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To quantify the intra-rater variability, we used the Jaccard 
coefficient comparing both two (J2) and three (J3) segmen-
tations as well as the Hausdorff Distance (HD). The vari-
ability measured with J2 improved significantly between 
the two last segmentations compared to the two first, going 
from 0.87 to 0.90 (p = 0.04). Between the last two segmen-
tations, larger tumors showed a tendency towards smaller 
relative volume difference (p = 0.07), while tumors with 
well-defined borders had significantly less variability meas-
ured with both J2 (p = 0.04) and HD (p < 0.01). We found 
no significant relationship between variability and histolog-
ical sub-types or Apparent Diffusion Coefficients (ADC). 
We found that the intra-rater variability can be considerable 
in serial LGG-segmentation, but the variability seems to 
decrease with experience and higher grade of border con-
spicuity. Our findings highlight that some criteria defining 
tumor borders and progression in 3D volumetric segmenta-
tion is needed, if moving from 2D to 3D assessment of size 
and growth of LGGs.

Keywords  Glioma · Segmentation · Magnetic resonance 
imaging · Intra-rater variability

Introduction

Diffuse low-grade gliomas (LGGs) are World Health 
Organization (WHO) grade II tumors with an infiltrative 
growth pattern and constitute 10–15% of all primary brain 
tumors in adults [1–4]. They are initially slow growing 
and predominantly affect otherwise healthy young adults. 
Eventually, a malignant transformation into higher grade 
gliomas will occur. In recent years, a survival benefit from 
earlier surgical and oncological treatment in the low-grade 

Abstract  Assessment of size and growth are key radio-
logical factors in low-grade gliomas (LGGs), both for prog-
nostication and treatment evaluation, but the reliability of 
LGG-segmentation is scarcely studied. With a diffuse and 
invasive growth pattern, usually without contrast enhance-
ment, these tumors can be difficult to delineate. The aim of 
this study was to investigate the intra-observer variability 
in LGG-segmentation for a radiologist without prior seg-
mentation experience. Pre-operative 3D FLAIR images of 
23 LGGs were segmented three times in the software 3D 
Slicer. Tumor volumes were calculated, together with the 
absolute and relative difference between the segmentations. 

 *	 Hans Kristian Bø 
	 hans.kr.b@gmail.com

1	 Department of Radiology and Nuclear Medicine, St. 
Olavs University Hospital, P.O. Box 3250, Sluppen, 
7006 Trondheim, Norway

2	 Department of Circulation and Medical Imaging, Faculty 
of Medicine, NTNU, Norwegian University of Science 
and Technology, Trondheim, Norway

3	 Department of Neurosurgery, St. Olavs University Hospital, 
Trondheim, Norway

4	 Department of Neuroscience, Faculty of Medicine, 
NTNU, Norwegian University of Science and Technology, 
Trondheim, Norway

5	 National Competence Centre for Ultrasound and Image 
Guided Therapy, St. Olavs University Hospital, Trondheim, 
Norway

6	 Department of Neurosurgery, Sahlgrenska University 
Hospital, Gothenburg, Sweden

7	 Institute of Neuroscience and Physiology, Sahlgrenska 
Academy, Gothenburg, Sweden

8	 SINTEF, Technology and Society, Department of Medical 
Technology, Trondheim, Norway

http://crossmark.crossref.org/dialog/?doi=10.1007/s11060-016-2312-9&domain=pdf


394	 J Neurooncol (2017) 131:393–402

1 3

stage of the disease has been demonstrated, compared to a 
wait-and-see approach [2, 5, 6].

