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investigate the prognostic values of Ki-67 expression level 
and Ki-67-related radiological features. A group of nine 
radiological features were screened for prediction of Ki-67 
expression status; these achieved accuracies of 83.3% and 
88.6% (areas under the curves, 0.91 and 0.93) in the train-
ing and validation sets, respectively. Of these features, only 
spherical disproportion (SD) was found to be a prognos-
tic factor. Patients in the high SD group exhibited worse 
outcomes in the whole cohort (overall survival, p < 0.0001; 
progression-free survival, p < 0.0001). Ki-67 expression 
level and SD were independent prognostic factors in the 
multivariate Cox regression analysis. This study identified 
a radiomic signature for prediction of Ki-67 expression level 
as well as a prognostic radiological feature in patients with 
lower grade gliomas.

Keywords  Ki-67 · Lower grade gliomas · 
Radiogenomics · Prediction · Survival

Abstract  To investigate the radiomic features associated 
with Ki-67 expression in lower grade gliomas and assess the 
prognostic values of these features. Patients with lower grade 
gliomas (n = 117) were randomly assigned into the training 
(n = 78) and validation (n = 39) sets. A total of 431 radio-
logical features were extracted from each patient. Differen-
tial radiological features between the low and high Ki-67 
expression groups were screened by significance analysis 
of microarrays. Then, generalized linear analysis was per-
formed to select features that could predict the Ki-67 expres-
sion level. Predictive efficiencies were further evaluated in 
the validation set. Cox regression analysis was performed to 
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Introduction

Lower grade gliomas (World Health Organization [WHO] 
grade II and III gliomas [1]) are primary brain malignancies. 
These gliomas vary significantly in terms of clinical manifes-
tation—some lower grade gliomas rapidly progress to glio-
blastomas, while others are sensitive to treatment and remain 
stable for several years [2]. Molecular biomarkers are playing 
an increasing role in tumor diagnosis and guidance of custom-
ized treatment [3].

Proliferative index is a potent biomarker, which can quan-
titatively assess tumor growth and thus help stratify prognosis 
in patients with gliomas [4]. Ki-67, the most reliable marker 
of cell proliferation [5], recognizes a core antigen present in 
proliferating cells and absent in quiescent cells [6]. It has been 
employed in routine clinical investigations, with high Ki-67 
expression levels indicating worse prognosis in patients with 
gliomas [7]. The conventional method for detection of Ki-67 
expression status is immunohistochemistry [8], which is an 
invasive test involving craniotomy.

Radiogenomics, a novel high throughput method of link-
ing radiological features to genomic data, has the potential to 
non-invasively retrieve comprehensive intra-, inter-, and peri-
tumoral information [9]. Radiogenomics is more efficient and 
effective than conventional imaging analysis [10]. Several 
studies have focused on Ki-67-related radiological features 
in gliomas. Entropy, derived from apparent diffusion coeffi-
cient (ADC) maps of gliomas, was found to be associated with 
Ki-67 expression [11]. Additionally, in a small sample study 
(n = 21), Ki-67-related features were identified from among 
86 radiological features extracted from conventional struc-
tural magnetic resonance (MR) images of glioblastomas [12]. 
However, these studies evaluated relatively few radiological 
features and did not explore the prognostic significances of 
Ki-67-related features.

In our study, a number of radiological features were 
extracted from a large sample of patients, and a subset of fea-
tures associated with Ki-67 expression level was screened. The 
efficiency of prediction was evaluated in a validation set, and 
the prognostic values of Ki-67 expression status and Ki-67-re-
lated features were further investigated. Radiological features 
reflect the biological behavior of brain tumors. Ki-67 is one of 
a key molecular biomarker that influence the proliferation of 
gliomas. We here hypothesized that the association is poten-
tially exist of radiological features with Ki-67 expression level 
in gliomas.

