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Abstract
The diagnosis of leptomeningeal metastases (LM) of solid tumors is complicated due to low sensitivities of both magnetic 
resonance imaging (MRI) and cytology. MRI has a sensitivity of 76% for the diagnosis of LM and cerebrospinal fluid (CSF) 
cytology has a sensitivity of 44–67% at first lumbar puncture which increases to 84–91% upon second CSF sampling. Epi-
thelial cell adhesion molecule (EpCAM) is expressed by solid tumors of epithelial origin like non-small-cell lung cancer, 
breast cancer or ovarium cancer. Recently, a CELLSEARCH® assay and flow cytometry laboratory techniques have been 
developed to detect circulating tumor cells (CTCs) of epithelial origin in CSF. These laboratory techniques are based on 
capture antibodies labelled with different fluorescent tags against EpCAM. In this review, we provide an overview of the 
available laboratory techniques and diagnostic accuracy for tumor cell detection in CSF. The reported sensitivities of the 
EpCAM-based CTC assays for the diagnosis of LM across the different studies are highly promising and vary between 76 
and 100%. An overview of the different EpCAM-based techniques for the enumeration of CTCs in the CSF is given and a 
comparison is made with CSF cytology for the diagnoses of LM from epithelial tumors.

Keywords  Cerebrospinal fluid · Epithelial cell adhesion molecule · Leptomeningeal metastases · CELLSEARCH® · Flow 
cytometry

Introduction

Two to eight percent of patients with solid tumors develop 
LM. Diagnosis of LM is currently based on clinical symp-
toms and typical contrast enhancement of the leptomeninges 
on MRI of brain and/or spine. However, MRI has a low sen-
sitivity (76%) and specificity (77%) for the diagnosis of LM 
[1]. When MRI results are inconclusive, a LP is performed 
to obtain CSF. Sensitivity of CSF cytology, however, is also 
low: 44–67% at first LP, increasing to 84–91% upon second 
sampling [2–10]. EpCAM is a cell–cell adhesion molecule 
and a mitogenic signal transducer after regulated intramem-
brane proteolysis [11, 12]. Solid tumors of epithelial origin 
like non-small-cell lung cancer, breast cancer or ovarium 
cancer express transmembrane glycoprotein EpCAM (also 
known as CD326) [13]. In blood donors with nonmalignant 
diseases the background of EpCAM + cells is extremely 
low with only 0.3% having ≥ 2  CTC per 7.5  mL [14]. 
EpCAM + CTCs in blood have been detected in patients with 
metastasized epithelial tumors, like ovarian cancer, breast 
cancer and colorectal cancer and prostate and have prognos-
tic value when CTC numbers are higher than 0.3–5 CTC/
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mL [15–18]. Therefore, multiple research groups started to 
investigate assays to detect and count EpCAM + CTCs in 
CSF in patients with already diagnosed LM or clinically sus-
pected LM. To improve CSF diagnostics, the enumeration of 
CTCs by flow cytometry and Veridex CELLSEARCH® has 
been introduced [4–6, 19, 20]. The CELLSEARCH® assay is 
an FDA-approved assay to detect and count CTC from solid 
tumors in blood [21, 22]. Currently, two major EpCAM-
based techniques have been studied: the CELLSEARCH® 
technology to detect CTCs in blood which has been adapted 
to detect CTCs in CSF and flow cytometry assays. In this 
review, an overview is given of the different assays and their 
performance in CSF for the enumeration of EpCAM + CTCs. 
The EpCAM-based techniques are compared with CSF 
cytology for the diagnosis of LM from epithelial tumors.

Methods

In June 2017, PubMed was searched for studies with the fol-
lowing terms “Cerebrospinal Fluid” [Mesh] and “Neoplastic 
Cells, Circulating“ [Mesh], CELLSEARCH and cerebrospi-
nal fluid or EpCAM and cerebrospinal fluid. The references 
of the selected articles were also reviewed for inclusion in 
this review. Articles in which non-EpCAM based assays 
where used for other tumor types such as melanoma or lym-
phoma were excluded. Reported CTC numbers in the vari-
ous articles were standardized to cells/mL, if possible.

