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(pNoM = 0.832) or mean diameter (pmDM = 0.662) of 
brain metastases. While patient age did not appear to be 
relevant, increasing WML were associated with lower 
number of brain metastases in different tumor types.
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Introduction

Cerebral metastases are severe complications in patients 
with cancer. They occur in up to 40 % of patients with solid 
tumors [1]. According to diagnosis specific graded prognos-
tic assessment (GPA), the number of brain metastases has 
prognostic impact in several tumors (lung cancer, melanoma, 
renal cell cancer) [2]. In addition, the number of metastases 
(NoM) is crucial in determining treatment, i.e. local or whole 
brain therapy [1, 3, 4]. Interestingly, factors that determine 
metastasis number are poorly described. It is more or less 
taken for granted that systemic tumor control is the major 
determinant, combined with CNS-proneness of tumor cells 
[5–7]. The extent of tissue perfusion has been shown to influ-
ence the distribution of brain metastases, i.e. most metasta-
ses develop in well perfused areas (e.g. the border of white 
and grey matter) [8] while less perfused areas (e.g. deep 
white matter) appear virtually protected from metastases [9, 
10]. Whether vascular integrity or fragility can influence the 
NoM is not well investigated. The aim of this analysis was 
to evaluate a possible negative effect of cerebral small vessel 
disease (indicated by white matter lesions) and the patient 
age on the number and size of brain metastases.

Abstract Brain metastases are major complications of 
common cancers. Tumor type and proneness to the CNS 
are thought to define the number and size of brain metas-
tases. It is not known if intrinsic vascular factors can also 
have an effect. Restricted perfusion due to cerebral small 
vessel disease is frequent in elderly patients and causes 
white matter lesions (WML). The aim of this analysis was 
to evaluate a possible negative effect of WML and patient 
age on the number and size of brain metastases (BM) of 
different tumor entities. Pre-therapeutic 3 T brain magnetic 
resonance imaging (MRI) of 200 patients with BM were 
analyzed. Location, size and number of BM (NoM) were 
determined. T2 hyperintensive WML were scored accord-
ing to Fazekas-Score (grade I–III). Patients with WML 
grade 1 (NoM: 5.59; p = 0.009) and grade 2 (NoM: 3.68; 
p = 0.002) had significantly less BM than patients without 
WML (NoM: 6.99). This effect was present in subgroups 
of different tumors: NSCLC (p = 0.05), other tumors than 
NSCLC (p = 0.048). Age (≤65 or >65 years) was positively 
correlated with the degree of WML but not with number 

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11060-016-2235-5&domain=pdf&date_stamp=2016-8-16


204 J Neurooncol (2016) 130:203–209

synonymous term “white matter lesions” (WML). Degree 
of WML was defined as follows: no WML (grade 0), punc-
tate WML (grade 1), beginning confluence of WML (grade 
2) and large confluent areas (grade 3). Representative exam-
ples of WML grades are shown in Fig. 1.

MRI analysis of location, number and size of metastases

Secondly, the NoM was determined on axial 3D T1-weighted 
sequences of cerebral MRI, and the maximum axial diam-
eter of each individual metastasis was measured. Metasta-
ses situated in deep white matter were termed white matter 
metastasis (WMM) as these might have a different vascular 
background than metastases at the border of grey and white 
matter [12]. The per-patient mean diameter of all metastases 
(mDM) was determined.

Age

Patients were split into two groups: (1) ≤65 years and (2) 
>65 years. In a second step, patients were subgrouped in 
seven groups: (1) >30–≤40 years, (2) >40–≤50 years, (3) 

Material and methods

Charts of all patients with the diagnosis “brain metasta-
sis or brain metastases” that presented at the University 
Hospital Leipzig from October 2004—January 2015 were 
screened. Patients with different tumor entities at the time 
of initial diagnosis of BM were included in this study. 200 
consecutive patients were included that fulfilled the fol-
lowing criteria: (a) complete and available patient chart 
with history and age and (b) 3 T cerebral MRI with 3D 
dataset of T1-weighted sequences after contrast agent 
injection (slice thickness of 1–1.5 mm) and T2/FLAIR 
sequence pre-treatment available. Patients were divided 
according to age and white matter lesion grade (WML 
0–III).

