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Abstract Childhood brain tumors show great histological

variability. The goal of this retrospective study was to

assess the diagnostic accuracy of multimodal MR imaging

(diffusion, perfusion, MR spectroscopy) in the distinction

of pediatric brain tumor grades and types. Seventy-six

patients (range 1 month to 18 years) with brain tumors

underwent multimodal MR imaging. Tumors were cate-

gorized by grade (I–IV) and by histological type (A–H).

Multivariate statistical analysis was performed to evaluate

the diagnostic accuracy of single and combined MR

modalities, and of single imaging parameters to distinguish

the different groups. The highest diagnostic accuracy for

tumor grading was obtained with diffusion–perfusion

(73.24 %) and for tumor typing with diffusion–perfusion–

MR spectroscopy (55.76 %). The best diagnostic accuracy

was obtained for tumor grading in I and IV and for tumor

typing in embryonal tumor and pilocytic astrocytoma. Poor

accuracy was seen in other grades and types. ADC and

rADC were the best parameters for tumor grading and

typing followed by choline level with an intermediate echo

time, CBV for grading and Tmax for typing. Multipara-

metric MR imaging can be accurate in determining tumor

grades (primarily grades I and IV) and types (mainly

pilocytic astrocytomas and embryonal tumors) in children.

Keywords Brain neoplasms � Child � Diffusion magnetic

resonance imaging � Magnetic resonance angiography �
Magnetic resonance spectroscopy

Introduction

Brain tumors are the second most common tumors in

children. In contrast to adults, the histological types in

childhood brain tumors vary widely. MRI is the most

important imaging tool for the assessment of childhood

intracranial neoplasm. Conventional T2, T1 and T1-

weighted imaging (WI) with gadolinium based contrast

agents (GBCAs) injection provide information on tissue

morphology and extension of the disease. Evidence to
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support the benign or malignant nature of the tumor aside

from the location includes hemorrhage, ectatic vessels

within the tumor and T2-hypointense appearance which is

secondary to high cell density [1]. The value of contrast

enhancement is limited in predicting tumor grades in chil-

dren as 89 % of low-grade tumors will show enhancement

[2]. Moreover lack of enhancement is also present in high-

grade tumors such as PNET and in up to 8 % of medul-

loblastoma [2]. Therefore, goals such as identification of the

most aggressive area of a tumor before biopsy, grading of

the tumor and assessment of the response to recent therapies

as well as the clinical effects on cognition after long-term

treatments have been responsible for the development of

advanced MRI techniques. Diffusion-weighted imaging

(DWI) provides information on density of cell and tissue

microarchitecture [3], perfusion-weighted imaging (PWI) on

capillaries and larger vessels features depending on the

sequence used and magnetic resonance spectroscopy (MRS)

on tissue neurochemical characteristics [4, 5]. These tech-

niques are considered useful tools for grading and typing

brain tumors in children [6–8]. However, apparent diffusion

coefficient (ADC) values and MRS profiles showed overlaps

between the different tumor types in children [9–12].

Intratumoral cerebral blood volume (CBV) usually corre-

lates with tumor vascularity with the higher CBV in high-

grade tumors [5]. However low grade gliomas such as

oligodendrogliomas can show elevated CBV as reported in

adult brain gliomas [13]. To date, reports have been focused

mostly on posterior fossa tumors. Therefore, the goals of this

study were to assess the diagnostic accuracy of advanced

MRI techniques (DWI, PWI, MRS) along with single

imaging parameters in the presurgical diagnostic grading

and typing of pediatric brain tumors irrespective of their

location.

Methods

Patient population

This study is a retrospective analysis of advanced MRI

techniques in children to evaluate brain tumors prior to sur-

gery. Informed consent was not required because DWI, PWI

and MRS are currently approved diagnostic procedures. This

study was approved by the Institutional Review board.