It is known that tumor size at diagnosis, extent of surgi-
cal resection and volume of the residual tumor are strong 
prognostic factors [7–17]. Several studies have also shown 
that the growth rate of the tumor is associated with risk of 
malignant transformation and overall prognosis [7, 18–21]. 
After first-line therapy, a significant re-growth seen from 
repeated Magnetic Resonance Imaging (MRI) examina-
tions during follow-up often forms the basis for clinical 
decision making concerning reoperations or adjuvant treat-
ment. Thus, size and growth rate are key radiological fac-
tors in LGG care, both for prognostication and for clinical 
decision making. Due to the infiltrative growth pattern and 
often subtle changes between MRI assessments, volumetric 
assessment is supposed to be the most sensitive method [7, 
22, 23].

Manual segmentation by an experienced operator is con-
sidered the gold standard for volumetric segmentation of 
brain tumors, however this is a very time consuming pro-
cedure [24, 25]. Most previous studies have investigated 
inter-rater variability and compare manual to semi-auto-
matic methods [21, 26–30], while few have explored the 
intra-rater variability in low-grade glioma segmentation. As 
only one radiologist is involved in most clinical studies and 
many clinical settings, knowledge of the intra-rater vari-
ability in LGG assessment is highly relevant.

In this study, we sought to address the intra-rater vari-
ability in manually verified semi-automatic segmenta-
tion of low-grade gliomas by performing serial segmenta-
tions of the same tumors, all done by one radiologist. We 
also sought to explore possible factors associated with 
variability.

Methods

Study population

Patients were included from an ongoing study on LGGs. 
Tumor borders were radiologically evaluated and classi-
fied as: (1) well-defined, (2) partially absent, or (3) absent. 
Well-defined indicates a discrete border between tumor and 
normal appearing brain, partially absent is a more diffuse 
border zone, but still possible to separate tumor and normal 
brain, and absent is an ill-defined border and infiltrative fin-
ger-like growth pattern.

Image acquisition

MRI images used for tumor segmentation were all pre-
operative 3D Fluid Attenuated Inversion Recovery 
(FLAIR) images. Acquisitions were done on three different 

MRI systems, thus with slightly different echo time, rep-
etition time and inversion time (TE/TR/TI). Seventeen 
patients were examined using a Siemens Skyra 3.0T scan-
ner (389/5000/1800  ms) with both slice-thickness and 
in-plane resolution of 1 mm. Four patients had their scan 
on a Siemens Avanto 1.5T scanner (333/6000/2200 ms or 
474/6500/1800 ms) with both slice-thickness and in-plane 
resolution of 1  mm. Two patients were examined with a 
Philips Intera 3.0T scanner (350/8000/2400 ms) with slice-
thickness 1.2, 0.6  mm overlap and in-plane resolution of 
0.43 mm.

Segmentation procedure

For the segmentation procedure we used the open source 
software 3D Slicer 4.4.0 (http://www.slicer.org), which is 
a software platform for quantitative imaging, designed for 
use in cancer care [31]. 3D Slicer consists of a core plat-
form with several standard modules and a graphical user 
interface.

For the segmentations in this study, we used the “Grow-
Cut” region based segmentation algorithm in the built-in 
“Editor” module. First, the border of the tumor was manu-
ally marked on at least one slice in each of the three planes 
(transversal, coronal and sagittal). Then the area outside the 
tumor was marked with a different color. The “GrowCut” 
algorithm was then run, resulting in an image label super-
imposed on the MRI image [32]. This label was further 
edited to fit with the tumor borders, first with the “dilate” 
and “erode” functions and then manually. Tumor vol-
ume in mL was then obtained using the “Label statistics” 
extension.

All segmentations were done by one radiologist (H. 
K. B.) with 7 years of radiology experience, but without 
any prior experience in segmentation or 3D Slicer. When 
in doubt, tumor borders were discussed with an experi-
enced neuroradiologist (K. A. K.) with 20 years of expe-
rience. All tumors were segmented three times; once 
before any tumors were segmented for the second time, 
and twice before any tumors were segmented for the third 
time. To minimize recall bias when segmenting for the 
second and third time, we made sure that at least 40 days 
passed between between repeated segmentations. We also 
attempted to have the same time interval between the sec-
ond and third segmentation as between the first and second.

