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31 months. We hypothesized that these tumors had other, 
unfavorable genetic or epigenetic alterations that negated 
the favorable effect of the IDH mutation. We applied 
genome-wide profiling with a methylation array (Illumina 
Infinium Human Methylation 450k) to screen for genetic 
and epigenetic alterations in these tumors. As expected, the 
methylation profiles of all four tumors were found to match 
most closely with IDH-mutant astrocytomas. Compared 
with a control group of four indolent, age-similar WHO 
grade II–III astrocytomas, the tumors showed markedly 
increased levels of overall copy number changes, but no 
consistent specific genetic alterations were seen across all 
of the tumors. While most IDH-mutant WHO grade II–III 
astrocytomas are relatively indolent, a subset may rapidly 
recur and progress to glioblastoma. The precise underly-
ing cause of the increased aggressiveness in these glio-
mas remains unknown, although it may be associated with 
increased genomic instability.

Keywords Astrocytoma · Glioblastoma · Rapidly 
progressing astrocytoma · IDH mutation · Methylation 
array

Introduction

Diffuse gliomas are a relatively common primary brain 
tumor in adults with more than 20,000 cases occurring each 
year in the United States, approximately 70% of which are 
astrocytic neoplasms. The most malignant of these tumors, 
glioblastoma (GBM), represents grade IV out of IV in the 
World Health Organization (WHO) classification and car-
ries an especially dismal prognosis [1]. The recent update 
of the WHO classification uses both histological features 
and mutations in isocitrate dehydrogenase one and two 
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genes (IDH1/2) to classify grade II–IV gliomas [2]. IDH 
mutations occur in more than 70% of WHO II–III astro-
cytomas and secondary GBMs (those that evolved from 
lower-grade tumors). Patients with IDH-mutated tumors 
are on average 6 years younger than the patients with IDH-
wildtype tumors at the time of diagnosis [3–5]. Studies in 
the past decade have demonstrated that IDH mutations in 
grade II–III gliomas are a strong independent favorable 
prognostic marker in terms of mortality and time to pro-
gression to secondary GBM. Patients with IDH-mutant 
grade II astrocytomas have a mean total survival of 
151 months compared with a survival of 60 months among 
patients with IDH-wildtype grade II astrocytomas. The 
mean total survival among patients with IDH-mutant and 
IDH-wildtype grade III astrocytomas is 81 and 19 months, 
respectively [6].

We evaluated four patients with grade II–III astrocy-
tomas that rapidly progressed to glioblastoma despite the 
presence of the favorable prognostic factor IDH1 R132H 
mutation [2] in all four cases. A genome-wide analysis of 
the tumors revealed a general increase of overall copy num-
ber alterations compared with more classically behaving, 
indolent IDH-mutated astrocytomas, but no consistent spe-
cific genetic or epigenetic defects were identified. Several 
of the cases had isolated genetic alterations affecting the 
p53 system, however without the identification of a com-
mon amplification, deletion, or mutation the underlying 
cause of the unusual aggressiveness remains unclear.

Methods

Case selection and clinical review

We identified a total of four cases that had an initial diag-
nosis of WHO grade II or III astrocytoma, an IDH muta-
tion, and a subsequent diagnosis of glioblastoma within 
3 years of the original diagnosis between 2006 and 2016. 
All available clinical history, presentation, imaging results, 
laboratory results, operative reports, subsequent follow-
up encounters, and pathologic findings were reviewed 
(Table 1). The study was performed in accordance with a 
protocol approved by the Institutional Review Board of the 
University of Texas Southwestern Medical Center (IRB 
STU 022011-081).

