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Phloretin induces cell cycle arrest and apoptosis of human
glioblastoma cells through the generation of reactive oxygen
species
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Abstract Phloretin, a flavonoid present in various plants,

has been reported to exert anticarcinogenic effects. How-

ever, the mechanism of its chemo-preventive effect on

human glioblastoma cells is not fully understood. This

study aimed to investigate the molecular mechanism of

phloretin and its associated chemo-preventive effect in

human glioblastoma cells. The results indicate that phlor-

etin inhibited cell proliferation by inducing cell cycle arrest

at the G0–G1 phase and induced apoptosis of human

glioblastoma cells. Phloretin-induced cell cycle arrest was

associated with increased expression of p27 and decreased

expression of cdk2, cdk4, cdk6, cyclinD and cyclinE.

Moreover, the PI3K/AKT/mTOR signaling cascades were

suppressed by phloretin in a dose-dependent manner. In

addition, phloretin triggered the mitochondrial apoptosis

pathway and generated reactive oxygen species (ROS).

This was accompanied by the up-regulation of Bax, Bak

and c-PARP and the down-regulation of Bcl-2. The

antioxidant agents N-acetyl-L-cysteine and glutathione

weakened the effect of phloretin on glioblastoma cells. In

conclusion, these results demonstrate that phloretin exerts

potent chemo-preventive activity in human glioblastoma

cells through the generation of ROS.
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Introduction

Glioblastoma (GBM) is the most common and aggressive

central nervous system tumor. Due to the relentless inva-

sion and growth of this tumor, patients with GBM usually

have poor prognosis. The median survival of patients

diagnosed with GBM is 12–15 months, and the five-year

survival rate is less than 5 % [1]. Current treatments are

still limited, and more effective chemotherapeutic drugs for

use against malignant glioma remain to be explored. Many

studies have focused on the various phytochemicals present

in fruits and vegetables as promising chemo-preventive

agents [2]. In recent years, flavonoids and their synthetic

analogues have been investigated in several cancers, such

as skin [3], ovarian [4] and breast [5].

Phloretin [20, 40, 60-trihydroxy-3-(4-hydroxyphenyl)-
propiophenone], a naturally occurring flavonoid found

mostly in plants of the Rosaceae family, has been shown to

exert anti-tumor activity in many studies, mainly through

the inhibition of glucose transmembrane transport and

protein kinase C activity [6–8]. However, the role of ROS
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generation in the anticancer effect of phloretin has not been

fully described.

It has been reported previously that the PI3K/Akt sig-

naling pathway is frequently activated in glioblastoma [9].

PTEN (phosphatase and tensin homolog), a major negative

regulator of the PI3K/Akt signaling pathway, is a tumor

suppressor gene implicated in a wide variety of human

cancers, including glioblastoma [10].

In this study, we demonstrate the effect of phloretin on

glioblastoma cells and its underlying molecular mechanism

in vitro. Our results provide evidence that phloretin induces

cell cycle arrest and apoptosis in glioblastoma cells through

the accumulation of ROS and activation of the mitochon-

drial apoptotic pathway.

Materials and methods

Reagents

The U87 and U251 cell lines were obtained from the Cell

Culture Centre of the School of Basic Medicine at Peking

Union Medical College. DMEM was purchased from

Hyclone (USA), and fetal bovine serum (FBS) was pur-

chased from Gibco (USA). Primary astrocyte cultures were

prepared from ICR mice as described by Li et al. [11]. and

Chen et al. [12]. A Cell Counting Kit-8(CCK8) assay was

purchased from Dojindo (Janpan). Phloretin was purchased

from Sigma and dissolved in methanol. All antibodies were

purchased from Cell Signaling Technology (USA).

Cell proliferation assay and clonogenic assay

The U87 and U251 cell lines were cultured in DMEM sup-

plemented with 10 % fetal bovine serum (FBS). Cells were

seeded at 5 9 104 cells/ml with 100 lL of culture medium

and treated with the indicated concentration of phloretin. At

12, 24, and 48 h after treatment, 10 lL of CCK-8 solution

was added to each well, and the cells were incubated for 1 h.