Methods

Patients

This study included 117 patients with lower grade gliomas, 
who received treatment at Beijing Tiantan Hospital (Bei-
jing, China) between January 2006 and December 2008 and 
met the following criteria: (a) histopathologically confirmed 
primary WHO grade II/III gliomas; (b) preoperative T2 MR 
images available; (c) Ki-67 expression status available; and 
(d) clinical characteristics and survival data available (Sup-
plementary Fig. 1).

The patients were randomly assigned to the training 
(n = 78) and validation (n = 39) sets. The training set was 
used to establish a radiomic signature for prediction of Ki-67 
expression status, and the independent validation set was 
used to assess the predictive efficiency of the signature. 
Data for this study were retrieved from the Chinese Glioma 
Genome Atlas (CGGA) [13]. This study was approved by the 
institutional review board, and all patients was notified that 
their tumor samples would be used for academic investiga-
tions, and the informed consent was obtained.

MRI data acquisition and tumor segmentation

Preoperative clinical structural images of the majority of 
patients (n = 97) were acquired with a Magnetom Trio 
3T (Siemens Healthcare GmbH, Erlangen, Germany) 
MR scanner. The acquisition parameters for T2-weighted 
images were as follows: echo time, 110 ms; repetition time, 
5800 ms; flip angle, 150°; matrix, 384 × 300; and voxel size, 
0.6 × 0.6 × 5 mm3. Other images were acquired on a Mag-
netom Verio 3T (Siemens, Erlangen, Germany, n = 12) or 
HD 1.5T (GE Medical System, Waukesha, USA, n = 8) scan-
ner. Tumor volumes were segmented by two experienced 
neurosurgeons who were blinded to the clinical information 
of the patients using the MRIcron software (http://www.
mccauslandcenter.sc.edu/mricro). Abnormal hyperintense 
signals on the T2-weighted images were identified as tumor 
volumes, and the cerebrospinal fluid signals should not be 
involved in. A senior neuroradiologist subsequently reevalu-
ated the segmented lesions. In case of discrepancies >5% 
between the two neurosurgeons, the senior neuroradiologist 
made the final decision.

Textural features

In order to avoid of the bias from data heterogeneity, all MRI 
data collected in the current study were underwent imaging 
normalization (Z score transformation) before feature extrac-
tion with using an in-house MATLAB process. Quantitative 
radiological features were extracted as previously reported 
[14]. and detailed descriptions of each feature was listed in 
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the supplementary material of the previous study. A total 
of 431 radiological features were extracted, which could be 
divided into four groups. Features in group 1 (n = 14; first-
order statistics-derived features) quantitatively described 
the signal intensity distribution of the image, while those in 
group 2 (n = 8; shape- and size-based features) quantified the 
shape and size data of tumors. Features in group 3 (n = 33; 
textural features), calculated from gray-level co-occurrence 
and run-length matrix, reflected intratumoral heterogeneity. 
Group 4 included 376 features (wavelet features) that were 
derived from the features of groups 1 and 3 through wavelet 
transformation. These 431 features are listed in Supplemen-
tary Table 1.

Immunohistochemistry

The Ki-67 expression level in the current study was routinely 
evaluated by experienced pathologists using typical tumor 
samples collected from the glioma patients. Immunostain-
ing was performed in accordance with the manufacturer’s 
protocol. Briefly, formalin-fixed, paraffin-embedded tissue 
sections were cut into 4-µm sections, which were then dried, 
dewaxed in xylene, rinsed in graded ethanol, and rehydrated 
in double-distilled water. Immunostaining was performed 
with the Ki-67 protein antibody (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA), at a dilution of 1:100. Two patholo-
gists blinded to the clinical data scored the degree of stain-
ing. In this study, low Ki-67 expression level was defined 
as ≤10% positive staining, and high Ki-67 expression level 
was defined as >10% positive staining [15].