Results

The initial article search resulted in 21, 6, and 25 hits, 
respectively. Eight articles were included for data extrac-
tion after reviewing of the abstracts. One additional article 
was included after reviewing the references of the selected 
articles.

CELLSEARCH technique

The CELLSEARCH® assay is an FDA-approved assay to 
detect CTC in blood [21, 22]. The CELLSEARCH® system 
consists of the CellTracks Autoprep, CellTracks Magnest 
and the CellTracks Analyzer II [23]. First, blood is drawn 
in the CellSave collection tube which preserves the sample 
up to 96 h. Then, the blood is gently mixed with a dedi-
cated dilution buffer provided in the CELLSEARCH® kit 
and centrifuged at 800×g at room temperature for 10 min 
[24]. Subsequently, the sample is transferred to the Cell-
Tracks Autoprep part of the CELLSEARCH® System. In the 
CellTracks Autoprep, the EpCAM + CTCs are immunomag-
netically enriched and the fluorescently labeled antibodies 

are added. Anti-EpCAM ferrofluid is added to the aspirated 
plasma/dilution buffer layer to select for cells of epithelial 
origin by immunomagnetically enrichment [25]. Captured 
cells are fixed and permeabilized with the CELLSEARCH® 
proprietary permeabilization reagents and subsequently 
stained with 4′6-diamidino-2-phenylindole, dihydrochlo-
ride (DAPI) for nuclear staining. Anti-CD45-allophycocyan 
(CD45-APC) was added to label leukocytes and distinguish 
them from tumor cells. Anti-cytokeratin (CK) 8, 18-Phyco-
erythrin (PE), and anti-cytokeratin 19 Phycoerythrin (CK-
PE) were added to stain the epithelial tumor cells. Next, 
cells are deposited in the cartridge that is positioned in the 
CellTracks Magnest. Thereafter, the CellTracks Analyzer II 
generates images of the cells using filters for DAPI, PE, and 
APC. Cells that are stained with both DAPI and PE are auto-
matically identified as CTCs and placed in an image gallery. 
(see for overview of the CellTracks Analyzer II; Fig. 1a). 
Finally, a reviewer observes the images and makes the final 
decision on the identification of CTCs, which are defined 
as nucleated DAPI + cells, lacking CD45 and express-
ing CK-PE. An example of gallery images of tumor cells 
detected by CELLSEARCH® in CSF (B1) and peripheral 
blood (B2) is given in Fig. 1b.

In the CELLSEARCH® assay plasma is aspirated based 
on the optical differences between plasma, buffy coat and 
erythrocytes. To use the CELLSEARCH® assay in CSF 
instead of blood, it is necessary to make some modifications 
to the original method. An overview of the CELLSEARCH® 
studies using CSF is given in Table 1. To calibrate the 
CELLSEARCH® system, the control mode is normally used 
[5]. In the control mode, a clear suspension of prestained 
fixed breast cancer cells is used and no separation line to 
aspirate the right fluid fraction is needed. Therefore, this 
mode can be used to aspirate the clear CSF automatically. 
Lee et al. used the control mode and Patel et al. spiked the 
CSF in blood for calibration of the CELLSEARCH® system 
[5, 20]. Le Rhun et al. and Tu et al. darkened the outside of 
the tube with a black felt-tip up to the fluid level to mimic 
the level of sedimented erythrocytes to allow for the selec-
tion of the clear CSF [4, 19]. The reported sensitivity and 
specificity for the diagnosis of LM of both types of modified 
CELLSEARCH® assays for CSF are shown in Table 2.