The absorbance at 450 nm was measured using a BioTek

Synergy H1 Hybrid Multi-Mode Microplate Reader (USA).

To determine the long-term effects, cells were allowed to

form colonies for 7 days and were rinsed with fresh medium

every 3 days prior to staining with crystal violet (0.4 g/L).

Flow cytometry analysis of cell cycle and apoptosis

For cell cycle analysis, cells (less than 70 % confluent)

were trypsinized, collected, centrifuged at 400 9 g and

fixed in cold 70 % ethanol overnight at 4 �C. After wash-
ing with PBS, cells were incubated in propidium iodide

(PI) for 30 min in the dark. For apoptosis analysis, cells

were harvested with trypsin, washed with ice-cold PBS,

suspended in 19 binding buffer and incubated with PE and

7-AAD for 15 min. A FACSCalibur flow cytometer (BD,

USA) was used to analyze the samples, and data analysis

was performed using Modifit LT software.

Assay for caspase-9 activity

This assay was based on spectrophotometric detection of a

colored reporter molecule, p-nitroaniline (pNA), that was

linked to the end of the caspase-specific substrate. Cell

lysates were incubated with the peptide substrate LEHD-

pNA (Ac-Leu-Glu-His-Asp-p NA) in assay buffer for 4 h

at 37 �C. The release of pNA was monitored at 405 nm.

ROS measurement

The generation of intracellular ROS was determined using

H2DCFDA, which yields fluorescent 2,7-dichlorofluores-

cein (DCF) when oxidized in the presence of H2O2 and

peroxidases. After exposure to different concentrations of

phloretin for 24 h, cells were incubated with 10 lM
H2DCFDA for 30 min at 37 �C. Cells were harvested with

trypsin, and intracellular ROS was detected using a con-

focal fluorescent microscope (Leica TCS SP5 Confocal

Microscope) or using flow cytometry.

Western blot analysis

Protein samples extracted from cells were evenly loaded

and separated using 10 % SDS-PAGE electrophoresis and

then transferred to nitrocellulose membranes. Immunore-

active bands were visualized by enhanced chemilumines-

cence (Pierce, USA), and signal imaging was performed

using a KODAK Image Station 4000.

Statistical analysis

Data were expressed as the mean ± SD. Statistical compar-

isons of the results were performed using ANOVA and Dun-

nett’s test. Significant differences were accepted as P\0.05.

Results

Phloretin inhibits cell proliferation and colony

formation in the U87 and U251 cell lines

We first examined the effect of phloretin on cell proliferation

and colony formation. Figure 1b shows that in both cell lines,

colony formation was inhibited in a concentration-dependent

manner. Phloretin also inhibits cell growth in both a concen-

tration-dependent manner and a time-dependent manner after

treatment with various concentrations of phloretin for 12–48 h
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(Fig. 1c; Supplementary Tables 1 and 2). Cell viability of pri-

mary mouse astrocytes was unaffected by incubating with

phloretin at a concentration of 200 lM, which was consistent

with several other previous studies (Fig. 1a) [13, 14].

Phloretin induces cell cycle arrest at G0–G1 in U87

cells and regulates the expression of cell cycle-

related proteins

Analysis of cell cycle distribution showed that phloretin-

induced cell cycle arrest in U87 cells occurs at the G0–G1

phase. The greatest effect was observed using 200 lM
phloretin; approximately 64.8 % of cells were in G0–G1

phase compared to 37.6 % in the control conditions

(Fig. 2a, b). Figure 2c shows that phloretin decreased the

expression of cyclin D1, cyclin E, CDK2, CDK4 and

CDK6 and increased the expression of p27 in a concen-

tration-dependent manner in U87 cells.

Phloretin induced apoptosis and triggered activation

of the mitochondrial pathway

Apoptosis analysis showed that phloretin significantly

induced apoptosis in U87 cells (38.4 % of cells were

stained by Annexin V-PE, and 21.8 % were double

stained after treatment with 300 lM for 24 h) (Fig. 3a).