Texture‑based prediction of Ki‑67 expression

The pipeline in the radiomic analysis include imaging 
acquisition, tumor segmentation, feature extraction, fea-
ture selection and model construction. For the purpose of 
feature selection, we only screened significantly differen-
tial radiological features between the low and high Ki-67 
expression groups (false discovery rate [FDR] <0.05) using 
the significance analysis of microarrays (SAM) algorithm. 
In order to further develop a Ki-67-related radiological sig-
nature, a generalized linear model (Y = β0 + β1X1 + β2X2 + 
… + βnXn) was established using the MATLAB (2014a) 
software. In this model, Y represented the estimated value of 
Ki-67 expression status (low and high expression levels were 
defined as 0 and 1, respectively); β0 indicated the unknown 
constant; βi (i = 1, 2, …, n) represented the unknown coef-
ficients; and Xi indicated the values of radiological features. 
A cutoff value was chosen in order to classify the estimated 
values into the low and high Ki-67 expression groups. Sub-
sequently, a receiver operating characteristic (ROC) curve 
was delineated to evaluate the predictive efficiency, and the 
optimal cutoff value was determined when specificity and 

sensitivity were maximal. This process was repeated in the 
training set, with the feature bearing the lowest predictive 
value being removed each time. A Ki-67 predictive model 
was constructed when the number of features was the lowest, 
and the AUC was greater than 0.90. The Ki-67 predictive 
model constructed from the training set was further evalu-
ated in the validation set.

Statistical analysis

The SAM algorithm was applied using the “samr” package 
of the R software (version 3.3.2). Intergroup comparison 
of clinical characteristics was performed with T-statistics 
and Chi square test. Intergroup differences in survival were 
determined by log-rank and Kaplan–Meier analyses. Prog-
nostic values of Ki-67 and Ki-67-associated radiological 
features were determined by Cox regression analysis. A p 
value <0.05 was considered statistically significant.

Results

Patient demographic characteristics

Magnetic resonance images were acquired of 117 patients 
with primary lower grade gliomas, including 78 with grade 
II (male, 44; age range 18–62 years) and 39 with grade III 
(male, 25; age range 18–71 years) gliomas. The enhance-
ment exists in 80% grade III gliomas and no enhancement 
exists in grade II gliomas. These patients were allocated to 
the training (n = 78) and validation (n = 39) sets. There was 
no significant difference in age, sex, grade, Ki-67 expression 
level, or extent of resection between the two sets of patients 
(p > 0.05). Table 1 presents the detailed demographic and 
clinical characteristics of the patients.

Texture‑based prediction of Ki‑67 expression level

In the training set a total of 52 differential radiological fea-
tures (FDR <0.05) related to Ki-67 expression level were 
screened by SAM analysis, including first-order statistics-
derived features such as energy, maximum, minimum, and 
range; shape- and size-based features such as surface area, 
maximum 3D diameter, and spherical disproportion (SD); 
and textural features such as correlation and gray-level non-
uniformity (Supplementary Table 2).

From among these 52 differential radiological features, 
a subset of nine features—including six wavelet features 
derived from first-order statistics (energy, range, and maxi-
mum); 1 second-order feature (SD); and 2 wavelet features 
derived from textural features (correlation and high gray-
level emphasis)—was further selected by generalized lin-
ear analysis and evaluated in the training set for efficacy of 
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prediction of Ki-67 expression status. The distribution of 
estimated values could be significantly differentiated using 
these nine features (Fig. 1a). In ROC analysis, the area under 
the ROC curve (AUC) was 0.916, and at the optimal cutoff 
point (Y = 0.584), the sensitivity, specificity, and accuracy 
were 77.3, 91.2, and 83.3%, respectively (Fig. 1b).

In the validation set, the radiomic signature constituted by 
the nine features could also efficiently predict Ki-67 expres-
sion levels and significantly differentiate the distribution of 
estimated values of patients in the validation set (Fig. 1c). 
In ROC analysis, the AUC was 0.900, and the optimal cut-
off value (Y = 0.672) exhibited a sensitivity, specificity, and 
accuracy of 72.0, 92.9, and 88.6%, respectively (Fig. 1d).