Measures of agreement

The Jaccard coefficient and Hausdorff distance (HD) 
are widely used and validated measures of agreement in 
evaluation of segmentation procedures [33–36]. The Jac-
card coefficient is an overlap index used to compare seg-
mentations. If Si represents a segmentation in a series of n 

http://www.slicer.org
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segmentations, each with volume V(Si), then the Jaccard 
coefficient is defined as:

Jaccard coefficient with two segmentations, J2, is the 
same as Dice Similarity Coefficient (DSC), which can be 
shown to be a special case of the Kappa-statistic used for 
intra-rater agreement [34]. The Jaccard coefficient takes on 
values from 0 to 1, with 0 when there is no overlap and 1 
when there is a perfect match between the segmented vol-
umes. Interpretation is similar to the Kappa-statistic with a 
strong agreement with values 0.80–0.90 and almost perfect 
agreement with values above 0.90 [37]. We have included 
both J2, comparing each pair of two segmentations, and J3, 
comparing all three segmentations. HD is a measure of dis-
tance between two segmentations, defined as the greatest 
distance measured from each point on the surface of one 
segmented volume to the closest point on the surface of 
the other [36]. HD is especially sensitive to local surface 
variations.

Exploring factors associated with agreement

In an attempt to explore possible features associated with 
agreement we compared agreement in small vs. large 
tumors (dichotomized from median tumor volume), in vari-
ous histopathological subtypes, in relation to mean ADC 
levels of the tumor (the smallest of the three tumor volumes 
was used) and in relation to border conspicuity.

Statistics

IBM SPSS Statistics, Version 23.0 (IBM Corp., Armonk, 
NY) was used for statistical analysis. Central tendencies 
are presented as mean (standard deviation [SD]) or median 
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(inter quartile range [IQR]) when skewed. Normality was 
assessed with histograms and tested with Shapiro–Wilk’s 
test. Differences in means were tested with two-tailed Stu-
dent’s paired t test when normally distributed and with the 
two-tailed non-parametric Related-Samples Sign test when 
skewed. Furthermore, Jaccard coefficient and HD were cal-
culated for exploring measures of segmentation variability. 
Differences in agreement were tested on sub-groups using 
Mann–Whitney U test when two groups and Kruskal–Wal-
lis test when three groups. P values below 0.05 were con-
sidered significant, while p values between 0.05 and 0.10 
were considered as trending towards significance [38].

Results

We included preoperative MRIs from 23 untreated patients 
(median age 41 years (range 18–49), 13 males), with his-
topathologically verified supratentorial WHO grade II 
gliomas, operated between 2011 and 2014 at our hospital. 
There were 10 (43%) oligodendrogliomas, 8 (35%) astrocy-
tomas, 3 (13%) unspecified LGGs and 2 (9%) mixed astro-
cytomas. Localization was frontal in 12 (52%), insular in 
6 (26%) and temporal in 5 (22%) patients. Border margins 
were well-defined in 12 (52%), partially absent in 8 (35%) 
and absent in 3 (13%) tumors. Four tumors (17%) had an 
eloquent localization (after Chang et al. [8]).

Mean time between segmentation cycle 1 and 2 was 
144 days (range 43–201), and between cycle 2 and 3 it was 
148 days (range 115–202) (p = 0.71). Median tumor vol-
ume from segmentation cycle 1 was 26.4 mL (range 1.4–
165.9), 27.6 mL (range 1.7–166.0) for the second cycle and 
19.7  mL (range 1.4–163.0) for the third cycle. Compari-
son between segmentations 1 vs. 2, 2 vs. 3 and 1 vs. 3 are 
shown in Table 1. There was a median difference in tumor 
volume of −1.3 mL between the first and second segmenta-
tion, corresponding to a median relative difference of 14% 

Table 1   Comparison of segmentation cycle 1 vs. 2 with segmentation cycle 2 vs. 3