Immunohistochemistry

Four micrometre thick sections of formalin-fixed, paraffin-
embedded tissue underwent heat-induced epitope retrieval 
using CC1 (Ventana, Tucson, AZ), a tris-based buffer at 
pH 8–8.5, followed by immunohistochemical staining with 
a monoclonal mouse antibody to Ki-67/MIB-1 (Dako, 

Carpinteria, CA) diluted 1:80, polyclonal rabbit antibody to 
ATRX (Sigma-Aldrich, St. Louis, MO) diluted 1:200, mon-
oclonal mouse antibody to p53 (Ventana) diluted 1:100, 
monoclonal mouse antibody to IDH1 R132H (Dianova, 
Hamburg, Germany) diluted 1:20, and polyclonal rabbit 
antibody to nestin (Sigma-Aldrich) diluted 1:20 on either 
the Ventana Benchmark XT or Ventana Benchmark Ultra 
automated stainer, using a Ventana UltraView Universal 
DAB Detection Kit.

IDH1 and IDH2 sequence analysis

Tumor DNA extracted from deparaffinized tissue sections 
(QIAamp DNA FFPE Tissue Kit, Qiagen) was tested using 
Sequenom iPLEX genotyping protocols. IDH1 exon 4 was 
PCR amplified and subsequently queried at codon 132 by 
single-base primer extension with products analyzed by 
MALDI-TOF mass spectrometry (Sequenom MassArray 
Analyzer 4). Assay primers were designed with MassAR-
RAY Assay Design Suite software. IDH1 genotyping deter-
mination on the tumor specimens were made by manual 
inspection.

DNA extraction

DNA was extracted from formalin-fixed paraffin-embed-
ded tissue (FFPE). Areas with the highest available tumor 
content were chosen. Extraction was carried out using the 
automated Maxwell system (Promega, Madison, WI).

Genome-wide methylation profiling

The Illumina Infinium Human Methylation 450 Bead-Chip 
(450k) array was used to determine the DNA methylation 
status of 482,421 CpG sites (Illumina, San Diego, CA) 
according to the manufacturer’s instructions. Methyla-
tion profiles were compared to a reference cohort of 2150 
cases from 77 tumor entities previously profiled and ana-
lyzed at German Cancer Research Center using a random 
forest algorithm and customized bioinformatics packages. 
In addition, the array data was used to calculate a low-res-
olution copy number profile (CNP) as previously described 
by others [7, 8] and us [9, 10]. Analysis was performed on 
specimens at the time of initial diagnosis.

Droplet digital PCR for MDM2 gene

Droplet digital PCR was performed on a Bio-Rad QX200 
(Bio-Rad, Hercules, CA). Primers were designed against 
regions of amplification for MDM2 and EGFR, which were 
not amplified by the array analysis. The RRP30 gene (dip-
loid) was used as control. Primers will be provided upon 
request. 20 ng of HindIII digested genomic DNA were used 
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per reaction, using the following protocol: 1 cycle at 95 °C 
for 5 min, 40 cycles at 95 °C for 15 s and 60 °C for 1 min, 1 
cycle at 4 °C for 5 min, and 1 cycle at 90 °C for 5 min all at 
a ramp rate of 2 °C/s on a Bio-Rad T100 thermal cycler was 
used for the PCR step. Droplets were quantified using the 
Bio-Rad Quantisoft software. A total of two replicates were 
used per sample.

Results

Unexpectedly aggressive clinical course in IDH-mutated 
grade II–III astrocytomas

We identified four grade II–III gliomas that progressed rap-
idly to glioblastoma in spite of harboring an IDH mutation. 
Two of the four patients included in this study were ini-
tially diagnosed with WHO grade II astrocytoma (Table 1; 
patients 1 and 4) and two patients were initially diagnosed 
with WHO grade III anaplastic astrocytoma (Table  1; 
patients 2 and 3). The radiologic features were consistent 
with the histologic diagnosis: the patients with WHO grade 
II tumors at initial diagnosis had non-enhancing masses 
(Fig.  1), whereas the WHO grade III tumors had patchy 
heterogeneous enhancement. The MIB-1 proliferation indi-
ces were also consistent with the histologic grade (Fig. 2). 
All four of these tumors were negative for the 1p/19q code-
letion but had IDH1 R132H mutations by immunohisto-
chemistry (Table  1; Fig.  2), yet all progressed rapidly to 
glioblastoma (Figs. 1, 2). The mean time of progression to 
secondary glioblastoma was 16 months (n = 4) with a mean 
total survival time of 31 months among the three patients 
who died during the follow-up (Table  1). Nestin expres-
sion, an independent adverse prognostic factor for survival 
in patients with grade II–III glioma [11], was high in all 
four cases by immunohistochemistry and computer-assisted 
image analysis.