The mitochondria of U87 cells appeared to be activated

following treatment with phloretin resulting in the acti-

vation of caspase-9 (Fig. 3b; Supplementary Table 3),

increased expression of pro-apoptotic Bax and Bak and

the up-regulation of PARP cleavage. In contrast, the

expression of anti-apoptotic Bcl-2 decreased (Fig. 3c). It

was suggested that caspase-9 activation and disruption of

the mitochondrial membrane were involved in apoptosis.

Moreover, it is shown in Fig. 3d and E that phloretin

induces ROS accumulation.

Phloretin inhibits PI3K/Akt/mTOR signaling

and increases PTEN expression

Following treatment with phloretin, the expression of

PTEN, a PI3K/Akt inhibitor, increased, and the expression

of p-PI3K, PI3K, p-ERK1/2, total ERK1/2, p-AKT and Akt

decreased in a concentration-dependent manner. The

expression levels of S6K and p-S6K, both downstream of

the PI3K/Akt cascade and substrates of mTOR, were also

down-regulated Fig. 4.

Fig. 1 The effects of phloretin on cell proliferation and colony

formation. a Phloretin induces morphological change of U87 and

U251 but primary astrocytes are unaffected. b To determine long-

term effects, cells were allowed to form colonies for 7 days. Colony

formation of U87 and U251 cell lines were inhibited in a

concentration-dependent manner. c Inhibition of U87 and U251 cell

proliferation by phloretin using the CCK8 assay. The data are shown

as the means from three independent experiments. Columns, mean of

three experiments; bars, SD. *P\ 0.05, **P\ 0.01, ***P\ 0.001
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Antioxidant agents prevent phloretin-induced ROS

accumulation, proliferation inhibition and apoptosis

The effects of the antioxidant agents N-acetyl-L-cysteine

(NAC) and glutathione (GSH) on phloretin-treated cells

were investigated. The results demonstrate that pretreatment

with NAC or GSH alleviates the accumulation of ROS and

prevents the inhibition of proliferation induced by phloretin

(Fig. 5a, b; Supplementary Table 4). Moreover, treatment

with NAC or GSH also inhibited activation of caspase-9

(Fig. 5c; Supplementary Table 5). These results suggest that

ROS generation plays an upstream role in phloretin-medi-

ated proliferation inhibition and mitochondrial apoptosis.

Discussion

This study demonstrates that phloretin-induced cell cycle

arrest at G0–G1 and apoptosis in glioblastoma cell lines

occurs through the generation of ROS, which has not been

previously reported.

It is known that the mitochondrial apoptotic pathway is

an important pathway for regulating apoptosis in

mammalian cells [15]. ROS have been found to play an

important role in stimulating mitotic cell division, inducing

cellular senescence and regulating apoptosis. Following

treatment with phloretin, we observed a significant increase

in the expression of the pro-apoptotic factors Bax and Bak

and a decrease in the anti-apoptotic factor Bcl-2, suggest-

ing that changes in the ratio of pro-apoptotic and anti-

apoptotic Bcl-2 family proteins might contribute to phlor-

etin-induced apoptosis. Moreover, these changes coincide

with the degradation of poly-ADP-ribose polymerase

(PARP), a substrate of caspase-3, and the activation of

caspase-9. Permeabilization of the outer mitochondrial

membrane and subsequent release of cytochrome c could

result in the activation of downstream caspases, thus pro-

ducing excessive ROS [16]. These results indicate that

activation of the mitochondrial apoptotic pathway is

involved in the apoptosis of glioblastoma cell lines induced

by phloretin treatment. The importance of this pathway was

further confirmed by treatment with the antioxidant agents,

NAC and GSH, which protected cells from ROS generation

and inhibited cell proliferation.

A number of studies have indicated that PI3K/Akt/PTEN

signaling cascades play an important role in oxidative stress-

Fig. 2 Phloretin induced G0–G1 phase arrest and affected the

expression of proteins involved in cell cycle progression in the U87

cell line. a Phloretin-induced cell cycle arrest at the G0–G1 phase.