From October 2006 to April 2013, 139 patients with a

suspected brain tumor were referred by the Department of

Paediatric Neurosurgery prior to any treatment. Brain MRI

with conventional sequences, DWI, PWI and MRS, was

performed. General anaesthesia was administered in

patients younger than 5 years. Criteria for inclusion in the

study included absence of motion or susceptibility arte-

facts, and good-quality MRS spectra, arterial input function

and PWI perfusion curves. Small tumors (size less than the

MRS voxel), hemorrhagic tumors and tumors with high

susceptibility artefacts were excluded. In term of location

suprasellar tumors such as craniopharyngiomas and extra-

axial tumors such as tumors originating from the bone or

meningiomas were excluded. In term of tumor subtypes

tumors without histological data such as some cases of

diffuse brainstem glioma, of pineal tumor, of dysembry-

oplastic neuroepithelial tumor (DNET) were also excluded.

Seventy-six patients (50 boys, 26 girls; median age,

7.5 years; age range 1 month to 17.9 years) were finally

included. Histological diagnosis was obtained in all

patients within 1 week after MRI by tumor resection or

surgical biopsy.

The cases were diagnosed by two neuropathologists

independently and were also reviewed at the time of the

study by the Director of Pathology (DFB). The diagnosis

was always concordant.

Tumors were classified and graded according to the latest

WHO 2007 classification [14]. All tumors were neuroep-

ithelial, of which 54 % were located in the posterior fossa

and 46 % in the supratentorial area. The tumor distribution

was as follows: grade I (n = 38), grade II (n = 6), grade III

(n = 12) and grade IV (n = 20). In order to avoid a too large

number of tumor subtypes we have pooled some of them in

eight categories (A–H) (Table 1), based on similar patho-

logical findings and/or genetic markers and also clinicora-

diological findings and biological behavior.

MRI protocol

All MR examinations were performed on a 1.5 T unit

(Symphony TIM, Siemens, Erlangen, Germany) using an

8-channel head coil. The MRI protocol included T1-weighted

gradient-echo, T2-weighted turbo spin-echo, FLAIR images

in at least two anatomic planes, DWI, MRS followed by PWI

and a 3D-gradient echo T1 sequence after GBCAs injection.

Diffusion-weighted imaging

DWI was acquired in the axial plane with a spin-echo echo-

planar sequence (TR = 3300 ms, TE = 92 ms, slice thick-

ness = 4–5 mm, no spacing, three averages, FOV 240 9

240 mm, 128 9 128 acquisition matrix, acquisition time 51 s).

Diffusion-sensitizing gradients were applied in three orthogo-

nal directions with three b values (0, 500 and 1000 s/mm2).

Proton MR spectroscopy

Single-voxel 1H-MRS was performed with PRESS (point

resolved single voxel spectroscopy) with short (30 ms) and

intermediate (135 ms) TE. The voxel of interest (8 cm3)

was placed in the solid component of the tumor away from
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calcific, hemorrhagic or necrotic areas and away from the

scalp. Water-suppressed MRS was acquired with the fol-

lowing parameters: short TE (30 ms): TR 1500 ms, 64

averages, acquisition time 1 min 36 s; intermediate TE

(135 ms): TR 1500 ms, 85 averages, acquisition time 2 min

07 s. Data were acquired with 1024 data points over a spectral

width of 1000 Hz. Non-water-suppressed MRS was also

acquired with short and intermediate TE within the voxel to

establish internal reference and normalization of the data.

Perfusion MRI

PWI was performed with DSC-MRI using a fat-suppressed

T2*-weighted gradient echo echo-planar sequence

(TR = 1480 ms, TE = 30 ms, flip angle 90�, bandwidth

1565 Hz/pixel, FOV = 230 cm, matrix = 128 9 128,

slice thickness 4–5 mm, no gap). Fifty data sets of 20 images

covering the whole brain were acquired at an interval equal

to the repetition time for 1 min 21 s. Images were first

acquired at baseline (five data sets) and then during the first-

pass of a bolus injection of GBCAs (0.1 mmol/kg of Gd-

Dota (Dotarem, Guerbet, France)) administrated via a

22-gauge to 20-gauge peripheral venous catheter with a

power injector at 3 mL/s, followed by a saline flush at the

same rate. Injection was performed manually in young

patients with a thinner catheter (24-gauge) as fast as feasible.

