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Historical overview

Radiation therapy following surgical resection of malignant 
gliomas has been a recommended component of the man-
agement strategy since the 1970s, as it improves overall 
survival compared to surgery alone. Walker et al. [1] rand-
omized patients with malignant glioma to one of four arms 
after surgery: chemotherapy (BCNU) alone, radiotherapy 
(RT) alone, RT + BCNU and best supportive care. Median 
overall survival was 14  weeks for best supportive care, 
18.5  weeks for BCNU, 35  weeks for RT and 34.5  weeks 
for RT + BCNU. All modalities using radiotherapy and/or 
chemotherapy provided statistically superior survival com-
pared to post-operative supportive care alone. A subsequent 
study [2] randomized 467 patients with malignant glioma 
to chemotherapy (CCNU) alone, RT alone, RT + CCNU or 
RT + BCNU. Median overall survival was 6 months in the 
CCNU alone arm, 9 months with XRT alone, 12.8 months 
with BCNU + XRT and 10.5 months with CCNU + XRT. A 
meta-analysis [3] of those and four other randomized tri-
als done revealed a significant survival advantage with the 
addition of radiotherapy to surgical resection compared to 
surgery alone (RR 0.81, 95% CI 0.74–0.88, p < 0.00001).

With an objective of identifying an optimal dose for 
treatment of malignant glioma, Walker et  al. [4] ana-
lyzed the results from a variety of prospective trials with 
doses ranging from 45 to 60. Median overall survival was 
3.1 months without RT, 4.2 months with less than 45 Gy, 
7 months for 50 Gy, 9 months for 55 Gy and 10.5 months 
for 60  Gy. Survival was significantly different between 
groups receiving 50 versus 60  Gy (p = 0.004). A study 

Abstract  Forty years ago, adjuvant treatment of patients 
with GBM using fractionated radiotherapy following sur-
gery was shown to substantially improve survival com-
pared to surgery alone. However, even with the addition 
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before the full benefits of improved local control can be 
realized.
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[5] of 474 patients with malignant glioma randomized to 
60 Gy whole brain in 30 fractions versus 45 Gy in 20 frac-
tions found that median survival was significantly higher in 
the 60 Gy group (12 versus 9 months, p = 0.007).

Trials to improve outcome by dose escalation using 
conventionally fractionated RT [6], hyperfractionation 
[7], brachytherapy [8, 9] or a stereotactic radiosurgical 
[10] boost have not revealed a benefit to increasing dose 
beyond 60  Gy. For example, in RTOG 9305 203 patients 
with glioblastoma were randomized to receive stereotac-
tic radiosurgery (SRS) versus no SRS prior to a course of 
conventional radiotherapy (a total of 60 Gy in 2 Gy daily 
fractions) and concurrent BCNU. No significant differences 
in survival (14.1 versus 13.7 months with or without SRS), 
neurocognition, quality of life or patterns of failure were 
found, with 90% of failures occurring at the treatment field 
in both arms. Thus, standard RT typically consists of thirty 
or thirty-three 2.0 or 1.8 Gy daily fractions to a total dose 
of 59.4 to 60 Gy delivered over a six to seven-week period.

In the following sections, we critically review the ration-
ale and issues surrounding the current treatment of malig-
nant gliomas with radiotherapy, in detail, particularly in 
regard to improving local control.

Defining the optimal target volume

While historical series involved irradiating the entire brain, 
due to the concern about the widespread and infiltrative 
distribution of tumor cells throughout this organ, various 
trials showed no significant differences in outcome when 
the volume of brain irradiated was reduced [11, 12]. Thus, 
in order to avoid toxicity associated with whole-brain irra-
diation to 60 Gy, the current standard practice is to irradiate 
only the part of the brain involved tumor, as confirmed by 
the recently published ASTRO guidelines [13].

Target delineation for postoperative radiotherapy 
requires semi-automatic fusion of post-operative MRI 
including post-contrast T1 and T2/FLAIR sequences to 
the radiotherapy-planning CT simulation scan. Acceptable 
approaches to treatment include either (1) 45 to 50 Gy to 
a clinical target including all surrounding postoperative 
T2/FLAIR signal plus a 1 to 2-cm margin along continu-
ous white matter tracks within the brain with a boost to a 
clinical target including the surgical cavity and residual 
enhancing tumor plus a 1 to 2 cm margin or (2) single tar-
get volume including surgical cavity and residual enhanc-
ing tumor with wide (2  cm) margins, without specifically 
targeting surrounding T2/FLAIR signal but with manual 
modification to include T2/FLAIR regions suspicious for 
disease [14]. To avoid unnecessary irradiation of the poste-
rior fossa or contralateral brain, both the tentorium and falx 
should be considered effective barriers to spread of glial 

tumors and clinical targets should be adjusted along known 
anatomic white matter tracks.