Confirmation of IDH mutations by IDH1 and IDH2 
sequence analysis

The presence of the IDH1 R132H mutation, originally 
detected by immunohistochemistry (Fig.  2), was success-
fully confirmed in all four tumors by sequence analysis 
based on Sequenom mass spectrometry.

Methylation profiling

Genome-wide methylation profiles obtained using the 
Illumina Infinium Human Methylation 450k array were 
automatically compared to a reference cohort of 2150 
cases from 77 tumor entities using a DNA methylation-
based classification of human brain tumors (http://www.

molecularneuropathology.org). The methylation profiles 
of all four tumors were found to match most closely with 
IDH-mutated astrocytomas.

IDH-mutant astrocytomas with rapid progression show 
higher number of copy number changes

Low-grade IDH-mutated astrocytomas at the time of pres-
entation typically show relatively low numbers of copy 
number changes. These usually include isolated gains or 
losses of whole chromosomes or large portions of chro-
mosomal arms, while focal amplifications on oncogenes 
are infrequent (Supplemental Fig.  1) [8]. Overall, 450k 
methylation arrays suggested a larger degree of genomic 
instability in rapidly progressive IDH-mutant cases when 
compared with slow-growing IDH-mutant tumors. Copy 
number profiles of the initial resection specimens in these 
four patients revealed a higher level of overall copy num-
ber variation across the genome than would be expected in 
grade II–III IDH-mutant gliomas at the time of initial pres-
entation (Fig.  3). This included large chromosomal gains 
and losses as well as low-level focal copy number gains. 
These genomic findings are more consistent with GBMs 
as GBMs typically show more frequent gains and losses of 
whole chromosomes or chromosomal arms including chro-
mosome 7, 10, 13, or 19 and focal high level amplifications 
of tyrosine kinase genes including EGFR, MET and PDG-
FRA/KIT/VEGFR2 [12]. Patient 1 had low level MYC 
amplification and Patient 3 had a CDKN2A/B homozy-
gous deletion (Fig. 3). The array data suggested a low level 
mouse double minute 2 homolog (MDM2) copy number 
gain in all four tumors; however, the presence of three 
copies of the MDM2 gene was confirmed by an alternate 
method in only one tumor (patient 2; Table 1), where suffi-
cient DNA was available by Droplet Digital PCR (ddPCR). 
Immunohistochemistry for p53 showed a low labeling 
index (<10%) in all cases, which suggests that the p53 gene 
was wildtype in all cases at initial diagnosis [13], raising 
the possibility that an MDM2 copy number gain, if present, 
could act as an alternative mechanism of TP53 pathway 
aberration.

Other genetic abnormalities

The MGMT gene promoter was methylated in two of the 
tumors, unmethylated in one tumor, and equivocal in one 
tumor (Table  1). Immunohistochemistry for ATRX dem-
onstrated loss of nuclear positivity in tumor cells (indicat-
ing ATRX-mutant status) in patients 1–3 (Table  1). Both 
the initial resection and recurrence specimen in patient 4 
showed retained nuclear ATRX immunoreactivity (Fig. 2). 
In addition, case 4 developed a high nuclear p53 labeling 
index suggestive of a p53 mutation between the initial 

http://www.molecularneuropathology.org
http://www.molecularneuropathology.org
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diagnosis of grade II diffuse glioma and glioblastoma by 
IHC (Fig. 2).