Median difference in volume and percent, Jaccard coefficient (J2) and Hausdorff Distance (HD)
SD standard deviation, IQR inter quartile range, mL milliliter, mm millimeter

Cycle 1 vs. 2
A

Cycle 2 vs. 3
B

Cycle 1 vs. 3
C

p value
A vs. B

p value
A vs. C

Time between segmentations, mean (SD) 144 days (35) 148 days (22) 292 (27) 0.71 <0.01
Differences in volume, median (IQR) −1.3 mL

(−8.4 to 0.6)
−1.3 mL
(−3.5 to −0.3)

−4.1 mL
(−11.6 to −0.2)

0.68 <0.01

Relative differences in volume, median (IQR) 14%
(5–28)

13%
(2–19)

14%
(2–41)

0.32 0.68

J2, median (IQR) 0.87
(0.79–0.91)

0.90
(0.83–0.93)

0.87
(0.71–0.93)

0.04 0.41

HD, median (IQR) 9.7 mm
(5.9–14.9)

7.4 mm
(4.7–9.9)

9.4 mm
(5.2–19.1)

0.09 1.00
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(IQR 5–28), a median HD of 9.8 mm (IQR 5.9–14.9) and 
a median J2 of 0.87 (IQR 0.79–0.91). There was a median 
difference in tumor volume of −1.3  mL also between the 
second and third segmentation cycle, corresponding to a 
median relative difference of 13% (IQR 2–19), a median 
HD of 7.4 mm (IQR 4.7–9.9) and a median J2 of 0.90 (IQR 
0.83–0.93). When comparing the first and last segmenta-
tion cycle, there was a median difference in tumor volume 
of −4.1 mL, corresponding to a median relative difference 
of 14% (IQR −11.6 to −0.2), a median HD of 9.4 mm (IQR 
5.2–19.1) a median J2 of 0.87 (IQR 0.71–0.93). The dif-
ference in median tumor volume in subsequent segmenta-
tion cycles was not significantly different (p = 0.68), but 
between the first and last segmentation cycle it was sig-
nificant (p = 0.01). Median Jaccard coefficient for all three 
segmentations (J3) was 0.82 (IQR 0.70–0.89). The absolute 
volume, HD, J2 and J3 for each tumor from each segmenta-
tion cycle are shown in Table 2, while a bar chart with the 
absolute tumor volume for all tumors from all three seg-
mentations is shown in Fig. 1.

Subgroup analyses were performed (Table  3). There 
was a tendency towards smaller relative volume variability 

(p = 0.07) and a significantly higher J2 (p < 0.01) in larger 
tumors in segmentation cycle 2 vs. 3. Tumors with well-
defined border showed less variability compared to tumors 
with partially absent and absent border in segmenta-
tion cycle 2 vs. 3, with significantly smaller difference in 
median absolute volume (p = 0.04), smaller HD (p < 0.01) 
and higher J2 (p = 0.04). Comparing histopathological sub-
types, astrocytomas were significantly smaller than oligo-
dendrogliomas in all segmentation cycles (p ≤ 0.04), but 
there was no difference in HD, J2 or J3 between the histo-
pathological subgroups. There was no significant difference 
in tumor volume, HD, J2 or J3, between tumors with low or 
high ADC-values.

Discussion

In this study we found a better overlap agreement when the 
same LGGs were repeatedly segmented, with significantly 
increased J2 between the two last segmentations compared 
to the two first. We interpret this as a decreased intra-rater 
variability with increasing experience, which again could 

Table 2   Volumes in milliliter 
(mL) for each tumor and each 
segmentation cycle

Hausdorff Distance (HD) in millimeter (mm) and Jaccard coefficient (J2) between segmentation cycle 1 and 
2, segmentation cycle 2 and 3 and segmentation cycle 1 and 3. Jaccard coefficient (J3) for segmentations 1, 
2 and 3