These approaches are derived from studies of patterns of 
progression. In one study conducted in the pre-temozolo-
mide era, 78% of GBM recurrences occurred within 2 cm 
of the margin of the initial tumor bed and 56% occurred 
within 1  cm or less of the volume outlined by CT scan 
[15]. A more contemporary series in which patients were 
treated in the era of concomitant and adjuvant temozolo-
mide demonstrated that 92% of first recurrences developed 
within the 95% isodose line when using radiotherapy tar-
get that accounted for margin around the T2/FLAIR signal 
[16]. Rationale to include surrounding T2/FLAIR signal 
in the modest-dose target volume is based on pathologic-
radiographic correlative analyses. A study correlating CT 
scans with pathologic sections of 15 brains of patients with 
GBM who received minimal or no radiotherapy observed 
that radiotherapeutic treatment of the contrast-enhancing 
area and all surrounding edema with a 3-cm margin around 
the edema would cover histologically identified tumor in 
all cases [17]. In a similar correlative study of 40 glioma 
patients who underwent CT- and MRI-guided stereotactic 
serial biopsies, isolated tumor cell infiltration was observed 
extending at least as far as T2 changes on MRI [18].

Emerging evidence suggests that irradiating the com-
partment of self-renewing and pluripotent neural stem cells 
located in the subventricular zone may be associated with 
improved therapeutic outcomes [19, 20]. However, these 
retrospective data have not been validated in the setting of a 
larger clinical trial and the purposeful irradiation of neural 
progenitor stem cells may adversely affect neurocognitive 
development [21].

Selecting the optimal total dose and fractionation

In the landmark Stupp trial [22] comparing outcome in 
patients with GBM treated with radiotherapy and temo-
zolomide versus radiotherapy alone, 60  Gy was given in 
two Gray fractions over 6  weeks. Median age of patients 
enrolled was 57, with 30% of patients age 61 to 70 years. 
Median overall survival was 10.9  months with radia-
tion alone versus 11.8  months with the addition of temo-
zolomide thus is still felt to be standard treatment for 
patients  <70 with good performance status. Similar 
improvements in survival were observed with the addition 
of BCNU-impregnated wafers to the resection cavity fol-
lowed by standard conventionally fractionated radiotherapy 
versus radiotherapy alone [23]. In elderly patients, treat-
ment at a slightly higher dose per day for a significantly 
shorter period (e.g., 40 Gy delivered over 3 weeks) yields 
reasonable outcome [24].



489J Neurooncol (2017) 134:487–493	

1 3

Hypofractionation has been studied in elderly and poor 
KPS patients with malignant gliomas who are expected to 
have more limited survival than those who are younger and 
more robust [24–30]. Hypofractionation would be expected 
to be associated with increased risk of long-term cogni-
tive toxicity but in select populations with limited survival, 
late toxicity is not a significant concern and instead mini-
mizing toxicity and disruption of quality of life may be a 
higher priority. In two recently completed trials, 40 Gy in 
15 fractions has been utilized with temozolomide in adults 
>65–70 years of age with favorable toxicity profile and 
median survival of 12–12.5  months [28, 31]. In patients 
whose functional status may preclude the addition of temo-
zolomide, radiation alone to 40  Gy in 15 fractions [29], 
34 Gy in 10 fractions [27] and 25 Gy in 5 fractions have 
also been evaluated [30]. Median survival in these reports 
ranges from 5.1 to 7.9 months and was not statistically dif-
ferent from conventional radiation (60 Gy in 10 fractions).

Because the pattern of failure is predominantly within 
the radiotherapy field, efforts to improve outcomes in 
expected longer-term survivors utilizing dose escalation 
have been evaluated [6, 7, 9, 10, 32, 33]. In the whole-
brain era, 70 Gy was not associated with improved survival 
compared to 60 Gy [6]. Radiosurgical [10] and interstitial 
radiotherapy [9] boosts were also evaluated prospectively 
prior to the incorporation of temozolomide as standard 
therapy and were not found to be beneficial. However, with 
the improvements in outcomes seen with the addition of 
temozolomide, which is believed to function as a radiosen-
sitizer, and the improvements in advanced imaging such as 
perfusion MRI and PET [34, 35], interest in dose escalation 
has been renewed. A dose escalation retrospective analysis 
[33] with TMZ using conventional MRI to determine target 
volumes did not show a survival benefit or a reduction of 
in-field failures, but did show tolerable doses up to 78 Gy 
with only 8% experiencing RTOG grade 3 acute CNS tox-
icity and 0% grade 4. Another recent study [32] showed 
that dose escalation to the MRI contrast-enhancing lesion 
of up to 75  Gy in 30 fractions decreased central recur-
rences, and did not cause radiation necrosis or an increase 
any late CNS toxicities. Confirmatory prospective clinical 
trials are currently underway (NRG-BN001). In addition, 
metabolic and biologic imaging is currently being evalu-
ated to guide high-dose radiotherapy in prospective trials 
(NCT01991977).

