GITR (TNFRSF18)
 OX40 (TNFRSF9)

Other immunomodulatory factors
 ARG1
 CSF-1
 GLUT1 (SLC2A1)
 IDO1
 IL-6
 IL10
 MCT1
 MCT2
 MTOR
 STAT3
 TDO
 TGFB1
 VEGF-A

http://gliovis.bioinfo.cnio.es/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856474
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856474
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of non-synonymous mutations per megabase (Mb)], for 
its association with log-transformed CYT. Each variable 
was also assessed visually for its association with CYT 
using scatterplots. Significance of each of the regression 
coefficients (i.e., p-value) was adjusted using the Benja-
mini–Hochberg false discovery rate (FDR) to account for 
multiple testing. All variables with a raw p-value smaller 
than the associated Benjamini–Hochberg critical value 
[critical value = (i/m)Q, where i = rank of raw p-value 
from smallest to largest, m = number of tests (28), and 
Q = false discovery rate (0.05)] were entered into a multi-
ple linear regression model. Correlation between the vari-
ables entered into the multiple linear regression model was 
examined to determine whether collinearity was a concern 
for the multivariate model; no pair of variables had a cor-
relation coefficient greater than 0.75. Backward selection 
was performed manually in the multivariate analysis with 
an exit criterion of p > 0.05. Once the final multivariate 
model was reached, we examined model diagnostics using 
residual plots versus predicted plots and quantile–quantile 
plots for the residuals. All model assumptions were met 
adequately. Six patients were identified as possible out-
liers based on Cook’s distance values greater than 0.04 
(4/n = 4/109). Results were not substantially different 
when these outliers were excluded, and results reported 
are therefore based on the full dataset. Adjusted R-squared 
was calculated for the final model. Next, each of the vari-
ables included in the final model derived from the TCGA 
cohort was assessed in univariate analysis in the CGCG 
cohort (n = 52) for its correlation with CYT (untrans-
formed due to normal distribution) using the Spearman 
correlation coefficient. In addition, the final multivariate 

model from the TCGA cohort was applied to the CGCG 
cohort.

Statistical tests were two-sided, with a P value of 0.05 or 
lower considered to indicate statistical significance. All sta-
tistical tests were performed with the use of Stata software, 
version 14 (StataCorp, College Station, TX).

Results

Patient characteristics

109 patients were included in the TCGA derivation cohort. 
Median age was 65 (range 24–89; IQR 55–73), and 72 (66%) 
were male. MGMT promoter methylation status was avail-
able for 83 patients; 49 (59%) were unmethylated, and 34 
(41%) were methylated. TCGA molecular subtype was avail-
able for 106 patients; 31 (29%) were classical, 31 (29%) mes-
enchymal, 21 (20%) neural, and 23 (22%) proneural. Median 
TMB was 1.4 mutations/Mb (range 0.1–3.8; IQR 1.1–1.6). 
Median CYT (log-average expression of GZMA and PRF1, 
transcripts per million) was 3.57 (range 0.08–18.5; IQR 
1.36–6.34; Fig. 1).

Fifty-two patients were included in the CGCG valida-
tion cohort. Median age was 54 (range 25–81; IQR 43–59), 
and 36 (70%) were male. Twenty-two (42%) were classical 
TCGA subtype, 17 (33%) mesenchymal, 5 (10%) neural, 
and 8 (15%) proneural. MGMT methylation status and TMB 
were not available. Median CYT was 5.7 (range 2.4–9.3; 
IQR 4.9–6.5).

TCGA cohort

The results of univariate linear regression analyses for each 
of the 28 immune microenvironment candidate variables, 
as well as associated p values and critical values according 
to the Benjamini Hochberg FDR, are displayed in Table 2. 
Sex (p = 0.63), age (p = 0.99), MGMT promoter methyla-
tion status (p = 0.56), TCGA molecular subtype (p = 0.34), 
and TMB (p = 0.30) were not associated with CYT. The 
final multivariate model is displayed in Table 3. Cytotoxic 
T-lymphocyte antigen-4 (CTLA-4), CD40, CD137, gluco-
corticoid-induced TNFR-related protein (GITR), OX40, 
colony-stimulating factor 1 (CSF1), interleukin-6 (IL6), 
and vascular endothelial growth factor A (VEGF-A) were 
statistically significantly and independently associated with 
log-transformed CYT in multivariate analysis (p < 0.05 for 
each variable, adjusted R2 = 0.65, F = 26.48 on 100 df). 
Scatter plots demonstrating the association between each of 
these variables and CYT (untransformed), accompanied by 
associated Spearman correlation coefficients, are displayed 
in Fig. 2a.