Supplementary Fig. 2 presents two representative cases 
of patients with lower grade gliomas. The first case was that 
of a 25-year-old female patient with low Ki-67 expression, 
who was assigned to the low Ki-67 group on the basis of 
the estimated value being low (−0.11). Case 2 was that of a 

Table 1   Patient characteristics

GTR gross total resection
a Student’s t test
b Chi square test

Total (n = 117) Training 
(n = 78)

Valida-
tion 
(n = 39)

p value

Mean age 
(years)

39.7 38.9 41.2 0.254a

Sex, male/
female

69/48 46/32 23/16 1.000b

Grade II/III 78/39 51/27 27/12 0.677b

Low/High 
Ki-67

69/48 44/34 25/14 0.425b

Extent of 
resection 
(GTR/< 
GTR)

48/69 32/46 16/23 1.000b

Fig. 1   Estimated values and prediction efficiencies of the train-
ing and validation sets. a and c Distribution of estimated values of 
patients. Blue dots indicate the target values of patients. Green and 
red dots represent the estimated values of the low and high Ki-67 
expression groups, respectively. b and d Receiver operating charac-
teristic curves for prediction of Ki-67 expression level. In the train-

ing set, the area under the curve (AUC) was 0.916, and at the optimal 
cutoff point (Y = 0.584), the sensitivity, specificity, and accuracy were 
77.3, 91.2, and 83.3% respectively. In the validation set, the AUC was 
0.900, and the optimal cutoff value (Y = 0.672) exhibited a sensitivity, 
specificity, and accuracy of 70.2, 92.9, and 88.6% respectively
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39-year-old male patient with high Ki-67 expression, who 
was correctly assigned to the high Ki-67 group on the basis 
of the estimated value being high (0.96).

Relationship between Ki‑67 expression level 
and survival

As shown in Fig. 2a and b, progression-free (PFS) and 
overall survival (OS) durations were significantly longer 
in patients with low Ki-67 expression than in patients with 
high Ki-67 expression in the whole cohort (p = 0.0012 and 
0.0006, respectively).

Prognostic significance of Ki‑67‑related radiological 
features

In the training set, the results of univariate Cox regres-
sion analysis with the nine radiological features (Table 2) 
revealed only SD to be a significant prognostic factor 
(p = 0.024). All subjects were divided into the low and 
high SD groups on the basis of the median SD value, and 
the prognostic value of SD was further investigated in the 
whole cohort. Patients in the high SD group exhibited poor 
prognosis (OS, p < 0.0001; PFS, p < 0.0001; Fig. 2c and d), 
indicating that SD level can help significantly differentiate 
the prognosis in patients with lower grade gliomas.

Fig. 2   Kaplan–Meier survival curves of different Ki-67 expression 
groups and patients stratified based on spherical disproportion (SD). 
Both Ki-67 expression level and the feature SD are significantly prog-

nostic factors in progression-free survival (p = 0.0012 and p < 0.0001, 
respectively; a and c) and overall survival (p = 0.0006 and p < 0.0001, 
respectively; b and d) in the whole cohort
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Multivariate Cox regression

The results of multivariate Cox regression analysis of 
SD, age, sex, WHO grade, extent of resection, and Ki-67 
expression levels (Table 3) of the 117 patients revealed 
only SD and Ki-67 expression level to be independent 
prognostic factors of both PFS and OS (PFS: p = 0.017 
and 0.049, respectively; OS: p = 0.019 and 0.019, 
respectively).

Discussion

In this study, Ki-67-related radiological features were ana-
lyzed using data retrieved from a large-scale genetic and 
imaging database. A set of radiological signatures that could 
predict Ki-67 expression levels was constructed by extrac-
tion and screening of radiological features using statistical 
models. In addition, a prognostic radiological feature was 
identified, which could non-invasively provide crucial prog-
nostic information in patients with lower grade gliomas in 
the future.