Opportunities for particle therapy in GBM

The potential clinical benefit of particle therapies in the 
management of patients with GBM lies in the physics. The 
physical properties of charge particle beams that are useful 
clinically are primarily twofold: (1) charge particle beams 

have finite path lengths and (2) charge particle beams con-
centrate the majority of their dose at the end of their path 
length with little “exit dose” beyond the finite path (Fig. 1). 
Thus, the majority of the dose in a given charge particle 
beam can be concentrated into the target more effectively 
than with photon beams, while at the same time reducing 
radiation exposure to the surrounding normal tissue, as 
shown in Fig. 2.

A few specific particles have been investigated over the 
last several decades for potential utility in the management 
of glioblastoma. The oldest of these is a complex system 
known as boron neutron capture therapy (BNCT). This 
technique utilizes nuclear capture and fission of boron-10 
that when irradiated with low energy neutrons will produce 
high linear energy transfer (LET) alpha particles and recoil-
ing lithium-7 nuclei. The methodology relies upon locali-
zation of boron into target tissues such that the cytotoxic 
product of high LET alpha particles and lithium nuclei 
will injure only those desired tumor cells [38]. Two signifi-
cant developments in BNCT have redefined the technique 

Fig. 1   Depth–dose distributions for a spread-out Bragg peak for 
a proton beam (SOBP, red), its constituent pristine Bragg peaks 
(blue), and a 10 MV photon beam (black). The SOBP dose distribu-
tion is created by adding the contributions of individually modulated 
pristine Bragg peaks. The penetration depth, or range, measured as 
the depth of the distal 90% of plateau dose, of the SOBP dose dis-
tribution is determined by the range of the most distal pristine peak 
(labeled ‘Pristine peak’). The modulation width, measured as the dis-
tance between the proximal and distal 90% of plateau dose values, of 
the SOBP dose distribution is controlled by varying the number and 
intensity of pristine Bragg peaks that are added, relative to the most 
distal pristine peak, to form the SOBP. The dashed lines (black) indi-
cate the clinical acceptable variation in the plateau dose of 72%. The 
dot–dashed lines (green) indicate the 90% dose and spatial, range and 
modulation width, intervals. The SOBP dose distribution of even a 
single field can provide complete target volume coverage in depth and 
lateral dimensions, in sharp contrast to a single photon dose distribu-
tion; only a composite set of photon fields can deliver a clinical target 
dose distribution. Note the absence of dose beyond the distal fall-off 
edge of the SOBP. Used with permission from reference [36]
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today. One key component is an improved boron com-
pound, boronphenylalanine (BPA), which is more selec-
tively taken up by GBM cells. The second significant 
evolution has been the transition from use of low energy 
thermal neutrons that typically required an intraoperative 
setting to achieve target tissue irradiation to current pref-
erence of epithermal neutrons which achieve deeper tissue 
penetration and thus enable irradiation of more deep seated 
tumors and in a nonoperative setting. In a contemporary 
cohort of 23 newly diagnosed glioblastoma patients treated 
with BNCT in Tokushima, Japan, median overall survival 
was 19.5 months with failure occurring distantly in 33% of 
patients [38]. Similar single institutional experiences with 
BNCT and comparable survival to that seen with stand-
ard photon radiation with temozolomide are reported from 
Sweden [39], Osaka, Japan [40] and Harvard/MIT [41]. 
Because of the complex resources and expertise to deliver 
BNCT, the experience remains limited but is steadily grow-
ing at multiple centers.

Protons are the particle associated with the greatest clin-
ical experience and development. Photon dose escalation in 
the management of GBM has established survival benefit 
up to 60  Gy, as described above. Further dose escalation 
with incorporation of proton therapy to 90  Gy (radiobio-
logic effect [RBE]) has improved survival with median 
survival of 20  months in a small prospective study of 23 
patients but at the cost of increased significant normal brain 
tissue toxicity [42]. Hyperfractionated combined photon 
and then proton irradiation to 96.6 Gy(RBE) in 20 patients 