Cells were treated with vehicle or phloretin for 24 h, and cell cycle

distribution was assessed using flow cytometry. b Statistical analysis

of cell cycle distribution from three independent experiments.

c Regulation of cell cycle protein expression
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induced apoptosis in cancer [17, 18]. PTEN is a well-studied

tumor suppressor gene implicated in awide variety of human

cancers. Loss of PTEN is a common mechanism for human

glioblastoma tumorigenesis. The Akt signaling pathway has

been shown to be activated in the majority of primary

glioblastoma samples [19], suggesting an important role in

the progression of glioblastoma. In this study, we observed

up-regulation of PTEN and inhibition of PI3K/AKT activa-

tion, which may explain the cell cycle arrest and apoptosis

induced by phloretin.

Fig. 3 Phloretin induced apoptosis and generation of ROS in the U87

cell line. a Cells were treated for 24 h and analyzed for the apoptotic

Annexin-V ? population. b The activation of caspase-9. c The

expression of proteins involved in the activation of the mitochondrial

pathway is altered following treatment with phloretin. d Flow

cytometry was used to determine ROS generation after staining with

H2DCFDA. e The accumulation of ROS was detected by confocal

microscopy. *P\ 0.05, **P\ 0.01, ***P\ 0.001

Fig. 4 Phloretin inhibited PI3K/AKT/mTOR signaling and increased PTEN expression; expression of p-ERK1/2 and ERK1/2 were not affected
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It has been well established that PTEN induces G1 cell

cycle arrest and regulates cell growth in tumor cells by up-

regulating the expression of the CDKIs p21 and p27 and

down-regulating cyclin and CDKs [20]. Cyclin and cyclin-

dependent kinase (CDK) complexes play an important role

in regulating the cell cycle. The cyclin Ds, CDK2 and

CDK4, are key participants during the transition from G1

to S phase [21]. CDK inhibitors (CDKIs) inhibit the kinase

activity of the cyclin-dependent kinase complexes and

block cell cycle transitions. CDKIs can be classified into

two groups [22]. One group of CDKIs specifically inhibit

the cyclin-CDK complexes, including CDK4, CDK6, p16,

p15 and p18 [23]. The other group includes p21/Waf1 and

p27/Kip1, which can bind to and inactivate cyclin-CDK

complexes. These complexes can be composed of various

CDKs, including CDK2 and CDK4 [24, 25]. Moreover, our

results show that the expression of p27 was up-regulated

and the expression of cyclin D1, cyclin E, CDK2, CDK4

and CDK6 were down-regulated following treatment with

phloretin.

However, there were some limitations in our study.

First, the strong anti-tumorigenic effect of phloretin has not

been confirmed in animal models. It is known, however,

that dihydrochalcone phloretin can inhibit glucose trans-

membrane transport (GLUT) [26] and protein kinase C

(PKC) [27] and is a naturally occurring non-steroid

estrogen [28]. Previous reports suggest that phloretin-in-

duced cancer-specific cytotoxicity is due to GLUT2 inhi-

bition [29] and the inhibition of PKC activity [30].

However, the mechanism of phloretin-induced cytotoxicity

in glioblastoma cells has not been previously reported.

Further investigation will be necessary to determine the

specific molecular target of phloretin in glioblastoma cells.

In conclusion, the results of this study show that

phloretin-induced cell cycle arrest and apoptosis of human

glioblastoma cell lines occurs through the generation of

ROS. We provide evidence that phloretin can induce the

up-regulation of PTEN and the inhibition of cyclin-CDK

complexes and the PI3K/AKT/mTOR signaling pathway.

This suggests that phloretin is a potential anti-tumorigenic

agent in glioblastoma, and further studies will be necessary

to determine its clinical applications.
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Fig. 5 Antioxidants prevent phloretin-induced ROS accumulation,

proliferation and caspase-9 activation. The U87 cell line was

pretreated with either NAC or GSH for 1 h prior to phloretin

exposure. a Flow cytometry analysis for ROS levels after staining

with H2DCFDA. b The U87 cell line was assessed using the CCK8

assay at 24 h. c Activity of caspase-9 was detected at 24 h. Data are

shown as the mean from three independent experiments. Columns,

mean of three experiments; bars, SD. *P\ 0.05, **P\ 0.01,

***P\ 0.001
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