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promotor methylation results were confirmed using sam-
ples obtained during open craniotomy in all but one patient; 
here inconclusive MGMT promotor analysis was obtained 
in contrast to that which was obtained via stereotactic 
biopsy. Tumor samples acquired via stereotactic biopsy 
provide accurate information with regard to clinically rel-
evant molecular markers that have been shown to impact 
patient care decisions. The profile of markers analyzed 
in our cohort was nearly concordant between those sam-
ples obtained via stereotactic biopsy or open craniotomy 
thereby suggesting that clinical decisions may be based on 
the molecular profile of the tumor samples obtained via ste-
reotactic biopsy.
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Introduction

The prognosis of patients suffering from high-grade glio-
mas (HGGs) remains poor with a median survival of 
approximately 12 months in population based studies [1]. 
Malignant gliomas account for about 70% of all primary 
brain tumors in adult patients and recent work has centered 

Abstract The classification, treatment and prognosis of 
high-grade gliomas has been shown to correlate with the 
expression of molecular markers (e.g. MGMT promotor 
methylation and IDH1 mutations). Acquisition of tumor 
samples may be obtained via stereotactic biopsy or open 
craniotomy. Between the years 2009 and 2013, 22 patients 
initially diagnosed with HGGs via stereotactic biopsy, that 
ultimately underwent open craniotomy for resection of 
their tumor were prospectively included in an institutional 
glioma database. MGMT promotor analysis was performed 
using methylation-specific (MS)-PCR and IDH1R132H 
mutation analysis was performed using immunohistochem-
istry. Three patients (13.7%) exhibited IDH1R132H muta-
tions in samples obtained via stereotactic biopsy. Tissue 
derived from stereotaxic biopsy was demonstrated to have 
MGMT promotor methylation in ten patients (45.5%), while 
a non-methylated MGMT promotor was demonstrated in 
ten patients (45.5%); inconclusive results were obtained for 
the remaining two patients (9%) within our cohort. The ini-
tial histologic grading, IDH1R132H mutation and MGMT 
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on understanding molecular markers in an effort to person-
alize prognostics/treatment regimens for patients in need 
[2]. Such work has led to the identification of molecular 
markers capable of stratifying HGG patients into subgroups 
thereby influencing treatment decisions [3].

One of the major molecular markers developed in gli-
oma patients in recent years is the promoter methylation 
status of the gene encoding the enzyme O6-methyl-gua-
nine-DNA methyltransferase (MGMT); the methylation 
status of the promoter is predictive of a better response to 
temozolomide (TMZ) as an adjuvant post-operative chemo-
therapeutic agent [4]. In line with such findings, the NOA-
08 study demonstrated the value of treatment decisions 
based on MGMT promoter methylation status in elderly 
patients with GBM [5]. The clinical significance of such 
findings highlights the importance of MGMT promotor 
methylation assessment and currently, MGMT promotor 
methylation assessment is the most commonly performed 
molecular analysis in neuro-oncologic patients suffering 
from GBM [6].

A second major molecular marker employed in the diag-
nosis/management of both primary and secondary GBM 
patients is that of isocitrate dehydrogenase 1 (IDH1) muta-
tions [7, 8]. The most common IDH1 mutation is located 
on chromosome 2q33 at amino acid residue 132 and is 
predominately found in grade II/III gliomas as well as in 
secondary GBM (sGBM) (~85%) [9]. Accordingly, such 
findings imply, that the presence of an IDH1 mutation may 
be used as a diagnostic and/or prognostic marker indica-
tive of sGBM [10]. Recently, novel therapies targeting 
IDH1 mutations have shown promising results for tumor 
therapy [11, 12]; it is therefore tempting to speculate that 
IDH1R132 mutational status may result in clinically rel-
evant treatment decisions.