Fig. 1   Cytolytic activity (CYT), defined as the geometric mean of 
GZMA and PRF1 expression in transcripts per million (TPM), in The 
Cancer Genome Atlas (TCGA) cohort of previously untreated glio-
blastoma (GBM) specimens [isocitrate dehydrogenase (IDH) wild-
type only, N = 109]
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Independent CGCG cohort

Each of the immune checkpoints (CTLA-4), immune co-
stimulatory receptors (CD40, CD137, GITR, OX40), and 
other immunomodulatory cytokines (CSF1, IL-6, VEGF-
A) included in the final multivariate model from the TCGA 
cohort were evaluated in univariate analysis in the CGCG 
cohort for their relationship with CYT. Each of these factors 
was statistically significantly associated with CYT (untrans-
formed) in univariate analysis with the exception of VEGF-
A (Fig. 2b). When the final multivariate model derived 
from the TCGA cohort was applied to the CGCG cohort, 
the adjusted R2 was similar (0.63). However, only CTLA4 
(standardized beta coefficient = 0.41, p = 0.002) and CD40 
(standardized beta coefficient 0.36, p = 0.009) remained sta-
tistically significantly associated with CYT (p < 0.05). With 
the exception of IL-6, all other variables (CD137, GITR, 

OX40, CSF-1, and VEGF-A) maintained the same direction 
of association with CYT.

Discussion

Immune checkpoint inhibitors have demonstrated little effi-
cacy as monotherapy in GBM, and studies of other immuno-
therapeutic approaches, including oncolytic viral therapy and 
dendritic cell vaccination, have generally failed to produce 
rates of response or stable disease above 20% [4, 12, 13, 25, 
26]. Immunologically, GBM is characterized by a highly 
suppressive tumor microenvironment [12], and for most 
patients, there is scant intratumoral infiltration of effector 
T cells [27, 28]. Well-described barriers to infiltration and/
or activation of effector T cells in the GBM tumor microen-
vironment include immunosuppressive microglial cells and 

Table 2   Results of univariate 
linear regression for 
the association between 
28 molecules in the 
glioblastoma (GBM) immune 
microenvironment and 
intratumoral immune cytolytic 
activity (CYT) in The Cancer 
Genome Atlas (TCGA) 
cohort (bolded variables are 
statistically significant after 
controlling the false discovery 
rate using the Benjamini–
Hochberg method)

Variable Coefficient Standard error t value p value Benjamini–
Hochberg critical 
value

Immune checkpoints
 A2aR (ADORA2A) 0.11 0.07 1.7 0.10 0.038
 CD73 (NT5E) 0.05 0.05 1.2 0.25 0.043
 CEACAM1 0.04 0.03 1.6 0.12 0.039
 CTLA-4 0.16 0.03 6.0 < 0.001 0.007
 ICOS 0.12 0.02 5.1 < 0.001 0.014
 LAG3 0.07 0.04 1.9 0.065 0.036
 PDL1 0.11 0.03 4.3 < 0.001 0.027
 PDL2 0.15 0.03 5.1 < 0.001 0.016
 PVRIG − 0.03 0.04 – 0.7 0.47 0.048
 TIGIT 0.09 0.03 3.5 0.001 0.029
 TIM3 (HAVCR2) 0.24 0.04 6.5 < 0.001 0.002

Immune co-stimulatory receptors
 CD40 (TNFRSF5) 0.25 0.04 6.0 < 0.001 0.009
 CD137 (TNFRSF9) 0.16 0.02 6.5 < 0.001 0.004
 GITR (TNFRSF18) 0.15 0.02 5.9 < 0.001 0.012
 OX40 (TNFRSF9) 0.17 0.04 4.6 < 0.001 0.023

Other immunomodulatory factors
 ARG1 0.05 0.03 2.0 0.046 0.034
 CSF-1 0.19 0.04 4.4 < 0.001 0.025
 GLUT1 (SLC2A1) − 0.05 0.05 – 1.1 0.30 0.045
 IDO1 0.08 0.02 4.9 < 0.001 0.018
 IL-6 0.11 0.02 5.9 < 0.001 0.013
 IL10 0.10 0.02 4.6 < 0.001 0.021
 MCT1 0.11 0.09 1.3 0.21 0.041
 MCT2 0.02 0.03 0.6 0.55 0.050
 MTOR 0.08 0.09 0.9 0.38 0.046
 STAT3 0.23 0.10 2.3 0.025 0.032
 TDO 0.09 0.02 4.9 < 0.001 0.020
 TGFB1 0.31 0.05 6.1 < 0.001 0.005
 VEGF-A − 0.07 0.03 – 2.8 0.007 0.030
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tumor-associated (M2) macrophages [29, 30], upregulation 
of immune checkpoints on functionally exhausted cytotoxic 
T lymphocytes and other immune cells [31], the presence 
of regulatory T cells (Tregs) and myeloid-derived suppres-
sor cells (MDSCs) [32, 33], and increased expression and 
secretion of immune inhibitory molecules by tumor and 
other cells [2, 14]. With each of these immunosuppressive 
mechanisms involving modulation of different signaling 
pathways and gene expression levels, as well as the unprec-
edented number of targeted and immunomodulatory thera-
pies in development or already approved across oncology 
[34], prioritization of individual targets and combinations 
of targets for preclinical and clinical evaluation in GBM is 
a significant challenge.