Case No. Volume
cycle 1
(mL)

Volume
cycle 2
(mL)

Volume
cycle 3
(mL)

HD
1 vs. 2
(mm)

HD
2 vs. 3
(mm)

HD
1 vs. 3
(mm)

J2
1 vs. 2

J2
2 vs. 3

J2
1 vs. 3

J3
1 vs. 2 vs. 3

27 1.4 1.7 1.6 3.3 2.0 3.2 0.89 0.91 0.89 0.85
4 2.0 2.6 1.4 9.9 9.9 3.7 0.82 0.69 0.78 0.66
15 2.1 2.1 1.9 2.0 2.5 2.2 0.91 0.89 0.89 0.85
6 4.9 3.6 4.2 1.3 5.0 9.4 0.82 0.88 0.85 0.80
16 9.3 10.3 9.1 4.6 4.5 2.2 0.90 0.92 0.93 0.88
18 11.3 7.9 6.4 9.8 3.8 10.6 0.78 0.85 0.70 0.70
3 12.1 13.6 11.8 11.0 6.7 9.8 0.86 0.89 0.87 0.82
19 15.1 14.0 11.0 5.9 8.9 9.1 0.87 0.85 0.82 0.78
2 18.0 14.3 6.4 14.9 36.7 46.9 0.73 0.55 0.39 0.36
8 19.9 14.4 11.8 9.0 11.5 14.0 0.79 0.82 0.71 0.68
30 25.2 28.7 28.7 4.5 5.1 5.2 0.85 0.95 0.91 0.89
20 26.4 7.1 5.8 34.3 9.1 32.3 0.40 0.83 0.35 0.40
24 32.1 32.8 32.1 3.7 3.6 3.5 0.96 0.96 0.95 0.93
9 33.9 29.3 28.5 11.6 6.1 12.4 0.89 0.93 0.89 0.86
23 34.4 34.8 30.0 14.0 12.1 8.6 0.91 0.90 0.89 0.85
17 47.6 43.1 47.2 7.3 4.7 5.7 0.93 0.94 0.95 0.91
13 47.9 28.9 25.3 19.0 7.7 21.4 0.72 0.90 0.67 0.70
22 48.0 27.6 19.7 19.6 9.4 21.5 0.71 0.82 0.58 0.61
25 57.7 60.7 59.9 15.4 12.6 7.4 0.92 0.93 0.93 0.89
7 58.1 43.0 39.0 21.2 9.3 22.0 0.83 0.92 0.79 0.81
10 89.4 77.2 56.5 8.6 18.8 19.1 0.90 0.80 0.75 0.71
26 164.2 155.8 155.8 8.6 5.2 9.6 0.93 0.96 0.93 0.92
14 165.9 166.0 163.1 6.2 7.4 6.1 0.96 0.96 0.96 0.94
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indicate more confidence in tumor border interpretation. 
There was a non-significant decrease of median difference 
in tumor volume between these cycles of 1.3  mL, corre-
sponding to a median relative difference of 13–14%. The 
variability is however better demonstrated when compar-
ing segmentation cycles 1 vs. 3 to segmentation cycles 1 
vs. 2, where there was a significant decrease in median 
tumor volume of 4.1 mL (p < 0.01). Although only trending 
towards significance between the second and third segmen-
tation cycle, the variability measured as relative difference 
in percent seems larger in smaller lesions (p = 0.07), while 
tumors with well-defined borders showed a significantly 
smaller variability measured in absolute volume (p = 0.04), 
HD (p < 0.01) and J2 (p = 0.04). Intra-rater agreement was 
not associated with histopathological subgroups, and we 
did not find a clear association between ADC-values and 
variability of volume measures. This study demonstrates 
that intra-rater variability of the gold standard volume 
assessment can be substantial and should be accounted for. 
Thus, some criteria defining tumor borders and progression 
are needed if moving from 2D to 3D volume assessment of 
LGGs.