MR data post-processing

The same operator (MK) who performed all measurements

was blinded to histological data at the time of analysis. The

quality of the arterial input and the regions of interest

(ROI) were also reviewed for the present study by another

author (NG) and a consensus was reached to record the

lowest ADC on DWI, and the highest CBV in enhancing

tumors to minimize the possibility of bias.

MRS data

After zero filling and exponential filtering, PRESS data

were fitted in the time domain using a metabolic database

derived from MRS acquisitions of aqueous model solu-

tions of pure metabolites using the AMARES-MRUI

FORTRAN code included in homemade software devel-

oped in the IDL environment (Iterative Data Language,

Research System Inc., Boulder, CO, USA) [15, 16].

Metabolite signal concentrations for short TE (Cho

(choline), NAA (N-acetylaspartate), Cr (creatine), mIns

(myo-inositol), Glx (glutamine plus glutamate), CH2,

CH3, lipids (sum of CH2 and CH3), acetate, aspartate,

scyllo-inositol/taurine, glucose, sum of metabolites) and

intermediate TE (Cho, NAA, Cr, lactate, sum of

metabolites) were measured and normalized to water

intensity at intermediate TE, and were expressed in

arbitrary units. Metabolite signal concentrations were also

normalized to the sum of metabolites (S) at each TE.

Numerous ratios of metabolites were also analyzed.

Therefore, a total of 69 parameters from MRS were used

for the statistical analysis.

DWI and perfusion data

DWI and PWI raw data were transferred to a workstation

and analyzed with a dedicated software package (Oleas-

phere v2.2, OLEA Medical, La Ciotat, France) using a co-

registration with structural MRI.

Table 1 Histological categories and distribution of tumor types

Histological

categories

Number

of cases

Relative

frequency (%)

Histological types (number of cases)

A 17 22.36 Pilocytic astrocytomas

B 7 9.21 Gangliogliomas (6) and pleomorphic xanthoastrocytoma (1)

C 12 15.78 DNET (11) and angiocentric glioma (1)

D 4 5.26 Diffuse astrocytomas (3) and oligodendroglioma (1)

E 7 9.21 Anaplastic astrocytomas and oligoastrocytic tumors (3) and

glioblastomas (4)

F 10 13.15 Ependymomas (10)

G 3 3.94 Choroid plexus papillomas

H 16 21.05 Embryonal tumors (16) (ATRT (2), medulloblastomas (11),

ETANTR (1), pinealoblastoma (1), PNET (1))

Total 76 100

A pilocytic astrocytomas; B gangliogliomas, pleomorphic xanthoastrocytomas; C dysembryoplastic neuroepitelial tumors, angiocentric gliomas;

D infiltrative astrocytomas, grade II; E infiltrative astrocytomas, grade III, glioblastomas; F ependymomas; G choroid plexus papillomas; H

ATRT, medulloblastomas, ETANTR, pinealoblastomas, PNET

DNET dysembryoplastic neuroepithelial tumor, ATRT atypical teratoid rhabdoid tumor, ETANTR embryonal tumor with abundant neuropil and

true rosettes, PNET primitive neuroectodermal tumor
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DWI data

Five to ten circular ROIs measuring at least 20 mm2 were

manually drawn on ADC maps within the solid tumor areas

with the lowest signal intensity. Care was taken to avoid

necrosis, hemorrhage and calcifications by examining all

other MR sequences. The lowest ADC value (ADCmin) of

the tumor was then recorded. Normalization was obtained

with a control ROI placed in the normal-appearing con-

tralateral cerebellar grey matter in posterior fossa tumors

and in the normal-appearing contralateral white matter for

supratentorial tumors. ADC tumor-to-normal-brain ratios

were calculated (rADC).

Perfusion data

Arterial Input Function (AIF) was automatically generated

by OLEA software, through automatic selection of pixels

within arteries in most cases. The OLEA software used

oSVD (oscillatory Singular Value Decomposition) decon-

volution method proposed by Wu et al. [17] because it is

delay insensitive and semi adaptative. It provides robust

and accurate estimates and performs better than any other

existing SVD-based deconvolution method. The whole

concentration–time curve was integrated from the arrival of

the bolus till the end of the acquisition that includes

recirculation, which when present, is visible within the AIF

signal as well as within the signal of each voxel.