Grading of white matter lesions

Initially, white matter hyperintensities in axial T2/FLAIR 
sequences of cerebral MRI were graded based on the Faze-
kas score [11]. In the manuscript, the term “T2-/FLAIR 
white matter hyperintensities” is replaced by the shorter 

Fig. 1 Representative WML Grades on axial T2/FLAIR MRI. a WML Grade 1: Focal punctate hyperintense areas. b WML Grade 2: Beginning 
confluent hyperintense areas. c WML Grade 3: Large confluent hyperintense areas
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Frequency of white matter lesions

Overall, 88 (44 %) patients had no white matter lesions 
(WML0), while 74 (37 %) showed punctate foci (WML1), 
37 patients (18.5 %) had confluent foci (WML2) and only 
in one case were (0.5 %) large confluent areas observed 
(WML3). WML were more frequent and severe in NSCLC, 
RCC and CRC (all median WML1) compared to MM, BC 
and SCLC (all median WML0).

Correlation of age and white matter lesions

A significant positive correlation between age and WML 
was identified by Pearson’s Chi square test of Independence 
(pχ2 = 0.001; r = 0.422). This was confirmed in Kruskallis–
Wallis-Test of independent samples. There was a tendency 
of linear relation between age and grade of WML (Fig. 2).

White matter lesions and number and size of brain 
metastases

Across all tumor types the NoM significantly differed 
between WML grades (pNoM = 0.013). Grade 1 (Mean 
NoM = 5.59, Median = 3, p = 0.009) and grade 2 (Mean 
NoM = 3.68, Median = 3, p = 0.002) had significant less 
BMthan WML grade 0 (Mean NoM = 6.99, Median = 5), 
(Fig. 3a, b). Pearson’s Chi square test revealed significant 
negative correlation of NoM with increasing WML grade 
(pχ2 = 0.002, r = − 0.22). In patients with 1–2 or 3–9 brain 
metastases, the median WML was one, in patients with >9 
metastases median WML was 0 (pχ2 = 0.009, r = − 0.18).

Referring to tumor type, patients with NSCLC and 
WML Grade 1 (Mean NoM = 6.79, Median = 4, p = 0.038) 
and grade 2 (Mean NoM = 2.88, Median = 2, p = 0.013) 
had significantly less BM than grade 0 (Mean NoM = 6.59, 
Median = 5). In the group of patients with tumors other than 
NSCLC (SCLC + MM + BC + RC + CRC + OT, N = 111 
patients) the same observation of decreasing NoM with 
increasing WML was made (p = 0.05), (Table 1; Fig. 3c).

In contrast to NoM, mean diameter of BM was not dif-
ferent between all grades of WML (pmDM = 0.806) (Fig. 3d).

WML and white matter metastases

The number of patients with white matter metastases was 
low (N = 19, total number of WMM: 19). No significant cor-
relation of white matter metastases with WML grade was 
seen (pχ2 = 0.67, r = −0.03).

Influence of age on number and size of brain metastases

Significant effects of age on number and size of cerebral 
metastases were not found, neither between higher/lower 

>50–≤60 years, (4) >60–≤70 years, (5) >70–≤80 years, (6) 
>80–≤90 years, (7) 90–≤100 years.

Statistical analysis

IBM SPSS V22.0 was used for statistical analysis. At the 
beginning, the Kolmogorov–Smirnov test was used for 
testing normal distribution [13]. The data (NoM, mDM) 
was not normally distributed (p = 0.001). Therefore, sta-
tistical evaluation was adjusted to Mann–Whitney-U-Test 
(Ngroup = 2) or multiple Independent-Samples Kruskal–
Wallis-Test (Ngroup > 2) described as p-value (p) [14]. 
Statistical significance was accepted at p < 0.05. Univari-
ate (UVA) and multivariate data analyses (MVA) were 
combined. Multivariate analyses allowed an evaluation of 
more than one statistical variable [15]. By using Pearson’s 
Chi square test of Independence (pχ2), number and diam-
eter of BM were analyzed on correlation with different 
other variables (e.g. age, WML grade, WMM). Figures 
were made with IBM SPSS V22.0 and Microsoft office 
version 2015.

BAB, SN performed MRI analysis under supervision of 
CS (7 years experience in neuroimaging). KH and SP col-
lected clinical data. BAB, SN and CS performed statistic 
analysis and wrote the article with valuable input of CG, 
KTH and RDK.

Before initiation, the study design was evaluated and 
officially accepted by the local ethics committee.