In clinical situations, growth is often based on so-called 
“eye-balling” or unsystematic measures of tumor diame-
ters. In clinical trials, tumor size has classically been meas-
ured as the product of two orthogonal diameters, measured 

on the axial slice with the largest diameter [39]. In the 
follow-up criteria from the Response Assessment in Neuro-
Oncology (RANO) group, bi-diametric measurements are 
set as the standard method for response evaluation, mostly 
due to limited availability of volumetric measurements 
[40]. As LGGs have an irregular slow growth, it is com-
monly accepted that 3D volumetric measurements easier 
will catch subtle changes between examinations, although 
there is a lack of studies comparing 2D and 3D measure-
ments [7, 22, 41, 42]. However, the accuracy of volume or 
growth measurement is presumably not only dependent on 
the choice of method, but may also be limited by the oper-
ator that has to draw the line between tumor and normal 
brain in diffusely infiltrating tumors. LGGs usually show 
no contrast enhancement and segmentation has to rely on 
the inherent contrast properties of the tissue, which can be 
very close to normal brain tissue.

Much work has been put into characterization of LGGs 
in order to determine prognostic predictors, emphasizing 
the importance of volumetric assessment of the tumors. 
Pallud et  al. have in several studies shown that the radio-
logical growth rate of the tumor can predict malignant 
transformation [7, 18, 19]. Their work is supported by 
others, using growth rates to predict transformation and 
patient outcome within 6 and 12 months [20, 21]. Two 
studies describe a semi-automatic strategy for quantifying 

Fig. 1   Bar chart with volume in mL for all tumors and all segmentations, ordered by volume in segmentation 1. Segmentation 1 in blue, seg-
mentation 2 in green and segmentation 3 in yellow
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tumor growth using grey level recognition in T2/FLAIR 
images, and both methods are based on prior manual expert 
segmentation [27, 30]. In the first, Angelini et al. found a 
high volume segmentation variability, both in the baseline 
segmentation and in the follow-up segmentations, because 
they are all based on manual tracing. In the other Weizman 
et  al. looked at optic pathway and thalamic gliomas and 
showed quite good correlation between manual and semi-
automatic segmentation volumes, but have not calculated 
intra- or inter-rater variability.

Several prior studies have measured inter-rater variabil-
ity, but few focused on intra-rater variability. Both Kaus 
et  al. and Akkus et  al. found comparable levels of intra-
rater variability between manual and semi-automatic seg-
mentation of LGGs, but Jaccard coefficient was not cal-
culated [26, 28]. In both studies intra-rater variability was 
lower than inter-rater variability. Zou et al. found a highly 
variable inter-rater DSC from 0.49 to 0.97 in LGG segmen-
tation, comparable with our J2 values ranging from 0.40 to 
0.96 [35]. With such high variability, experience in tumor 
border evaluation and general brain MRI interpretation 
will be highly important to minimize this factor, aiming for 
more consistent measurements, especially in a follow-up 
setting with growth evaluation.

As seen in the present study with a median difference in 
absolute volume between the first and third segmentation of 
4.1 mL, intra-rater variability of manual volume segmenta-
tion should not be underestimated. This may be an argu-
ment for automatic methods of volume assessments. How-
ever, algorithms for automatic segmentation of LGGs have 
so far been disappointing, and in validation of automatic 
methods the substantial intra-rater variability of the current 
gold standard based on manual methods should be kept in 
mind [33]. For detecting progression or treatment responses 
in individual patients, a low inter- and intra-rater variability 
(i.e. reliability) might be more important than agreement 
with manual methods (i.e. validity). After all, the true vol-
ume of any glioma is always larger than depicted with any 
current imaging modality. In example, Pallud et  al. found 
tumor cells 20 mm from the margins of such FLAIR abnor-
malities, while Zetterling et al. found IDH1-positive tumor 
cells up to 14 mm from FLAIR abnormalities [4, 43].