Radiogenomics, an emerging field that focuses on the 
associations between imaging phenotypes and genomic fea-
tures [16], has extensive application [9]. A pioneer quanti-
tative radiogenomics work revealed a correlation between 
MRI features and cellular invasion in glioblastomas [17]. 
In patients with recurrent glioblastomas, radiological sig-
natures could be used as biomarkers to identify patients 
who could most benefit from antiangiogenic therapy [18]. 
Radiogenomics could also help predict treatment-related 
molecular markers in gliomas—such as mutations in the 
isocitrate dehydrogenase 1 gene [19] and methylation of the 
O6-methylguanine methyltransferase gene promoter [20]—
which could be beneficial for customizing therapeutics in the 
era of personalized medicine.

Several studies on gliomas have described the associa-
tions between radiological features and Ki-67 expression 
level. Evaluation by diffusion tensor imaging has revealed a 
strong correlation between ADC ratio and Ki-67 expression 
level [21]. The findings of MR spectroscopy have revealed 
choline/creatine and lactate/creatine ratios to be positively 
correlated with Ki-67 expression [22]. These findings sug-
gest that Ki-67 expression level is closely associated with 
MRI features. In the present study, nine radiological features 

Table 2   Magnetic resonance imaging texture features for predicting Ki-67 expression

HR hazard ratio, CI confidence interval

Features Description HR 95% CI p value

Correlation_2 One of the wavelet features derived from correlation. Correlation measures 
grayscale value dependence of voxels (the joint probability occurrence of 
specified pixel pairs)

1.328 0.033–53.034 0.880

Energy_6 (Group1 derived) Wavelet features derived from energy. Energy measures the sum of gray-
scale values

1.000 0.999–1.001 0.764
Energy_8 (Group1 derived) 1.000 0.999–1.001 0.798
High Gray-Level Run Emphasis_3 One of the wavelet features derived from high gray-level run emphasis. 

High gray-level run emphasis measures the distribution of high grayscale 
values. This feature is high for the image with high grayscale values

1.000 0.997–1.002 0.946

Maximum_1 One of the wavelet features derived from maximum. Maximum describes 
the maximum grayscale value

1.000 0.999–1.000 0.765

Range_1 Wavelet features derived from range. Range describes the range of the 
grayscale values

1.000 0.999–1.000 0.904
Range_5 1.000 1.000–1.001 0.311
Range_8 1.000 0.999–1.002 0.717
Spherical Disproportion Spherical disproportion measures how close the shape is to a sphere 3.467 1.180–10.191 0.024

Table 3   Factors associated with OS and PFS in multivariate Cox 
regression analysis

WHO World Health Organization

Variable HR 95% CI p value

Progression-free survival
 Age at diagnosis 1.015 0.986–1.044 0.320
 Sex 0.684 0.386–1.215 0.196
 WHO grade 1.408 0.728–2.725 0.309
 Extent of resection 0.947 0.530–1.691 0.854
 Ki-67 expression levels 1.970 1.000–3.879 0.049
 Spherical disproportion 2.768 1.195–6.411 0.017

Overall survival
 Age at diagnosis 1.005 0.977–1.035 0.724
 Sex 0.753 0.417–1.360 0.347
 Grade 1.334 0.686–2.595 0.396
 Extent of resection 0.891 0.494–1.605 0.700
 Ki-67 expression levels 2.368 1.152–4.867 0.019
 Spherical disproportion 2.620 1.174–5.847 0.019
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were screened by SAM and generalized linear analyses. The 
equation stemming from linear regression analysis could 
efficiently predict the Ki-67 expression status, which indi-
cated the ability of the selected quantitative radiological fea-
tures to reflect the Ki-67 expression status in lower grade 
gliomas.