It is prudent to note that HGGs are frequently unresect-
able due in part to proximity with eloquent and/or critical 
areas within the brain. In these patients, stereotactic biop-
sies, for both histological confirmation of the clinico-radi-
ological diagnosis and/or evaluation of a tumors molecular 
marker profile are necessary. Accordingly, we performed 
histology, and assessed MGMT promotor methylation and 
IDH1R132 mutational status in specimens derived from 
patients who underwent stereotactic biopsies due to incon-
clusive preoperative imaging. Those patients that ultimately 
underwent open surgery for their now diagnosed glioma 
(i.e. via the stereotactic sample) were included within our 
analysis. Please note, biopsy was only performed because 
of inconclusive preoperative imaging (e.g. differential diag-
nosis of cerebral lymphoma having not been ruled out). 
Specimens derived from open craniotomy were ultimately 
compared to those that had been derived from stereotaxic 
biopsy in an effort to understand if results derived from 
both methods would in fact correlate.

Patients and methods

All patients diagnosed with intracranial gliomas are entered 
into a prospective data registry at the University of Frank-
furt. This study was approved by the University Hospital 
Institutional Review Board (reference # 04/09 SNO 01/08).

Attending neuropathologists participated in every ste-
reotactic biopsy in an effort to confirm the pathology of 
the lesion. Stereotactic trajectories were planned by the 
attending neurosurgeon who would perform the procedure. 
During planning the surgeon accounted for tumor location, 
contrast enhancement, peritumoral edema, central necrosis 
and patient history. The number of biopsies, trajectories 
and all results from histopathological and molecular analy-
ses were prospectively entered into our institutional glioma 
database.

Stereotactic planning was based on magnetic res-
onance imaging (MRI) acquired using a 3T scan-
ner (Siemens Medical Solutions, Erlangen, Germany) 
which employed 3D isovolumetric T2 weighted and T1 
weighted sequences with a spatial resolution of 1  mm3. 
T1 weighted magnetization-prepared rapid-acquisition 
gradient echo (MPRAGE) sequencing (TR = 1900  ms; 
TE = 2.7 ms; inversion time = 900 ms; flip angle = 9°; field 
of view = 256 × 256 mm2) was performed after intravenous 
injection of gadobutrol (1 mmol/ml) at a dose of 0.1 ml/kg 
body weight [13].

For all stereotactic biopsies, a stereotactic frame was 
utilized (Leksell Coordinate Frame G; Elekta Instruments, 
Stockholm, Sweden). On the day of surgery, cranial com-
puted tomography (CT) with 1.5  mm slice thickness was 
performed after fixation of the head to the frame. Auto-
mated image co-registration with the preoperative MRI and 
trajectory planning was performed using iPlan software 
(BrainLAB, Feldkirchen, Germany). After skin incision 
and burr hole trepanation, the biopsy needle was inserted 
into the border of the lesion. Serial biopsies were obtained 
using micro-forceps with a diameter of 1.4 mm. The proce-
dure was performed or supervised by one of three neuro-
surgeons with clinical expertise in stereotactic neurosurgi-
cal procedures.

Intraoperatively, single specimens (n = 1–3) were 
selected for smear preparation and stained with methyl-
ene blue in an effort to provide a preliminary intraopera-
tive neuropathological diagnosis and to confirm that an 
adequate sample was retrieved from the pathologic areas 
for subsequent diagnostic procedures [14]. The remaining 
samples were fixed in formalin for 24–48 h before further 
processing. All tumor specimens were evaluated using clas-
sic hematoxylin & eosin (HE) staining and were classified 
according to the World Health Organization (WHO) Clas-
sification of Tumors of the Central Nervous System (CNS) 
[15]. Immunohistochemical (IHC) analyses were employed 
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for the analysis of IDH1 (R132H). Microscopic evaluation 
of samples was performed using an Olympus BX50 light 
microscope (Olympus, Hamburg, Germany).