Flow cytometry

In fluorescence activated cell sorting systems (FACS) 
for CTCs enumeration of epithelial origin, different flu-
orescently labelled EpCAM antibodies are used to stain 
and count the cells. An overview of the FACS technol-
ogy is depicted in Fig. 2a Milojkovic Kerklaan et al. and 
Lee et al. used immunomagnetic enrichment with anti-
EpCAM MicroBeads prior to FACS analysis [5, 8]. To 
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Fig. 1   a Schematic representation of the CellTracks Analyzer II, used 
in the CellSearch® system [36]. Cells that have been enriched immu-
nomagnetically and fluorescently labelled in the CellTracks Autoprep 
machine are magnetically (N, S = magnet North and South) aligned 
to nickel (Ni) lines at the inner surface of the Magnest chamber. 
The light from a laser diode is focused onto these cells via a normal 
CD-player objective. The fluorescent light is collected via the same 
objective and separated through a combination of filters onto the pho-
todiode detectors (PD). Fluorescent images of the events of interest 
can be acquired by inserting a removable mirror and band pass fil-
ter. The fluorescent light captured by the CD objective is then focused 
onto the camera (CCD). The magnets and chamber (Magnest car-
tridge) are positioned on a computer-controlled stage and the cells 

cross the laser focus one after another when the stage is moved in 
the Y-direction. While scanning, a feedback system uses the Ni-lines 
to keep the laser focused on the aligned cells. b Gallery of images 
of tumor cells in CSF and peripheral blood using CELLSEARCH® 
technology [37]. Gallery of images of tumor cells in CSF (B1) and 
peripheral blood (B2) detected by CELLSEARCH® technology [4]. 
CTC are defined as ≥ 4 µm in diameter, nucleated DAPI+ (purple), 
CD45-, and CK-PE+ (green). In the CSF sample, CTCs were either 
found as isolated cells or in clusters. Their morphology was similar 
to the CTCs found in the peripheral blood but without any apoptotic 
features, which were present in some of the CTCs in blood samples 
(arrow, shrunken cell containing CK inclusion). Scale bar is 10 μm. 
CSF cerebrospinal fluid, CTC circulating tumor cell, CK cytokeratin
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distinguish between CTCs and leukocytes, anti-CD45-
fluorescein isothiocyanate (FITC) for leucocyte labeling 
was added. FACS plots of CSF obtained by this method 
are shown in Fig. 2b. In addition to these markers, Acosta 
et al. used anti-CD33 to improve differentiation between 
monocyte/macrophages/granulocytes (CD45− CD33+ 
CD326+) and epithelial cells (CD45− CD33− CD326−) 
[26]. Milojkovic Kerklaan et al. and Subirá et al. used 
Hoechst33258 and DRAQ5, respectively, for nuclear 
DNA-staining whereas Lee et al. did not use a DNA-dye 
[9, 10]. An overview of flow cytometry studies is given in 
Table 1. The reported sensitivity and specificity of these 
assays for the diagnosis of LM are shown in Table 2.

Discussion

The diagnosis of LM is hampered by the low sensitivities 
of its diagnostic tools: MRI of brain and/or spine and CSF 
cytology. Although CSF cytology still is the gold stand-
ard for LM with a reported sensitivity of 44–67% at the 
first CSF examination, LM can also be diagnosed by the 
combination of neurological symptoms compatible with 
LM and leptomeningeal contrast enhancement in patients 
with known (metastasized) tumors [2]. The low sensitiv-
ity of cytology could be attributed partially to the spill of 
tumor cells at cytospin preparation. Furthermore, limited 

Table 2   Overview CELLSEARCH® and flow cytometry studies in CSF with reported sensitivity and specificity versus cytology

C CELLSEARCH®, FC flow cytometry, 95% CI 95% confidence interval, MRI magnetic resonance imaging, LM leptomeningeal metastases, 
NA not available
a Number of samples instead of number of patients
b Study cohorts are overlapping

Study Assay N Patient population Sensitivity (95% 
CI)

Specificity (95% 
CI)