CBV maps were determined by numerically integrating

the area under the contrast agent concentration time curve.

The CBF, TTP, MTT, K2 and Tmax maps were automat-

ically generated by OLEA software. Leakage was quanti-

fied by the K2 leakage coefficient, thus allowing the

calculation of corrected CBV. For enhancing tumors, five

to ten circular ROI at least 20 mm2 were manually placed

in tumor areas of increased CBV and matched to contrast

enhancement. For non-enhancing tumors, the ROIs were

placed in the solid portions of the tumor. The highest CBV

value (CBVmax) was recorded. Great care was taken for

the placement of the ROI by overlaying different sequences

on CBV maps in order to avoid hemorrhage and calcifi-

cations (precontrast T1-weighted and b0 images), necrosis

and cysts (FLAIR sequence) and intratumoral vessels

(post-contrast T1-weighted images, unprocessed perfusion

images, MTT and time MIP (tMIP) maps) (Supplemental

material 1). The control ROI was placed in the contralateral

cerebellar grey matter for posterior fossa tumors because

perfusion measures were reported to be less variable than

in the cerebellar white matter [18], and in the normal-ap-

pearing contralateral white matter for supratentorial

tumors. Tumor-to-brain ratios were obtained for all per-

fusion parameters (CBV, corrected CBV, CBF, TTP, MTT,

and Tmax). K2 values were not normalized because the

control K2 values were close to zero, as previously

reported [19]. Only positive K2 values, which are widely

accepted to represent leakage, were taken into account.

Statistical analysis

An automatic brain tumor classification was used based on

the DWI, PWI, MRS techniques and a machine learning

technique [20]. Statistical analysis was performed using the

free computing environment R (R Development Core

Team 2014). A total of 84 parameters were included as

input data (two from DWI, 13 from PWI, and 69 from

MRS) to perform multivariate statistical analysis.

We used the random forest approach for classification

[21], which is accepted as a good predictive model in

supervised machine learning. Random Forest for classifica-

tion is an ensemble method which combines several decision

trees. A decision tree is a statistical model based on several

binary decision rules having the form X\ s where X is any

explanatory factor like ADC or rADC, and s is a threshold

over that factor. The data set at hand belongs to the root

node of the tree. It is split in two subsets (new nodes) using a

binary decision rule such that the two obtained subsets are

the most homogeneous with respect to the output variable

(grade or type of tumor). The best split for each subset is

selected among all the possible splits over mtry = H84

parameters selected at random among the 84 parameters.

The splitting process of the data is repeated till very few

observations in each of the subsets obtained (leaves of the

tree) are left. As a classifier, a decision tree may assign a

class (a type or a grade) to every new patient.

Each of the ntree = 500 trees is trained on a bootstrap

sample. A bootstrap sample contains n observations drawn

at random with replacement from the original data set. The

final classifier defined by the random Forest, assigns a class

for a new patient by applying a majority vote over the

decisions given by the trees in the forest.

For both grade and histological types, models were

developed to identify which combination of parameters

(among DWI, MRS, PWI) gave the best diagnostic accu-

racy. Seven models were created: M1 (including only DWI

parameters), M2 (PWI, including all 13 PWI parameters),

M3 (MRS, including all 69 MRS parameters), M4

(DWI ? PWI), M5 (DWI ? MRS), M6 (MRS ? PWI)

and M7 (DWI ? PWI ? MRS).

The models were fitted on two-thirds of the data set

(training sample) and tested over the rest (test sample).

Training and test samples were drawn randomly from the

original data set with stratification. The predictive accuracy

(100—predictive error rate) is calculated as an average

accuracy obtained from 1000 such test samples. The seven

models were fitted separately to predict grades and histo-

logical types.
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The MR parameters that contributed to accurate tumor

grading and typing were subsequently identified in

decreasing order of importance. As such it was possible to

determine the subset of MR parameters giving the highest

predictive accuracy with regard to grading and typing.