Two to 3 (median: 3) tumor specimens displaying the 
largest amount of vital tumor tissue (goal: >70% vital 
tumor tissue) were selected for methylation specific (MS)-
PCR. Briefly, four slides of 10 μm thickness cut from each 
paraffin block were deparaffinized using xylene and two 
times 96% ethanol. DNA isolation, PCR and gel electro-
phoresis were performed and interpreted as has been previ-
ously described [13].

During open craniotomy, random samples were allo-
cated for both MGMT promotor methylation assessment 
and IHC for IDH1 mutation analysis. In so doing we pro-
vide an unbiased approach for the assessment of molecular 
markers post-tumor resection.

Statistical analyses

Nominal factors (e.g. type of sample acquisition) related to 
histology/MS-PCR /IHC results were analyzed using a con-
tingency table followed by χ2 analysis. Cohen’s kappa was 
analyzed in order to assess correlation between specimens 
obtained via stereotactic biopsy or via open craniotomy. A 
significance level of α = 0.05 was selected for all tests and 
deemed to be significant. Statistical analyses were per-
formed using SPSS software (SAS, Cary, USA).

Results

We analyzed 22 consecutive patients from our institutional 
glioma database who initially underwent stereotactic biop-
sies and then went on to have an open resection procedure 
for their definitively diagnosed intracranial glioma (Fig. 1).

The median age of patients included within our study 
was 58 years (IQR 48–66 years). Thirteen patients were 
male (59.1%) and nine patients were female (40.9%). 
The Karnofsky Performance Score (KPS) of the patients 
included within our analyses is presented in Table  1 and 
ranged from 100 to 50. Three patients (13.6%) had a histo-
pathologic diagnosis of WHO°III lesions (anaplastic astro-
cytomas) and 19 patients (86.4%) had a histopathologic 
diagnosis of WHO°IV (GBM). Only one patient (4.5%) 
had a prior history of glioma, while 21 patients (95.5%) 
had been newly diagnosed with glioma. The median time 
interval between stereotactic biopsy and open craniotomy 
was 13 days (IQR 9–17 days). It is important to note that 
patients included within this study cohort underwent 
both procedures without receiving additional therapy (i.e. 
between the stereotactic biopsy and open craniotomy). 
The adjuvant therapeutic regimen after open craniotomy 
(45.6%) consisted of concomitant radio/chemotherapy 

and temozolomide for 12 patients; four patients (18.2%) 
were participants in experimental trials, whilst the remain-
ing eight patients (36.4%) had received other therapies 
(Table 1).

Within our cohort, MS-PCR of stereotactic biopsies 
yielded conclusive results in 20 (90.9%) of the included 
cases with both methylated and non-methylated MGMT 
promotors having been described (i.e. n = 10 patients for 
each of the aforementioned). Of note, inconclusive MGMT 
promoter methylation status was described in two (9.1%) of 
the patients analyzed (Fig. 2c).

We went on to examine if conclusive MGMT promoter 
methylation was associated with the pattern in which the 
stereotaxic samples were acquired. Hence, we dichoto-
mized trajectories into those which were directed at the 
lesion center (“centered”) and those which were tangen-
tially directed at the lesion border (“tangential”). No sig-
nificant differences were observed with regard to a higher 
level of conclusive results in MS-PCR obtained from 
patients biopsied via a tangential stereotactic trajectory 
(92.9% conclusive MS-PCR results) in comparison to those 
patients biopsied via centered trajectories (87.5% conclu-
sive MS-PCR results; Table 2).

No significant differences were observed in the total 
number of tumor specimens taken by the neurosur-
geon (p = 0.88) between the patients showing conclusive 
(median 17; IQR 14–19) and those showing inconclusive 
results (median 17; IQR 14–18) in MS-PCR for MGMT 
promoter methylation (data not shown). In line with such 
findings, the absolute number of paraffin-embedded sam-
ples (p = 0.9) taken for intraoperative neuropathological 
diagnosis was not associated with conclusiveness of results 
in MS-PCR.