Sensitivity (95% 
CI) cytology

Specificity (95% CI) 
cytology

Tu et al. [4] C 18 MRI confirmed 
LM/lung cancer

77.8 (52.4–93.6) 100 (47.8–100) 44.4 (21.5–69.2) Not reported

Lee et al. [5] C 38 Confirmed LM/
suspected LM/
breast cancer

80.95 (58.1–94.4) 84.62 (54.5–97.6) 66.67 (43.04–
85.35)

Used as gold stand-
ard 100%

Nayak et al. [6] C 51 Clinical suspicion 
of LM/solid 
tumors (mainly 
NSCLC and 
breast cancer)

100 (78.1–100) 97.2 (85.4–99.9) 66.7 (38.3–88.1) Used as gold stand-
ard

Jiang et al. [7] C 21 NSCLC patients 
with suspected 
LM

95.2 (NA) 100 (NA) 57.1 (NA) Not reported

Acosta et al. [26] FC 6a Clinical suspicion 
of LM previous 
diagnosed carci-
noma

100% (NA) 100% (NA) Not reported Not reported

Milojkovic Kerk-
laan et al. [8]

FC 29 Clinical suspicion 
of LM but a nega-
tive or inconclu-
sive MRI, previ-
ously diagnosed 
carcinoma

100 (75–100) 100 (79–100) 61.5 (32–86) 100 (79–100)

Subirá et al.b [10] FC 144 Confirmed LM or 
clinically sus-
pected LM

79.8 (NA) 84 (NA) 50 (NA) 100 (NA)

Subirá et al.b [9] FC 78 Clinically suspected 
LM and previ-
ous diagnosis of 
epithelial-cell 
neoplasia

75.5 (63.5–87.6) 96.1 (88.8–100) 65.3 (52.0–78.6) 100 (100–100)
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sample volume, delayed sample processing and sample 
collection at a suboptimal site (LP when there are mainly 
intracranial LM) [27]. Leptomeningeal contrast enhance-
ment on MRI has a sensitivity of 76% for LM [1]. Cur-
rently, multiple techniques are used to detect and count 
EpCAM +  CTCs in CSF to improve the CSF diagnostics 
for LM in patients with epithelial tumors. The reported 
results of the EpCAM-based techniques in CSF are highly 
promising with a detection limit of 0.4 CTC/mL. However, 

these techniques are not yet fully ready for clinical imple-
mentation due to lack of assay standardization and proper 
multicenter validation studies with adequate control 
groups. These studies are required for each individual 
CTC assay before clinical implementation. Furthermore, 
patients groups that have been investigated so far were 
rather small ranging from 6 to 144 patients. Sensitivity 
of the EpCAM based techniques may be lower in larger 
patients studies suspected for LM as it is known that tumor 

Fig. 2   a Schematic representation of fluorescence activated cell sort-
ing (FACS). Cells in the sample are focused into a stream of single 
cells by hydrodynamic focusing with sheath fluid. A laser is focused 
on the middle of this stream. Forward scatter is measured in a straight 
line opposite the laser beam and is used to distinguish cells on the 
basis of size. Sideward scatter and fluorescence is measured perpen-
dicular to the laser beam and provide, respectively, information about 
internal complexity and amount of cell-bound fluorescently labelled 
antibody or dye. The signals from the photodiode detectors (PD) are 
processed by a computer using flow cytometry software. b Represent-
ative examples of epithelial cell adhesion molecule (EpCAM)-based 

flow cytometry plots of cerebrospinal fluid (CSF) from three individ-
ual patients. Circulating tumor cells (CTC) are defined as EpCAM+ 
and CD45− and will therefore be sorted to the CTC gate. b1: Non-
small cell lung cancer patient with LM with EpCAM-positive CTCs 
(162 CTCs/mL); CSF cytology was positive (not shown). b2: Breast 
cancer patient with LM with EpCAM-positive CTCs (3  CTCs/mL). 
CSF cytology in this patient was negative (not shown). b3: Breast 
cancer patient without LM. No EpCAM-positive CTCs in CSF. CSF 
cytology in this patient was also negative (not shown). FACS fluo-
rescence activated cell sorting systems, CTC circulating tumor cell, 
EpCAM epithelial cell adhesion molecule, LC leucocytes
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cells of epithelial origin can lose EpCAM expression due 
to epithelial to mesenchymal cell transition [28]. This may 
explain that patients with LM can have positive CSF cytol-
ogy but no detectable CTCs [19].