In this study utilizing in silico RNAseq analysis in 
untreated, de novo (IDH-wild type) GBM specimens from 
the TCGA database, we identified a set of immune check-
points, immune co-stimulatory receptors, and other immu-
nomodulatory cytokines whose mRNA expression levels 

Table 3   Final multiple linear regression model for the association of 
intratumoral immune cytolytic activity (CYT) with factors present in 
the glioblastoma (GBM) immune microenvironment

Variable Standardized 
beta coefficient

Standard error t value p value

Immune checkpoints
 CTLA-4 0.15 0.02 2.2 0.028

Immune co-stimulatory receptors
 CD40 (TNFRSF5) 0.16 0.03 2.3 0.023
 CD137 

(TNFRSF9)
0.15 0.02 2.1 0.042

 GITR 
(TNFRSF18)

0.15 0.02 2.4 0.020

 OX40 (TNFRSF9) 0.27 0.03 4.3 < 0.001
Other immunomodulatory factors
 CSF-1 0.21 0.03 3.1 0.003
 IL-6 0.20 0.02 2.4 0.020
 VEGF-A − 0.32 0.02 − 4.6 < 0.001

Fig. 2   Scatterplots demonstrating a the relationship between the 
tumor immune microenvironment variables included in the final mul-
tivariate linear regression model and cytolytic activity (CYT) in the 

The Cancer Genome Atlas (TCGA) glioblastoma (GBM) cohort and 
b the relationship between these variables and CYT in the Chinese 
Glioma Cooperative Group (CGCG) validation cohort
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are independently associated with CYT, a validated gene 
expression signature of immune cytolytic activity [10]. In 
addition, all factors that were evaluated for their relation-
ship with CYT are currently therapeutically targetable by 
either approved or investigational systemic agents. Identifi-
cation of markers in the tumor cells and tumor microenvi-
ronment that are associated with higher CYT in GBM leads 
to two hypotheses that may have therapeutic implications 
for patients: (1) for certain markers, increased expression 
occurs as a compensatory response by the tumor to evade a 
cytolytic attack mounted by tumor-specific T cells; (2) for 
other markers, increased expression that had initially driven 
a cytolytic attack by tumor-specific T cells is now being 
overmatched by tumor-mediated immunosuppression. In 
the former scenario, therapeutic inhibition of these factors 
may result in increased T cell cytolytic activity. In the latter 
scenario, therapeutic agonism of these factors may result in 
increased T cell cytolytic activity [10]. However, because 
up- or down-regulation of one checkpoint or cytokine in the 
tumor immune microenvironment is typically accompanied 
by altered expression of many others, it is difficult to know 
which are pathways are truly driving or suppressing immune 
activation against the tumor (as opposed to being turned on 
or off as a “bystander” to another more important mechanis-
tic pathway) [24]. Through the use of multiple linear regres-
sion modeling, we were able to identify factors in the GBM 
immune microenvironment that are independently associated 
with CYT (i.e., factors that remained associated with CYT 
even after adjusting for the impact of other relevant immune 
checkpoints, co-stimulatory receptors, and cytokines). Fur-
ther studies will be needed to determine whether therapeu-
tic drug combinations to manipulate these factors will, in 
turn, directly impact intratumoral immune cytolytic activity 
and lead to an immune-mediated anti-tumor effect. Consist-
ent with other studies [7, 27, 35], we found no association 
between the non-synonymous TMB and the degree of intra-
tumoral immune cytolytic activity in GBM.