Critically within our cohort, no complications with the 
exception of minor bleeding were observed. In 6 patients 
(27.3%) the attending surgeon documented an intraopera-
tive observation of blood effusion in the trajectory path. 
All six patients had minor postoperative signs of hemor-
rhage evident on postoperative CT scan; none of the other 
patients had postoperative imaging suggestive of bleeding. 
In total, two patients (9.1%) developed temporary neuro-
logical worsening, yet recovered over the observed clinical 
course (i.e. no patient suffered a permanent deficit).

In the samples acquired via stereotactic biopsy, conven-
tional histology revealed WHO°III tumors in 3 (12.4%) 
patients and WHO°IV GBM in 19 patients (87.6%). The 
same results were obtained, when using samples acquired 
via open craniotomy. Cohen’s kappa, when comparing both 
modes of sample acquisition, was 1 (p < 0.001; Fig. 2a).

Assessment of molecular markers consisted of IHC 
staining of IDH1R132H and MS-PCR for MGMT promotor 
analysis. Analysis of markers revealed IDH1R132H muta-
tion in three patients in those specimens obtained during 
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both stereotactic biopsy and open craniotomy. The remain-
ing patients were immunonegative using IHC and were 
considered wildtype with regard to IDH1 mutational status. 
Between both modes of sample acquisition, Cohen’s kappa 
was 1 (p < 0.001; Fig. 2b).

Assessment of MGMT promotor methylation using sam-
ples obtained via stereotactic biopsy resulted in conclusive 
results in 20 patients (90.9%). Of these, ten patients dis-
played a methylated MGMT promotor and ten patients an 
unmethylated MGMT promotor. In samples acquired via 

Fig. 1  Illustrative case. a Sagittal and axial MR imaging of an exem-
plary patient. Based on imaging, no definitive diagnosis of glioma 
was made. b Stereotactic biopsy and sample acquisition using a tra-
jectory tangential to the contrast enhancement was performed and a 

WHO °IV glioblastoma diagnosed. Open craniotomy and resection 
of the tumor was performed, followed by postoperative MRI demon-
strating complete resection of the tumor. WHO World health organi-
zation
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open craniotomy, 19 patients displayed conclusive results 
with one patient previously diagnosed with a methylated 
MGMT promotor (using a stereotaxic sample) now having 
been diagnosed with an inconclusive MGMT promotor sta-
tus. Cohen’s kappa, when comparing both modes of sample 
acquisition, was 0.92 (p < 0.001; Fig. 2c).

Discussion

Within the neurosurgical community consensus has 
emerged to suggest that HGG patients may in fact ben-
efit from the complete resection of their tumor followed by 
adjuvant radio and chemotherapy [16–20]. Recent literature 
has also come to suggest that an incomplete tumor resec-
tion may not superior to combined radio- and chemother-
apy alone [21].

Accordingly, in those patients, where diffuse infiltration 
of glioma cells into eloquent/critical areas of the CNS may 
hinder complete resection, tumor samples are nonetheless 
required for an accurate neuropathological diagnosis. Fur-
ther, the assessment of such molecular markers will also be 

required for the development of novel therapeutic regimens 
and/or evaluation of clinical prognosis.

In the literature, controversial data regarding the tumor 
homogeneity of both low-grade and high-grade glioma 

Table 1  Demographic and clinical patient data

Data are given as median. Values given in parentheses indicate range 
unless otherwise defined
KPS Karnofsky performance score, WHO World Health Organiza-
tion, IQR Interquartile range

All patients (n = 22)

Age (years) 58 (48–66)
Sex (n [%])
 Male 13 (59.1)
 Female 9 (40.9)

KPS (n [%])
 100 4 (18.2)
 90 2 (9.1)
 80 5 (22.7)
 70 6 (27.3)
 ≤60 5 (22.7)