The FDA-approved CELLSEARCH®-assay was initially 
validated in blood in a prospective, double-blind, multi-
center clinical trial involving 177 metastatic breast cancer 
patients at 20 clinical centers [29]. The reported sensitivi-
ties of the EpCAM-based CTC assays for the diagnosis of 
LM across the different studies are highly promising and 
vary between 76 and 100%. However, none of the studied 
EpCAM assays for the enumeration of CTCs in CSF have 
yet been shown to be statistically significant better than 
CSF cytology [4–10, 19, 20, 26].

This can be attributed to the insufficient number of 
patients ultimately diagnosed with LM in the study 
cohorts. Furthermore, in order to establish the real value of 
the new techniques in CSF, standardization of the patient 
selection process is critical to ensure selection of patients 
with true diagnostic uncertainty of LM. A patient popula-
tion with a true diagnostic uncertainty with clinical suspi-
cion of LM was investigated in only two studies [6, 8]. All 
other studies that reported sensitivity for tumor cell detec-
tion in CSF also included patients with already proven LM 
based on MRI and/or CSF cytology [4, 5, 9, 10]. Future 
validation studies should be performed in properly defined 
study populations with a clinical suspicion on LM in pro-
spective, multicenter triple blind (clinician, lab technician 
and patient) studies. A possible risk in CSF analysis is the 
detection of CTCs in the CSF due to contamination with 
blood in a traumatic LP. When high numbers of CTCs per 
mL blood are present, contamination of 5 mL CSF with 
just a few µL of blood may raise CTC levels above the 
detection limit, which can possibly effect the specificity of 
the assay [14]. Therefore, it is recommended to determine 

CTC-numbers in blood simultaneously with CSF, which 
up till now only has been done in one study [8].

The question which technique, CELLSEARCH® or 
flow cytometry, is optimal to detect epithelial tumor cells 
in CSF is unresolved as comparable sensitivity and speci-
ficity rates can be gained with both methods (Table 2). 
No direct comparison with adequate power between both 
methods in patients with a clinical suspicion on LM has 
been done hitherto [5]. The CELLSEARCH® method 
requires specific reviewer training to minimalize inter-
reviewer discordant results [30]. Besides, a major limita-
tion of the CELLSEARCH® analysis is the requirement of 
CELLSEARCH® reagents, CELLSEARCH® laboratory 
equipment and central laboratories equipped with CellTracks 
Autoprep, the CellTracks Analyzer II and trained opera-
tors. These prerequisites may limit wide-spread applica-
tion’ [23]. Flow cytometry assays for CTCs utilize standard 
flow cytometry equipment, which makes these assays more 
widely applicable and can potentially shorten the time to 
LM diagnosis compared to the CELLSEARCH® analysis. 
Another important merit of flow cytometry is their reli-
ance on a predefined tumor cell gate, which allows fully 
automatic identification and enumeration of CTCs in CSF. 
From an analytical perspective it makes sense to perform a 
pre-enrichment step using magnetic cell sorting with fer-
rolabelled antibodies against EpCAM to lower the amount 
of cellular background events. This has been applied in the 
CELLSEARCH® assay and in some flow cytometry assays 
[5, 8]. An overview of the benefits and drawbacks of flow 
cytometry and CELLSEARCH assays is given in Table 3.