Discussion

In this study, we performed a genome-wide analysis of 
gene copy number alterations and methylation profiles in a 
series of four IDH-mutated, clinically aggressive gliomas 

using the Illumina Infinium Human Methylation array 
(Fig. 3) [14, 15]. The 450k methylation array platform is a 
powerful way to classify brain tumors into clinically rele-
vant diagnostic subgroups. This approach is currently being 
integrated into standard practice for diagnostic and prog-
nostic purposes [14, 16–20].

We show that IDH-mutant tumors with rapid progres-
sion have a higher number of molecular abnormalities 
than would be expected in grade II–III, IDH-mutated 

Fig. 1  MRI images from 
patient 1 in this study demon-
strating the rapid progression of 
a right temporal lobe low-grade 
glioma (WHO II) to glioblas-
toma (WHO IV) in a relatively 
short period of time. T1 post-
contrast images (top two rows) 
show a non-enhancing mass 
at the time of initial resection 
with a subsequent nodularly 
enhancing mass at the time of 
recurrence (only 383 days later) 
adjacent to the resection cavity. 
T2 FLAIR images (row three) 
demonstrate increased FLAIR 
signal around the mass at both 
time points
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Fig. 2  Histologic changes 
associated with progression 
from an initial diagnosis of 
diffuse glioma (WHO II) to 
a recurrence as glioblastoma 
(WHO IV) in patient 4. The 
H&E images in the top rows 
show progression to a signifi-
cantly more cellular neoplasm 
with microvascular proliferation 
(inset). The initial tumor and 
recurrence both have the IDH1 
R132H mutation by immunohis-
tochemistry. The initial tumor 
is negative for ATRX and p53 
mutations. Immunolabeling 
indices of both p53 and MIB-1 
are elevated in the recurrent 
tumor. (Original magnification, 
×100; scale bar 50 μm.)
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Fig. 3  Copy number analy-
sis derived from the Illumina 
Infinium Human Methyla-
tion 450k array data, showing 
increased copy number changes 
across all chromosomes, with 
low-level amplifications of 
MYC in patient 1 and MDM2 in 
patient 2, as well as a homozy-
gous deletion of CDKN2A/B in 
patient 3
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gliomas (Fig.  3), however the overall methylation pat-
tern matched that expected of IDH-mutant astrocytomas. 
Wakimoto et  al. have demonstrated that tertiary onco-
genic genetic alterations, including PIK3CA mutation 
and amplification of the PDGFRA, MET, and N-MYC 
genes are commonly observed in IDH-mutant tumors 
at the time of malignant progression [21]. One out of 
four of these cases also showed an amplification of the 
MYC gene, an oncogene overexpressed in a number of 
cancers, perhaps most famously Burkitt’s lymphoma 
[22–24]. Located on chromosome 8, MYC acts down-
stream to help advance the cell cycle by interacting with 
cyclins and p21, promotes pluripotency, and helps main-
tain global euchromatin patterns, all mechanisms that 
have been previously implicated in the neoplastic pro-
cess when its expression is amplified [23, 25, 26]. Previ-
ous studies have demonstrated that the MYC locus was 
amplified in 22% of gliomas progressing to GBM [27]. 
Identifying MYC amplification in IDH-mutant gliomas 
is clinically important as it is associated with a more 
aggressive behavior and malignant transformation. Fur-
thermore, MYC activation has been recently shown as a 
potential therapeutic avenue in IDH-mutant gliomas by 
metabolic targeting [28].

