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Abstract Bevacizumab is widely used for treatment of

high-grade gliomas and other malignancies. Because beva-

cizumab has been shown to be associated with neurocogni-

tive decline, this study is designed to investigate whether

prolonged treatment with bevacizumab is also associated

with brain atrophy. We identified 12 high-grade glioma pa-

tients who received bevacizumab for 12 months at the first

recurrence and 13 matched controls and blindly compared

the volumes of the contralateral hemispheres and contralat-

eral ventricle in these two groups at baseline and after

12 ± 2 months of the baseline scan by two independent

analyses. The volumes of the contralateral hemispheres and

ventricles did not differ significantly between the two groups

at baseline. Whereas, in the control group the volumes of the

contralateral hemisphere changed subtly from baseline to

follow-up (p = 0.23), in the bevacizumab-treated group the

volumes significantly decreased from baseline to follow-up

(p = 0.03). There was significant increase in the contralat-

eral ventricle volume from base line to follow-up scans in

both the control group (p = 0.01) and in the bevacizumab

group (p = 0.005). Both the absolute and the percentage

changes of contralateral hemisphere volumes and con-

tralateral ventricular volumes between the two patient

groups were statistically significant (p\ 0.05). Results of

this study demonstrate prolonged treatment with beva-

cizumab is associated with atrophy of the contralateral brain

hemisphere.

Keywords Bevacizumab � Brain atrophy � MRI

Introduction

Vascular endothelial growth factor (VEGF) is a subfamily

of growth factors that are involved in both vasculogenesis
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and angiogenesis. VEGFA, which is often referred to as

VEGF, is the most studied factor regulating angiogenesis.

It activates VEGF receptors (VEGFR1 and VEGFR2) and

plays a critical role during embryonic development, as well

as in homeostatic functions in fully developed brain.

In the adult brain, VEGF plays an essential role in

homeostasis of normal neuronal and astrocyte functions.

The most prominent site of VEGF expression is in the

choroid plexus, and VEGF plays an important role in

choroid plexus endothelial cell survival and fenestrae for-

mation [1]. In brain parenchyma, astrocytes are the primary

source of VEGF [2–6], where VEGF plays a major role in

upregulation of different genes in response to altered

cerebral perfusion and metabolism [7]. Recent evidence

shows that VEGF is also expressed in the adult brain in a

region specific manner and executes nontraditional

homeostatic functions that are not angiogenesis-dependent

or even perfusion dependent. [8] Of the many known

functions, VEGF has an important role as a neurogenic

factor that is essential for neuronal stem cell production

and neuronal differentiation in the hippocampus [3, 9–11],

and in the subventricular zone [10–14], and it also func-

tions in neuroblast migration and neuronal maturation [8].

Additionally, it has been shown that upregulation of VEGF

in the hippocampus improves memory as a result of in-

creasing plasticity of mature hippocampal neurons [3], and

hippocampal neurogenesis [9]. In addition VEGF has been

shown to enhance hippocampal memory by stabilization of

hypoxia inducible factor (HIF) in the hippocampus [15].

VEGF plays a crucial role in the physiology of high-grade

gliomas. There is upregulation of VEGF production in high-

grade gliomas mediated by autocrine and paracrine pro-

duction in the hypoxic microenvironment of the tumor tissue

[16–19]. Excessive production of VEGF leads to new blood

vessel formation. However, VEGF-induced tumor vessels in

glioblastoma (GBM) are disorganized and highly permeable,

resulting in loss of blood brain barrier (BBB) integrity. The

impaired BBB results in brain edema, which often causes

serious clinical symptoms in GBM patients. Furthermore,

higher VEGF expression in gliomas correlates with in-

creased tumor invasiveness and higher histological grade

[20]. These findings provide a rationale for the development

of anti-angiogenesis therapy. Of the many developed an-

tiangiogenic drugs, bevacizumab, a humanized monoclonal

antibody against VEGF, is most commonly used for the

treatment of recurrent GBM [21, 22].