A critical review of the randomized trials in LM using 
intra-CSF therapy, of which five of them enrolled patients 
with solid tumors, revealed that all these studies have meth-
odological limitations with a lack of standardization for 
the evaluation of treatment response and long time-periods 
needed for accrual [31]. Also phase one clinical trials in 

Table 3   Benefits and drawbacks of different flow cytometry and CELLSEARCH assays

a Determined in blood
EpCAM epithelial cell adhesion molecule, PE phycoerythrin

Benefit Drawback

CELLSEARCH® - FDA approved in blood [21]
- Interlaboratory validated

- Subjective identification of CTCs results in inter reviewer discord-
ant results in 4–31% of six samples assessed by 14 institutes despite 
specific reviewer traininga [30]

- Less specific anti-cytokeratin-8, 18 and 19- PE staining
96 h sample stabilitya [21] High between-laboratory coefficient of 45–64%a [30]
Commercially available Dedicated CELLSEARCH® equipment needed

Flow-cytometry - Fully automatic cell counting eliminates 
interobserver variability

- Standard flow cytometry equipment can 
be used

- More specific EpCAM-PE staining

- Not standardized between laboratories
- Subirá et al. no immunomagnetic sample enrichment [24, 25]



9Journal of Neuro-Oncology (2018) 137:1–10	

1 3

patients with LM with targeted agents failed due to slow 
patient accrual [32, 33]. To improve the accrual rate of 
(early) LM patients and the reliability of response evalu-
ation in clinical trials, CTC assays in CSF are promising 
tools as tumor cells can be quantified at very low levels. As 
LM often has a devastating course with median reported 
survival between 2 and 5 months [34], it is important to 
include patients with a low CSF tumor burden. A validated 
and sensitive CTC assay in CSF that can diagnose patients 
at an early LM stage when CSF cytology is still negative, 
is crucial. This was demonstrated by Milojkovic-Kerklaan 
et al., who reported that the EpCAM-based flow cytometry 
assay in CSF brings higher sensitivity than CSF cytology for 
the diagnosis of LM, especially when CTC numbers in the 
CSF drop below 50 cells/mL [8]. The specificity of the dif-
ferent EpCAM assays varies between 84 and 100%. Future 
large scale study cohorts need to reveal the true sensitivity 
and specificity of CTC assays in CSF. It is of particular inter-
est to determine the optimal cut-off value for the number of 
CTCs per mL with an optimal sensitivity and specificity by 
using Receiver Operating Curves.

CSF cytology is a non-quantitative method with a low 
sensitivity, which renders the technique insufficient for 
monitoring of treatment response. A sensitive quantitative 
technique enables patient treatment response monitoring. 
A decrease in the CTC number would be indicative for a 
response to treatment. In several articles described in our 
review, sequential CSF samples from patients have been 
obtained for treatment monitoring using CTC enumera-
tion [4, 5, 19, 20]. Lee et al. showed that in three of seven 
patients who had been treated for LM, no CTCs were detect-
able after treatment. CSF clearance of CTCs was associated 
with the longest survival with an average of 2 years [5]. 
Although the number of studies performed so far are limited, 
CTC enumeration in CSF has the potential to be a sensitive, 
specific, and quantitative biomarker for evaluating treatment 
response in LM. The new CTC assays do not only have the 
potential to be more sensitive, specific and quantitative in the 
diagnosis and treatment of LM, they also provide the pos-
sibility of expanding our knowledge on the pathophysiology 
of LM. Single cell analysis and the use of other molecular 
markers in the identification of the cells in the CSF may help 
to understand why this highly malignant cells metastasize 
to the CSF. Recently, Cordone et al. showed the presence 
of syndecan-1 and MUC-1 overexpression and the putative 
stem cell markers CD15, CD24, CD44 and CD133 on CTCs 
in the CSF of breast cancer patients with LM [35].

In conclusion, we have shown in our review that the 
EpCAM-based assays are promising new techniques for epi-
thelial tumor cell detection in CSF, although assay standardi-
zation and proper multicenter validation studies are needed 
before clinical implementation. Furthermore, the possibility 
of detecting (and isolating) low numbers of tumor cells in 

the CSF using flow cytometry assays opens new ways to 
further understand why these malignant cells metastasize 
to the central nervous system.
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