Results

The diagnostic accuracy of each modality or combined

modalities for tumor grading and typing is shown in

Table 2. Models M4–M7 combining two or more imaging

modalities performed better than those using one imaging

modality separately.

Concerning tumor grading, the highest accuracy was

obtained with the M4 model (DWI ? PWI, 73.24 %) fol-

lowed closely by model M7 (DWI ? PWI ? MRS,

72.9 %) and model M5 (DWI ? MRS, 71.88 %).

Concerning tumor typing, the highest accuracy was

obtained with the M7 model (PWI, DWI and MRS,

55.76 %), followed by model M5 (DWI ? MRS,

54.78 %), model M4 (DWI ? PWI, 53.01 %) and model

M6 (PWI ? MRS, 52.52 %).

We could also note that in general the predictive models

performed less well for tumor typing than for tumor

grading.

The best predictive model for the determination of

tumor grade (model M4 combining DWI ? PWI) revealed

high diagnostic accuracy for grades I (88 %) and IV

(86.62 %) but low accuracy for grades II (20.1 %) and III

(36.16 %).

The best-performing predictive model for the determi-

nation of tumor type (model M7 combining DWI, PWI and

MRS) (Table 3) revealed high diagnostic accuracy for cat-

egories H (embryonal tumors) (90 %) and A (pilocytic

astrocytomas) (83.21 %). Predictive diagnostic accuracy

was near 50 % for groups C (DNET) and F (ependymomas)

and extremely low for the remaining tumor categories.

The 30 most powerful parameters to classify the dif-

ferent tumor grades and types are given in Fig. 1 in

decreasing order of importance. Figure 1 shows the vari-

ables importance as computed by the Random Forest. It

corresponds to the Mean Decrease in Accuracy (the x-axis)

induced on the random Forest model if the corresponding

variable was perturbed (its values in test samples are ran-

domly permuted).

ADC and rADC were the most powerful parameters to

classify the different tumor grades and types, followed by

the choline level at intermediate TE. For tumor grading,

additional parameters were Cho/H20 and Cho/NAA at

short TE, Cho/S at intermediate TE and CBV. For tumor

typing, the additional parameters were the sum of

metabolites and lactate at intermediate TE, Cho/H20 and T
a
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Cho/S at short TE and rTmax. Supplemental material 2

shows that for tumor grading the best diagnostic perfor-

mance was obtained with the 18 most powerful parameters

(76 % accuracy) and for tumour typing the 16 best-per-

forming parameters (62 % accuracy) when these parame-

ters were sequentially added.

Discussion

Many pediatric brain tumors have been studied, mostly of

the posterior fossa, using DWI [8, 9, 22, 23]. Reports

using MRS [24, 25], DWI and MRS [12, 26], PWI and

DWI [18] or the combination of these three techniques [4]

are rare in the pediatric population. The present retro-

spective study consisted of a preoperative multiparametric

MR assessment of childhood brain tumors that identified

the best imaging protocol and the most powerful param-

eters categorizing the grade and type of a variety of

supra- and infratentorial tumors. Usually histopathological

diagnosis is based on cell proliferation, high cell density

and high vascularity which are evaluated respectively by

the choline level, the ADC, and the parameters from PWI

particularly CBV. However pediatric brain tumors are

heterogeneous and have specific histologic and imaging

characteristics. Therefore many of the assumptions in

adults do not apply in children with respect with grade

versus enhancement and choline level, e.g. pilocytic

astrocytoma [27].

Statistical analysis

Machine Learning types of statistical analysis are modern

statistical modeling tools which employ new algorithms for

estimations and new approaches which may require

intensive computations. These techniques are widely used

for statistical modeling, regression classification and pre-

diction. Decision trees are among the fundamental and

basic methods in machine learning. This kind of approa-

ches is used in all scientific domains including medicine,

and a lot of developments have been achieved for instance

in the context of bioinformatics.