With the wide spread use of bevacizumab in GBM and

in other cancers, new adverse biological effects are

gradually being recognized. Bevacizumab treatment can

significantly change the glioma physiology by promoting

tumor cell invasiveness through activation of MET sig-

naling that is induced by inhibition of VEGF [23, 24]. Also,

a recently completed phase III clinical trial comparing the

efficacy of bevacizumab with the standard of care treat-

ment in newly diagnosed GBM patients showed a sig-

nificant neurocognitive decline in patients treated with

bevacizumab [25]. In clinical practice, we have noticed that

more prominent enlargement of brain ventricles in patients

treated with bevacizumab, as compared to the patients

treated with the standard of care. These observations led to

our hypothesis that treatment with bevacizumab is associ-

ated with brain atrophy.

In this retrospective study, we compared the volume of

the contralateral (non-tumor side) brain hemisphere and

contralateral lateral ventricular volume in patients treated

with bevacizumab plus standard of care treatment (beva-

cizumab group) with patients treated only with standard of

care treatment regimen including radiation and temozolo-

mide (control group) in a blinded fashion.

Methodology

Study set up and patient selection

The University of Alabama at Birmingham Institutional

Review Board approved this Health Insurance Portability

and Accountability Act (HIPAA) compliant study and

waived the requirement of informed consent. Patients with

histopathologically confirmed high-grade gliomas were

included in the study. Higher-grade gliomas developing

from previously known WHO grade II tumors were ex-

cluded from the study because these tumors have a dif-

ferent time course of disease and heterogeneous treatment

experience. In addition, we excluded all patients who were

treated with more than one course of fractionated radiation

therapy or who received a second dose of radiation therapy

at tumor recurrence (Table 1). The inclusion criteria were:

(1) overall survival longer than 1 year from the initiation of

bevacizumab therapy, (2) availability of a baseline MRI

that included a 3D post contrast T1 weighted sequence

within prior 1 month of initiation of bevacizumab therapy,

(3) availability of a follow-up MRI that included a 3D post

contrast T1 weighted sequence after 12 ± 2 months ini-

tiation of the bevacizumab treatment, (4) treated with

standard Stupp protocol [26] at the diagnosis and (5) be-

vacizumab treatment was started at first recurrence. All

patients with bi-hemispheric involvement, tumor extension

to the ventricles, midline tumor (corpus callosum in-

volvement), midline deviation and significant mass effect

to the ventricles were excluded. All the volumetric analysis

were performed on the contralateral hemisphere (non tu-

mor bearing), not in the ipsilateral (tumor containing) brain

hemisphere in order to avoid treatment-related changes of

brain and or ventricular volumes such as anti-edema effect

of bevacizumab, steroids and variable size of the resection.
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Bevacizumab group

We retrospectively evaluated all the patients with high

grade gliomas (n = 154) who received bevacizumab ther-

apy in the Division of Neuro-oncology in the Neurology

Department at the University of Alabama at Birmingham

(UAB) between December 2007 and January 2013. Only

62/154 patients lived longer than 1 year. Details of the

bevacizumab therapy were not known in 6 patients because

they were treated at different hospitals after initiation of

their treatment. Of the remaining 56 patients, only 12 pa-

tients (Table 1) met the inclusion and exclusion criteria: 7

patients had primary GBM, 3 patients had anaplastic as-

trocytoma (AA) and 2 patients had anaplastic oligoastro-

cytoma (AO). Most of the patients were excluded because

the 3D post contrast T1 weighted sequence was not

available for analysis either at the baseline or at the second

follow-up scan (n = 28). Furthermore, 7 patients had bi-

hemispheric tumors, 4 patients had tumor extension to the

ventricles, and 5 patients had midline involvement (Fig. 1).