Each of the immune microenvironment factors that we 
identified as being independently associated with CYT have 
previously been shown to play a role in glioma-associated 
immune suppression or immune activation [36]. CTLA-
4, an immune checkpoint molecule, is expressed on both 
“exhausted” CD8+ T cells and regulatory T cells (Tregs) 
and reduces early stages of T-cell expansion, primarily in 
tumor draining lymph nodes [37]. Consistent with its clinical 
activity in other solid tumors, CTLA-4 blockade in preclini-
cal glioma models has shown efficacy only when used in 
combination with other immune checkpoint inhibitors [3, 
38]. Clinical data for CTLA-4 blockade in GBM is limited 
thus far to phase I data safety data [39]. CD40 is a cell-
surface member of the tumor necrosis factor (TNF) receptor 
superfamily that is most prominently expressed on dendritic 
cells, B cells, and myeloid cells and leads to dendritic cell 

activation, thus playing a critical role in regulating T cell 
priming in tumors [40]. In GBM, CD40/CD40L mRNA 
expression has been associated with improved survival 
[41], and antitumor effects have been demonstrated with an 
anti-CD40 agonistic monoclonal antibody in mouse glioma 
models [42]. CD137, GITR, and OX40 are also members 
of the TNF receptor superfamily, and each are immune co-
stimulatory receptors expressed on CD4+ and CD8+ T cells, 
as well as Tregs [43]. Preclinical models have demonstrated 
efficacy for agonist monoclonal antibodies against CD137 
[44], GITR [45], and OX40 [46] in murine glioma, and a 
clinical trial is currently underway for an anti-CD137 anti-
body in recurrent GBM (NCT02658981). Lastly, CSF-1 and 
IL-6 are cytokines whose predominant immunosuppressive 
role in GBM has recently been linked to promoting tumor-
associated macrophages and microglia [47, 48]. Despite evi-
dence of efficacy in preclinical glioma models [49], CSF1 
receptor inhibition has not demonstrated efficacy in human 
glioma to date [50]. Trials of anti-IL-6 monoclonal antibod-
ies have not yet commenced in GBM.

The primary limitation of our study is that it is currently 
unknown whether increased expression of GZMA and PRF1 
in tumor-infiltrating lymphocytes, which comprise the quan-
titative measure of immune cytolytic activity (CYT) used 
as the dependent variable in our study, is associated with 
clinical benefit from immunotherapy in GBM. This is con-
trast to multiple other solid tumors with higher TMB and 
likelihood of response to immunotherapy, where produc-
tive clinical responses to immune checkpoint inhibitors are 
correlated with dramatically upregulated transcript levels of 
GZMA and PRF [16, 17]. Thus, we cannot prove from our 
study that therapeutic manipulation of these factors would 
result in improved immune control of GBM. However, since 
increased T cell cytolytic activity is prerequisite to any effec-
tive anti-tumor immune response, our identification of fac-
tors that are associated with CYT can be used to stimulate 
hypotheses for rational immunotherapy combinations. Com-
binations of systemic therapies targeted against the markers 
we identified should be studied and proven efficacious in 
animal glioma models prior to being instituted in clinical 
trials for GBM.

Another limitation of this study was that our findings 
from the TCGA cohort could only be replicated in the 
CGCG cohort in univariate analysis (i.e., not all variables 
in the final multivariate model from the TCGA cohort 
maintained a statistically significant, independent associa-
tion with CYT when the model was applied to the CGCG). 
We suspect this is primarily due to the small sample size 
available for analysis in the CGCG cohort. In addition, our 
findings may not be generalizable to recurrent GBM (post-
radiation and temozolomide). Lastly, while we attempted to 
comprehensively evaluate as many immune microenviron-
ment markers as possible for their relationship with CYT, 
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there are likely other unidentified or understudied molecules 
that play important roles in determining T cell cytolytic 
activity in GBM. However, our list of 28 candidate vari-
ables was based on extensive literature review of relevant 
immune microenvironment factors [21–24] and was inten-
tionally limited to targets for which there are currently drugs 
in preclinical and/or clinical development.

In summary, through in silico analysis of RNASeq gene 
expression data, we demonstrated that increased expression 
of CTLA-4, CD40, CD137, GITR, OX40, CSF-1, and IL-6 
are independently associated with intratumoral immune 
cytolytic activity in newly diagnosed, previously untreated 
human GBM. CTLA-4 and CD40 were the only two mol-
ecules that remain independently associated with CYT in 
two separate datasets, implying a particularly strong rela-
tionship with T cell cytolytic activity in GBM. These results 
are hypothesis-generating and may inform rational choices 
of immunotherapeutic combinations for future evaluation 
in this disease. Additional studies are needed to determine 
whether therapeutic alteration of these targets (inhibi-
tion of CTLA-4, CSF-1 and IL-6 or stimulation of CD40, 
CD137, GITR, and OX40) alone or in combination with 
other immunotherapeutic strategies increases intratumoral 
cytolytic T-cell activity in GBM, and whether this translates 
into antitumor efficacy. Similarly, future studies are needed 
to determine whether CYT can be used as a predictive bio-
marker of response to immunotherapy in GBM. However, 
such studies would require large sample sizes of patients 
who have responded to immunotherapy, which are currently 
difficult to obtain in GBM.
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