Histological diagnosis (n [%])
 WHO III Anaplastic Astrocytoma 3 (13.6)
 WHO IV Glioblastoma 19 (86.4)

Diagnosis (n [%])
 De novo 21 (95.5)
 Recurrent glioma 1 (4.5)

Interval between biopsy and craniotomy (d 
[IQR])

13 (9–17)

Adjuvant therapy (n [%])
 Stupp 12 (45.6)
 Trial 4 (18.2)
 Other 8 (36.4)

10 9

10 10

2 3

Stereotac�c 
biopsy

Open 
craniotomy

MGMT

methylated

inconclusive

unmethylated

3 3

19 19

IDH1

Stereotac�c 
biopsy

Open 
craniotomy

wildtype

IDH1R muta�on

3 3

19 19

Histology

Stereotac�c 
biopsy

Open 
craniotomy

WHO° III

WHO° IV

A

B

C

κ=1; p<0.001

κ=1; p<0.001

κ=0.92; p<0.001

Fig. 2  Correlation between stereotactic and open surgical sample 
acquisition. a Correlation of conventional histopathologic grading, 
b MGMT promotor methylation analysis and c IDH1 mutation were 
assessed in samples acquired by both stereotactic biopsy and open 
craniotomy. A highly significant correlation was observed in all three 
parameters; MGMT O6-methylguanine-DNA methyl-transferase, 
IDH  Isocitrate dehydrogenase, WHO World health organization; data 
comparison was facilitated by employing Cohen’s κ. p values are 
indicated for the respective parameters
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exists; while the intratumoral homogeneity of low grade 
gliomas with respect to clinically relevant markers has been 
demonstrated [22], other groups have observed a high level 
of intratumoral heterogeneity, increasing the risk of under-
grading a low-grade glioma (e.g. when missing anaplastic 
foci in stereotactic sample acquisition) [23, 24]. Further, 
recent reports have highlighted intratumoral heterogene-
ity in HGGs with regard to certain molecular markers and 
this must also be factored into the reliability of stereotac-
tically centered diagnoses [25–29]. With regard to HGG, 
reports have also suggested that there may be intratumoral 
heterogeneity with regard to MGMT promotor methylation 
status [27, 30, 31]. Contrary to such reports, high intratu-
moral homogeneity for MGMT promotor methylation status 
has been described for high-grade anaplastic astrocytomas 
as well as for GBM [23, 24]. One possible explanation for 
such discordant findings might be the “contamination” with 
necrotic tissue sample as discussed by Grasbon-Frodl et al. 
[24].

However, the literature critically lacks analyses con-
firming the homogeneity of clinically relevant molecular 
markers in HGGs as well as concordance between samples 
obtained via stereotactic biopsy and open craniotomy.

Approaches centered around a stereotactic biopsy are 
much less invasive when compared to open craniotomy pro-
cedures [32] which might result in craniotomy-associated 
complications [33]. Further, the utilization of improved 
stereotactic techniques for sample acquisition has resulted 
in a diagnostic neuropathological accuracy of up to 100% 
[34–37]; such findings are in line with the work presented 
herein.

Beyond an accurate histopathological diagnosis, molec-
ular markers are required for GBM patient treatment strati-
fication [38]. While in the past, MGMT promoter methyla-
tion status was considered to be the most important marker, 

novel molecular markers such as IDH1 have emerged [6, 
10]. The prognostic value of IDH1 mutations in GBM 
has been demonstrated with the reduced survival of GBM 
patients who display a wild-type IDH1 protein [39]. Such 
diagnostic and therapeutic implications further strengthen 
the importance of proper tumor sampling by the neuro-
surgeon, who must provide adequate specimens for both 
microscopic and molecular pathologic diagnostics [11, 22].