achieved median survival of 21.6 months with acceptable 
toxicity [43] that with time clearly was associated with 
radiation necrosis but at least limited to the targeted region, 
leaving the unaffected part of the brain well preserved [44]. 
Current investigation underway through the NRG (BN001; 
ClinicalTrials.gov NCT02179086) incorporates far more 
advanced imaging, treatment planning and delivery system, 
including intensity modulated proton therapy with pencil 
beam scanning technique, with the hypothesis that bet-
ter tumor definition with far more conformal therapy may 
offer a survival benefit with a lower toxicity tradeoff. These 
newly diagnosis GBM patients are randomized between 
standard of care concurrent temozolomide with 60 Gy frac-
tionated photon radiation therapy versus a dose escalated 
arm that requires employment of proton therapy in centers 
with this resource. The dose escalated arm is 75 Gy(RBE) 
in 30 fractions to the regions at greatest risk using inten-
sity modulated delivery and 50  Gy(RBE) to a lower risk 
margin.

Carbon ions remains the least well developed particle 
therapy as it requires a yet more complex and costly par-
ticle accelerator with extremely limited experience with 
regards to treating glioblastoma. The relative biological 
effectiveness (RBE) is significantly higher than that of 
photons or protons (protons comparable but corrected for 
10% greater RBE) with in vitro studies suggesting a RBE 
of 2–5 compared to photons. The best published clinical 
experience of carbon ions in glioblastoma patients comes 
from Chiba, Japan that included 32 glioblastoma patients 
treated with 50  Gy by photons at standard fractionation, 
followed by a carbon ion boost of 5 dose levels delivered 
over 8 fractions, ranging between 16.8 and 24.8 Gy(RBE) 
[45]. Median survival was 17 months with improved PFS 
associated with higher doses. Concurrent chemotherapy 
with nimustine hydrochloride was given. The current most 
notable prospective investigation is the CLEOPATRA trial 
(ClinicalTrials.gov NCT01165671) conducted in Heidel-
berg, Germany, a phase 2 study of newly diagnosed glio-
blastoma patients treated with concurrent temozolomide 
with photons to 50 Gy and then randomized to either a pro-
ton boost of 10 Gy(RBE) in 5 fractions or carbon ion boost 
of 18 Gy(RBE) in 6 fractions.

Understanding the limitations of and recognizing 
the opportunities for radiation therapy 
in the treatment of gliomas

Radiation therapy provides a measurable but limited ben-
efit in the treatment of GBM. To date, attempts at dose 
escalation with photon- and particle-based radiotherapy 
have shown minimal, if any, improvement in survival. It is 
reasonable to ask if there is any justification to expending 

Fig. 2   Radiation dose distributions for proton therapy versus pho-
ton therapy for a glioma of the left temporal lobe. While both plans 
deliver essentially equivalent coverage of the tumor, the proton-based 
plan yields much lower integral radiation dose to the normal brain. 
Used with permission from reference [37]
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further effort on refining fields, defining targets and 
increasing dose. The answer is “no”... based on the current 
standard of care utilizing surgery, conventional radiother-
apy and temozolomide.

However, consider the notional benefit of a local ther-
apy, such as radiotherapy, on survival as a function of the 
efficacy of systemic treatment [46], as shown in Fig.  3a. 
Without an effective systemic therapy, radiotherapy may 
offer a modest, albeit limited benefit, since most patients 
will die from progression throughout the brain. As the abil-
ity to control systemic disease improves, the net benefit 
of radiotherapy increases, as the control of disease locally 
would improve progression and overall survival. However, 

with improved efficacy of the systemic treatment, control 
of local and global disease improves to the extent that the 
benefit imparted by radiotherapy declines. At the desired 
extreme, if systemic therapy is able to affect a cure, radio-
therapy would offer no benefit and the side effects of treat-
ment would result in an adverse outcome versus systemic 
therapy alone. A therapy that permits dose escalation while 
decreasing normal tissue complications could significantly 
shift this curve upward (Fig. 3b).

Future efforts to improve the therapeutic ratio with 
biology-guided target volumes, targeted radiotherapy, par-
ticle therapy, and radiosensitization should continue to help 
move the curve upward and the field forward until, hope-
fully, a systemic cure is found. While a detailed discussion 
of combined modality approaches is beyond the scope of 
this review, a variety of radiosensitization strategies have 
been and are being evaluated to enhance the efficacy of 
radiotherapy [47]. Furthermore, when used in combination 
with a more effective global brain treatment, a stereotac-
tic radiosurgery boost could offer better local control that 
translates into improved outcome not observed in conven-
tional treatment [10]. Developing more efficacious sys-
temic treatments, including immunotherapy [48], alternat-
ing electric fields [49], disruption of tumor cell networks 
[50] and other approaches, as discussed elsewhere in this 
issue, will be key to deriving the maximum benefit from 
improved local therapies.
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