Results

Patient characteristics

Patients were predominantly male (60.5 %, n = 121) and 
had a median age of 64.5 years with a range from 32 to 
91 years. 47.5 % (n = 95) were older than 65 years. In 
patients ≤65 years, median age was 57 years (nmale = 56, 
nfemale = 49), while median age in patients >65 years 
was 72 years (nmale = 65, nfemale = 30) (Fig. 2a, b). The 
population comprised patients with non-small-cell 
lung cancer (NSCLC) (n = 89), small-cell lung cancer 
(SCLC) (n = 14), breast cancer (BC) (n = 20), malignant 
melanoma (MM) (n = 30), renal cell carcinoma (RCC) 
(n = 17), colorectal cancer (CRC) (n = 10) and patients 
with other tumors (OT) (n = 20). Patients with RCC 
were significantly older (73 years) than patients with 
BC (58 years, p = 0.001), MM (61 years, p = 0.009) and 
NSCLC (63 years, p = 0.005) or other tumors (62.7 years, 
p = 0.04). 31 of 200 patients (15.5 %) had a singular cere-
bral metastasis, 42 patients (21 %) had two metastases, 91 
patients (45.5 %) 3–9 metastases and 36 patients had >9 
metastases.
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[24]. Small vessel disease leads to reduced perfusion and 
chronic ischemia in deep brain structures [16, 19, 25]. Per-
fusion is essential for the process of brain metastasation 
[26]. Accordingly, a protective effect of small vessel dis-
ease against BM would be coherent. In our analysis, patients 
with WML had less BM than patients without WML. This 
effect was independent from patient age, correlated with the 
degree of WML, and was observed across different tumors. 
This implies that not only tumor type and proneness to CNS 
[5–7, 26] define the number of brain metastasis, but also the 
integrity of blood vessels.

Mazzone et al. [27] found the first indication of this 
relationship when they compared groups of patients with 
and without brain metastasis of NSCLC and compared the 
degree of WML between these groups. With the recent anal-
ysis of a differently composed patient cohort (various can-
cers, all patients with brain metastases) we can verify these 

aged group (pNoM = 0.832; pmDM = 0.662) nor between the 
10 years subgroups (pNoM = 0.968; pmDM = 0.848). The 
amount of whiter matter metastasis (WMM) was not affected 
by age (p = 0.3); no correlation was identified (pχ2 = 0.457).

Discussion

WML are signs of small vessel disease of the brain. Small 
vessel disease of the brain is characterized by histopatho-
logical changes, such as loss of structure in arteriolar walls, 
narrowing of the vessel lumen and thickening of the vessel 
walls [16–19]. WML are common in patients with vascu-
lar risk factors like arterial hypertension [19–21] and are 
associated with strokes, dementia [21, 22] and intracere-
bral bleeding (ICB) [16, 23, 24]. Furthermore, after stroke 
or ICB poor outcomes are reported in presence of WML 

Fig. 2 Patient groups and age-dependency of white matter hyperin-
tensities. a Distribution of patients ≤65 years and older than 65 years. 
b Distribution of patients according to decades of age. c Patient age 

and different WML grades. d Correlation plot of patient age and WML 
grades. Data is displayed in boxplots (Box interquartile range (IQR), 
horizontal line median, whiskers max 1.5× IQR, N number of patients)
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Table 1 Mean and median NoM according to tumor type and WML-grade

Mean and median NoM according to WML grade

Tumor entity WML0 WML1 WML2 WML3 Total

N NoM
x N NoM

x N NoM
x N NoM

x N NoM
x

NSCLC 39 6.6 5 34 6.8 4 16 2.9 2 0 0 0 89 6.0 3
Other than NSCLC 49 7.3 4 40 4.6 3 21 4.3 3 1 2.0 2 111 5.7 3
SCLC 9 9.4 9 2 5.5 6 3 3.3 3 0 0 0 14 7.6 6
MM 16 8.7 6 8 5.8 4 6 2.5 2 0 0 0 30 6.7 4
OT 8 6.8 6 9 3.6 3 3 1.7 1 0 0 0 20 4.6 3
BC 11 5.3 3 6 6.0 3 3 7.0 5 0 0 0 20 5.8 3
RCC 3 6.0 5 10 4.5 4 4 8.0 6 0 0 0 17 5.6 4
CRC 2 2.0 2 5 2.6 2 2 3.5 4 1 2.0 2 10 2.6 2

NoM mean number of metastases, x  median number of metastases

Fig. 3 Influence of WML on mean number (a–c) and diameter (d) of 
BM. a Mean number of metastases according to WML grade. b Mean 
number of metastases according to WML grade in patients ≤65 and 
>65 years. c Mean number of metastases in patients with NSCLC and 

other tumors than NSCLC according to WML grade. d Mean diameter 
of metastases in mm according to WML grade. Data is displayed in 
boxplots (Box interquartile range (IQR), horizontal line median, whis-
kers max 1.5× IQR, N number of patients)
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studies of this relationship quantitative MRI-measurements 
of brain perfusion e.g. like in [37] should be performed. 
Whether the knowledge about the negative impact of WML 
on BM may influence the treatment of BM remains to be 
answered in the future.
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