In response to stress signals and DNA damage, p53 acts 
to arrest the cell cycle preventing progression from  G1- to 
S-phase, inducing apoptosis, or activating DNA repair 
mechanisms [29–31]. Mutations in TP53 occur in 25–30% 
of primary (de novo) GBMs and 60–70% of secondary 
GBMs. Nearly 90% of GBMs have an abnormality at some 
level of the p53 pathway, making it the most common 
genetic alteration seen in these tumors overall [32]. While 
these tumors were negative for nuclear accumulation of p53 
at the time of diagnosis, indicating a wildtype p53 status 
(Fig. 2), the copy number analysis showed genomic abnor-
malities that affect p53 signaling in these tumors, including 
alterations involving the MDM2 gene (Fig.  3). MDM2 is 
part of the core regulation of the p53 pathway [29], and its 
amplification is seen in a minority of lower-grade gliomas 
and secondary glioblastomas [33, 34], however when pre-
sent this amplification is an effective silencer of wild-type 
p53. Transcription of the MDM2 gene is upregulated by 
p53 protein and the MDM2 protein in turn inactivates p53, 
effectively tempering the effect of p53 [35]. The MDM2 
gene product acts as an E3 ubiquitin ligase, marking p53 
for proteasomal degradation and preventing it from halt-
ing the cell cycle prior to S-phase [36–40]. Overexpres-
sion of the MDM2 oncogene, which occurs in 7–52% of 
primary GBMs and 0–11% of secondary GBMs, silences 
wildtype p53 in gliomas [33, 34, 41]. These MDM2-ampli-
fied GBM patients have a worse progression-free and total 
survival and decreased response to therapy [41]. In the 
subset of tumors with MDM2 amplification, MDM2 could 

potentially be targeted with inhibitor compounds, allowing 
the otherwise normal p53 to function [42–46].

Additionally, one out of the four tumors in this study had 
a homozygous deletion of CDKN2A/B on chromosome 9 
(Fig.  3), seen in approximately 44% of low-grade tumors 
prior to progression to GBM [27] and up to 76% of second-
ary GBMs [47]. The CDKN2A gene produces 2 proteins 
by alternative splicing, including the tumor suppressor 
p14ARF, which binds MDM2, preventing it from inhibiting 
p53 function. Silencing CDKN2A either by methylation or 
by homozygous deletion results in the loss of this tumor 
suppressor function and a further push toward cell cycle 
dysregulation [47, 48].

All four tumors had high levels of the stem cell marker 
nestin as assessed by computer assisted image analysis. 
Nestin expression by both immunohistochemistry and 
mRNA levels has been demonstrated to correlate directly 
with tumor grade and inversely with overall survival in 
patients with WHO grade II–III astrocytomas [11].

Three of the four patients have died during the follow-
up, at 29–34 months after the initial diagnosis of a grade 
II–III, IDH-mutated tumor, which is much shorter total 
survival than the typical range of 81–151 months reported 
for grade II–III, IDH-mutated tumors in the literature [6]. 
Their rapid progression to GBM (mean time to progres-
sion = 16  months) is also very unusual considering their 
IDH-mutated status [2]. Taken together, these cases show 
that although these tumors had the IDH R132H mutation, 
this does not always guarantee a better prognostic outcome; 
some tumors with this mutation may in fact have extremely 
poor outcomes with rapid progression to GBM and very 
short mortality intervals. Although this cohort is small, our 
data suggest that an overall increase in both large and focal 
copy number alterations such as MDM2 and MYC gains 
and CDKN2A/B losses may be associated with a more 
aggressive behavior and shorter survival.

Conclusions

In the majority of cases, grade II–III gliomas harboring an 
IDH1 or IDH2 mutation have a much more favorable clini-
cal course than grade II–III gliomas lacking an IDH muta-
tion. Here we have identified a subset of tumors within this 
IDH-mutant glioma group with a significantly worse clini-
cal outcome than would be expected based the 2016 WHO 
classification system [2]. Genomic instability as evidenced 
by an increased number of large and focal copy number 
aberrations at the time of initial diagnosis seem to be asso-
ciated with a poor outcome in IDH-mutant gliomas.
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