Table 3 Predictive diagnostic accuracy of model M7 (combining DWI, PWI and MRS) with regard to tumor typing

A B C D E F G H

DWI ? PWI ? MRS (%) 83.21 8.01 58.31 1 8 51 0 90

A pilocytic astrocytomas; B gangliogliomas, pleomorphic xanthoastrocytomas; C dysembryoplastic neuroepitelial tumors, angiocentric gliomas;

D infiltrative astrocytomas, grade II; E infiltrative astrocytomas, grade III, glioblastomas; F ependymomas; G choroid plexus papillomas; H

ATRT, medulloblastomas, ETANTR, pinealoblastomas, PNET

Fig. 1 Importance of each parameter as a mean contribution to the

accuracy of the global random forest classifier over test samples.

Note S = (NAA ? Cr ? Cho)135; S1 = (NAA ? Cr ? Cho)30;

S2 = (S1 ? Myo_3.56)30. L lactate, Scytau scyllo-inositol/taurine,

L lactate, SL S ? L, 30 TE 30, 135 TE 135
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The use of machine learning approaches is particularly

appealing for high dimensional problems (where the sam-

ple sizes are very small compared to the number of vari-

ables-the dimension of the data). Another point iof interest

is also that of selecting important features to aid with

classification and prediction. These are situations where

classical models are not satisfactory because they are either

parametric (making distributional assumptions, mainly

Gaussian), or linear (like linear discriminant analysis), and

are unable to provide good estimates in high dimensions as

they need large sample size often not available in practice.

Classification methods for pediatric brain tumors have

been previously used with MRS [10, 24, 25, 28] and

DWI ? MRS [12], with linear discriminant analysis. The

present study evaluated advanced techniques and multiple

parameters with a very sophisticated analysis and extre-

mely narrow confidence intervals and therefore will have a

lower reported mean accuracy for particular parameters.

However this should not be regarded as a poor result but

rather as a much more precise evaluation of a technique.

Diagnostic accuracy of MR modalities and optimal

MR protocol

The optimal brain imaging protocol to best determine

tumor grade was obtained by combining DWI and PWI,

with a predictive diagnostic accuracy of 73.24 %, while

tumor types were better evaluated with the combination of

DWI, PWI and MRS, although with a lower performance

(55.76 %). These results also showed that the diagnostic

performance for tumor grading was not highly affected

when using DWI and MRS instead of DWI and PWI (di-

agnostic accuracy, 71.88 vs 73.24 %). In a similar fashion,

the diagnostic performance in tumor type assessment was

slightly lower when combining DWI and PWI or DWI and

MRS compared to the three MR modalities (53.01 or

54.78 % vs 55.76 %). Therefore, DWI combined with

either PWI or MRS can be performed interchangeably if

necessary because the diagnostic efficacy of these models

is quite similar for tumor grading and typing.

The only prior study of pediatric supra- and infratentorial

brain tumors using multiparametric MR modalities showed

statistical differences for choline and lipids between high-

and low-grade tumors [4]. High accuracy (98 %) was

obtained for cerebellar tumour assessment by MRS [24] with

short and intermediate TE and using 20 metabolites to dis-

tinguish the three most frequent tumors (medulloblastoma,

ependymoma, astrocytoma) [25]. The accuracy of MRS for

tumor typing as a single modality was lower in our results

(53.01 %) compared to the aforementioned study: this could

be related to a wider range of histological types or a differ-

ence in post-processing of MRS data. Combined DWI and

MRS data was also reported in posterior fossa tumors with

complete separation of all tumor groups by linear discrimi-

nant analysis and six metabolites [12]. However, in our study

the model combining DWI and MRS showed a low diag-

nostic accuracy (54.78 %), most likely due to the pooling of

tumors irrespective of tumor location.

The diagnostic performance of advanced MRI tech-

niques for each tumor grade and type is also crucial to

enhance the presurgical diagnostic confidence level. Good

diagnostic accuracy was found with the diagnosis of grade

I and IV tumors (88 and 86.62 %), while poor accuracy

was present with the evaluation of grade II and III tumors

(20.51 and 36.16 %). The most likely explanation could lie

in the intrinsic histological heterogeneity of brain tumors,

which have histological similarities such as in grades II and

III, and which are therefore difficult to distinguish from

each other, particularly ependymomas and gliomas. High

diagnostic accuracy was present with the evaluation of

embryonal tumors (83.2 %) and pilocytic astrocytomas

(89.15 %), while a low accuracy, although above 50 %,

was obtained when evaluating DNET and ependymomas.