The correlations between the selected quantitative radio-
logical features and Ki-67 expression status can be inter-
preted on the basis of the biological behavior of tumors. 
While “range” represents the range of voxel intensity values, 
“maximum” refers to the maximum voxel intensity in the 
region of interest [14]. In the present study, these two fea-
tures were significantly higher in the high Ki-67 expression 
group than in the low Ki-67 expression group. This might 
be attributable to the great variation in intratumoral gray 
values, because tumors with high Ki-67 expression levels 
corresponded with high proliferation rates and heterogeneity 
[11]. In addition, the index “high gray-level run emphasis” 
measures the distribution of high gray-level values, which 
are expected to be relatively high in regions of interest con-
taining substantial areas with high-gray values [23]. This 
index was also significantly higher in the high Ki-67 group 
than in the low Ki-67 group, indicating that tumors in the 
former group contained more regions with high gray-levels, 
which might also be attributable to high heterogeneity.

Studies on the prognostic value of Ki-67 expression level 
have been widely conducted in recent years. A meta-analysis 
of 51 studies, involving a total of 4307 patients, demon-
strated that Ki-67 overexpression was predictive of poor 
PFS and OS in patients with gliomas, regardless of region, 
cutoff value, pathological type, or statistical analysis method 
[24]. These findings are consistent with the present findings 
indicating that Ki-67 expression level to be an independent 
prognostic factor in patients with lower grade gliomas.

Additionally, as the sole prognostic feature in this signa-
ture, we further evaluated the index SD. Higher SD values 
are indicative of a greater deviation of the tumor from the 
spherical shape [14]. In the present study, the SD value of 
the high Ki-67 expression group was significantly higher 
than that of the low Ki-67 expression group, which suggests 
that high proliferative status is associated with greater irreg-
ularities in tumor shape in lower grade gliomas. Addition-
ally, in the subsequent survival analysis, SD values exhib-
ited a potent ability to predict the prognosis of the included 
patients. A previous study on glioblastomas reported that 
patients with spherical tumors exhibited better prognosis 
than those with irregularly shaped tumors [25]. The present 
study demonstrated a similar result in lower grade gliomas. 
Traditionally, clinical variables such as age, Karnofsky per-
formance score, and extent of resection have been found to 
be predictive to the prognosis of glioma patients [1, 2]. The 
inclusion of radiological features would provide additionally 
important information for a better prediction of the survival 

outcomes and potentially guide the patient-tailored treatment 
in clinical practice.

The SAM algorithm used in this study was originally 
designed to identify differential genes in bioinformatics, 
with the advantage of providing FDR for multiple test-
ing [26]. Generalized linear analysis is a liner regression 
method that can integrate various quantitative features into 
one analysis to produce a significantly reduced model with 
only a few significant predictors [27]. This method has been 
employed in studies of various medical fields. A previous 
study employed generalized linear analysis to integrate data 
from the infected host and the virus in order to identify pre-
dictors for liver damage [28]. In the present study, unimpor-
tant features were excluded one by one, which enabled us to 
achieve data dimensional reduction simply and efficiently. 
This is the first instance that generalized linear analysis has 
been used for processing radiological features for prediction 
of Ki-67 expression.

This study has a few limitations. Our study was designed 
on the basis of retrospectively collected single-institution 
data. The findings of this study need to be further evaluated 
in a prospective study with multicenter data. In addition, 
correlations between observed imaging features and bio-
logical function were not investigated in the current study. 
Lastly, as the most suitable and available sequence for the 
lesion evaluation of lower-grade gliomas, only T2-weighted 
MR images were used in the radiomic analysis. Multi-model 
imaging data (such as arterial spin-labeling, perfusion-
weighted imaging, etc.) need to be integrated into our model 
in order to optimize the performance of the present model.

In conclusion, this study has demonstrated a correlation 
between radiomic features and Ki-67 phenotype in lower 
grade gliomas. By means of SAM and generalized linear 
analyses, we have established a radiomic signature that can 
efficiently and non-invasively predict Ki-67 expression lev-
els. Furthermore, we found SD and Ki-67 expression level 
to be independent prognostic factors in patients with lower 
grade gliomas.

Funding  This study was supported by the Beijing Natural Science 
Foundation (No. 7174295) and the National Natural Science Founda-
tion of China (No. 81601452).
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