Part of the variation in tumor segmentation presented in 
this paper could be because of variation in manual initiali-
sation of the “GrowCut” algorithm. Manual intialization of 
semi-automatic segmentation algorithms is an important 
yet ill addressed topic in the literature. As the tumors in this 
study have been segmented three times each with different 
manual initialisations, this study implicitly addresses the 
question of initialisation for this particular algorithm.

As mentioned, it seems to be an association between 
relative size and variability. We did not find this associa-
tion within histopathological subtypes, where we could 

expect that variability would be larger in percent in the 
often smaller astrocytomas and larger in volume in the 
often larger oligodendrogliomas. Furthermore, since 
ADC values are associated with tumor cell density [44], 
we hypothesized higher relative variability in astrocyto-
mas (that usually are less cell-dense than oligodendro-
gliomas [1]) with repeated volume assessment. Although 
we did not find an association between variability and 
ADC values, this could be a result of the fairly small 
sample size. Also, with the often high intratumoral het-
erogeneity, an ADC value from the tumor core instead of 
the entire tumor might be more representative.

Image acquisition makes the basis for further tumor 
evaluation and segmentation, and technical parameters 
need to be optimized. A 2D FLAIR acquisition gives 
higher image contrast than 3D FLAIR, both between grey 
and white matter and between lesion and white matter 
[45]. On the other hand, standard 2D FLAIR sequences 
typically have thicker slices of 3–5 mm to get sufficient 
signal-to-noise ratio, as well as interslice gaps. A signifi-
cant difference between segmentations on 1 mm slices vs. 
5 mm slices has been shown [46]. Thus, using interpola-
tion to calculate segmentation volumes, volume estimates 
are less accurate, especially in small tumors [41, 46]. 
Therefore, a 3D sequence with isotropic voxels and no 
interslice gap will usually give a more accurate volume 
estimation and should possibly be part of standard tumor 
evaluation. Also, magnetic field strength influence image 
contrast, with higher contrast-to-noise ratio in FLAIR 
images acquired on 3.0T compared to 1.5T. This leads to 
small differences in lesion volume and should be taken 
into consideration [47–50].

Assessing relative volume differences there are some 
extreme values, namely 73% (case 20) in segmentation 
cycles 1 vs. 2 and 55% (case 2) and 45% (case 4) in seg-
mentation cycles 2 vs. 3 (Fig. 2). Case 20 is a left insular 
glioma considered to have well-defined borders. It was 
the second tumor segmented in the very beginning, and 
with more experience the tumor borders were interpreted 
quite different and more consistently the second and third 
time, showing a smaller difference of 19%. Case 2 resides 
in the right insula and case 4 in the left medial temporal 
lobe. Both were classified to have “absent” tumor bor-
ders, making them difficult to delineate consistently. In 
addition, case 4 is a rather small tumor, with a mean vol-
ume of only 2 mL.

Our study has limitations. We do not have a gold 
standard to compare our segmentation results with, which 
makes it difficult to evaluate whether we are closer to the 
biological truth or just in more agreement with ourselves. 
In general, with a small number of participants, it is dif-
ficult to draw conclusions from such sub-group analysis.
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Conclusion

Our study demonstrates that intra-rater variability can be 
considerable in LGG volume segmentation, with signifi-
cant volume difference between segmentation cycles. We 
did however find a decreased intra-rater variability with 
repeated segmentations measured with DSC, suggestive 
of an effect of experience. With no exact gold stand-
ard for comparison, it can be difficult to point out what 
makes this effect, whether it is actually getting closer to 
the true volume, or if the operator is only reaching a bet-
ter internal agreement with him-/herself, or a combina-
tion of the two. Furthermore, we found that there was a 
significantly lower variability in segmentation of LGGs 
with well-defined tumor borders. This study shows that 
some criteria defining tumor borders and progression in 
3D volumetric segmentation is needed if moving from 
2D to 3D volume assessment of LGGs.
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