Regarding histologic grading, all patients had the same 
diagnosis independent of the type of sample acquisition as 
evidenced by the Cohen’s kappa value of 1. Such a high 
level of concordance is superior to that which has been 
published, with correlations between samples acquired via 
stereotactic surgery and open craniotomy being as low as 
63% [40–43]. Such disparate findings may be due in part 
to the advancement of novel imaging tools/paradigms (e.g. 
CT, MRI and/or positron emission tomography [PET]), 
which are now routinely incorporated into the planning of 
stereotactic procedures [44–47].

When evaluating IDH1 mutational status, we were able 
to demonstrate a high degree of concordance in all patients 
included within our study when comparing both modes 
of sample acquisition (i.e. stereotactic biopsy versus open 
craniotomy) (Cohen’s κ = 1). As per the above-mentioned, 
IDH1 mutations occur early in the development of gliomas 
and are observed to be highly homogenous in low-grade 
gliomas [23, 48]. Such findings clearly imply that ste-
reotactic sample acquisition in low-grade glioma patients 
would be of value. Beyond low grade gliomas our data also 
suggest that stereotaxic sample acquisition may be reli-
ably performed if one seeks to determine the IDH1 status 
of HGGs. This is of particular interest, as recent literature 
has come to suggest the importance of IDH1 status in the 
accurate histopathological grading of HGGs in which lim-
ited tissue is available [49].

As described, our department relies on MS-PCR anal-
ysis for the assessment of MGMT promotor methylation 
status [13]. The results reported herein fall within the 
expected range of conclusive results previously published 
(i.e. 56–100% of all cases) [4, 5]. When we compared sam-
ples obtained via stereotactic biopsy or open craniotomy, 
only one patient displayed a difference in MS-PCR find-
ings. This patient displayed an inconclusive result when the 
open craniotomy sample was analyzed, while previously 
having had a conclusive (i.e. methylated) result in the sam-
ple acquired via stereotactic biopsy. Our findings result in 
an exceptionally high correlation as observed by a Cohen’s 
κ of 0.92. Again, these results may be explained when con-
sidering that advanced/novel imaging techniques have been 
employed and that biopsies were performed using non-
centered trajectories in the majority of cases. It is prudent 
to note that the cohort analyzed within this manuscript 
is comprised of newly diagnosed glioblastoma patients; 

Table 2  Surgery-related patient data

Values given in parentheses indicate range unless otherwise defined
FFPE Formalin fixed, paraffin embedded, MGMT O6-methylguanine-
DNA methyl-transferase

All patients (n = 22)

Trajectory orientation (n [%])
 Centered 14 (63.6%)
 Tangential 8 (36.4%)

Total samples/patient (n) 17 (12–21)
Number of FFPE samples/patient (n) 15 (10–20)
Number of biopsies for MGMT analysis/patient 

(n)
3 (1–3)

Complications (n [%])
 Postoperative radiological signs of bleed-

ing > 1 cm
3 (13.6%)

 Neurological worsening 2 (9.1%)
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however as has been previously demonstrated MGMT 
promotor methylation may change over time [50]. Hence, 
extrapolation of the results presented with regard to MGMT 
promoter methylation should take the aforementioned into 
consideration.

Conclusions

The value of stereotactic sample acquisition in neurosur-
gery has become widely acknowledged. In this study, we 
have demonstrated that the analysis of stereotactically 
obtained samples provides a high rate of conclusive MGMT 
promotor methylation and can be used to detect the pres-
ence of IDH1 mutations. Further, we have shown for the 
first time, that there is nearly complete concordance with 
results obtained from samples derived from open crani-
otomies with regard to histologic grade, MGMT promotor 
methylation and IDH1 mutational status in HGGs.

Accordingly, our data indicate that treatment decisions 
incorporating molecular markers in HGGs may in fact be 
based on stereotactic biopsies alone. Being that the morbid-
ity of a biopsy is less than that of a craniotomy, a stereotac-
tic biopsy may in fact be employed if molecular profiling 
is the main reason for surgery (e.g. in non-resectable, elo-
quent tumors).
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