Performance of MR parameters

ADC and rADC were the most effective parameters to pre-

dict tumor grade and type. This concurs with previous

studies that showed a strong negative correlation between

ADC and cell density and grade [29, 30]. Recent paediatric

studies showed that ADC alone in combination with con-

ventional MRI could distinguish high- and low-grade

tumours with high sensitivity and specificity, with a cut-off

ADC minimum value distinguishing the two groups [11].

However, ADC taken alone for grading and typing tumours

resulted in low accuracy in this study (62 and 42.49 %,

respectively) because tumours were not pooled into low- and

high-grade groups but were separated into grades I–IV.

Although previous reports have shown that ADC can dis-

tinguish most tumour types specifically in the posterior fossa

with high accuracy [8, 9, 22, 23], ADC is in fact limited and

we cannot rely on a cut-off value due to the histological

variability of ependymomas and medulloblastomas [11].

Choline at intermediate TE was the second most

important parameter for grading and typing. A positive

correlation between total choline and tumour grade has

been demonstrated specifically for pilocytic astrocytoma

and medulloblastoma of the posterior fossa [10, 12, 25, 28].

An elevated choline peak is known to be related to

increased membrane turnover, cellularity and tumour

growth [4], with the highest values seen in medulloblas-

toma and choroid plexus carcinoma [10]. Surprisingly,

lipids were not an accurate MRS parameter in our study for

grading, as has been previously reported [10].

PWI has become an essential tool to evaluate brain

tumors. It is generally recognized that intratumoral CBV
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correlates with tumor vascularity with the highest CBV

value in high-grade tumors [5]. However, the present results

showed that CBV was found to be less powerful than ADC

and choline when grading tumors and particularly when

typing tumors. This may relate to the fact that childhood

tumors differ from adult brain tumors not only pathologi-

cally but genetically as well. Indeed, increased cell density

exceeds the high vascularity in high-grade tumors such as

embryonal tumors, which are more frequent in children than

glioblastoma. The second probable explanation is that there

is a CBV value overlap between the different grades and

types. Finally the last reason may be related to the ROI

placement technique. Vessels were excluded by using sev-

eral maps (unprocessed perfusion images, tMIP and MTT) to

more precisely assess tissue microvasculature and to avoid

overestimation of CBV and overgrading. Our results also

showed that rTmax is more powerful than CBV for tumor

typing (see Fig. 1b) suggesting that some pediatric brain

tumors have similar behavior as ischemia. The highest Tmax

values were found in categories A (pilocytic astrocytomas)

and B (gangliogliomas and pleomorphic xanthoastrocy-

tomas). This is probably linked to hyalinized vascular scle-

rosis and infarct associated necrosis in pilocytic

astrocytomas, and to perivascular inflammatory cells in

pilocytic astrocytomas and gangliogliomas (prayson).

Finally, this study also showed that the combination of

the best MR parameters was more accurate than combined

MR modalities, particularly for tumor grading ([over

75 %) and typing (\although below 75 %), clearly indi-

cating the need for the three MR modalities and their

associated parameters.

Limitations of the study

The main limitations of this study, apart its retrospective

nature, are the small sample size for grade II tumors, the

many tumor types, with prevalence of grades I and IV and

types A and H. However, this corresponds to the usual

distribution frequency of pediatric brain tumors [7].

Other limitations are of technical origin with regards to

the recent recommendations for DSC [13]: a GRE-EPI

sequence with a high flip angle of 90� was used for DSC-

MRI without preload of GBCA that could have affected

CBV values. The base-line measurements were not as

numerous as recommended with consequent decrease of

signal to noise ratio.

Conclusion

The purpose of this study was to evaluate the accuracy of

some MR techniques and derived parameters utilized by

neuroradiologist to support the diagnosis. Accuracies

reported are estimated in a very robust and unbiased way

(random forests). Advanced MR techniques can be very

accurate in identifying grades I and IV tumors in children

as well as in typing pilocytic astrocytomas and embryonic

tumors, when using the proper parameters.
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