Of the 12 patients in the bevacizumab group, 11 patients

were initially treated with tumor resection and 1 patient

had a biopsy only (thalamic tumor). After initial resection

or biopsy, all patients were treated with concurrent ra-

diation and temozolomide therapy (75 mg/m2) followed by

maintenance temozolomide therapy (150–200 mg/m2) for

5 consecutive days every month). Of the included 12

patients, 8 patients received C12 cycles of temozolomide

therapy at the time of follow-up MRI and the remaining 4

patients received B12 cycles of temozolomide therapy at

Table 1 Details of the patients:

demographics and treatment

history

* Rad fractionated radiation,

tem temozolomide, CCNU

lomustine

Bevacizumab group (n = 12) Control group (n = 13)

Sex of the patient

F = 6 M = 6

M = 6 F = 7

Age of the patient at diagnosis

Average = 47.5 Average = 50.8

Range = 30–61 Range = 29–67.5

Hemispheric distribution of the tumors

Right = 9 Right = 6

Left = 3 Left = 7

Treatment

Initial treatment

Resection (n = 11) Resection (n = 12)

Biopsy (n = 1) Biopsy (n = 1)

Treatment before Initiation of bevacizumab therapy Treatment before baseline scan

Concurrent tem ? rad followed by tem (n = 9) Radiation followed by tem (n = 2)

Concurrent tem ? rad followed by tem (n = 10)

Concurrent tem ? rad followed by tem ? CCNU

(n = 3)

Concurrent tem ? rad followed by tem ? CCNU

(n = 1)

Radiation dose

60 Gy (n = 5) 60 Gy (n = 8)

50 Gy (n = 1) Not documented (n = 5)

Not documented (n = 6)

Fig. 1 Flow chart of patients who met inclusion and exclusion

criteria for the bevacizumab group
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the time of follow-up MRI. Fractionated radiation therapy

was delivered at UAB in 6 patients (60 Gy = 5,

50 Gy = 1). The remaining 6 patients were treated at

different hospitals and the dose of radiation was not

documented. Only 4 patients were treated with oral dex-

amethasone at a daily dose varying between 0.5 and 4 mg

at the time of baseline scan and 5 patients were treated with

oral dexamethasone at a daily dose varying between 0.5

and 8 mg at the time of follow-up scan.

Control group

In the control group, we included primary GBM patients

who were treated at UAB between January 2006 and De-

cember 2007. Diagnosis of primary GBM was based on

clinico-radiological findings that met the following three

criteria: (1) neurological symptoms for less than 3 months

with no clinical or histopathological evidence of a preex-

isting less malignant precursor lesions, (2) brain imaging

findings at presentation that are suggestive of high-grade

infiltrative tumor, and (3) histopathologically proven GBM

[27, 28]. As the median time difference between the di-

agnosis and initiation of bevacizumab treatment in the

bevacizumab group was 9 months, the baseline scan for the

control group was obtained 9 ± 2 months after the initial

diagnosis and the follow up scan was obtained

12 ± 2 months after the base line scan. One patient had

tumor recurrence before the baseline scan and additional 2

patients had recurrence between the baseline and follow-up

scans. All the recurrent tumors were treated with resection

and chemotherapy. Radiation therapy was not used to treat

any of the recurrent tumors.

All 13 patients (Table 1) in the control group were

treated with standard treatment protocol) at diagnosis: re-

section followed by concurrent radiation and temozolo-

mide therapy (75 mg/m2) followed by maintenance

temozolomide therapy (200 mg/m2) for 5 consecutive days

every month. Radiation therapy was delivered at UAB in 8

patients. The remaining 5 patients were treated at different

hospitals and the dose of radiation was not documented. Of

the 13 patients, 8 patients received C12 cycles of temo-

zolomide therapy at the time of follow-up MRI and the

remaining 5 patients received B12 cycles of temozolomide

therapy at the time of follow-up MRI. The steroid dose at

the time of baseline scans and at the time of follow-up

scans was not documented in the medical record in 12 of 13

patients. One patient was treated with 2 mg of dexam-

ethasone at the baseline and 3 mg at follow-up.

Image acquisition

Post contrast gradient echo 3D T1 weighted MRI was used

for brain segmentation with administration of 0.1 mmol/kg

of gadoteridol (ProHance, Bracco Diagnostic Inc, Prince-

ton, NJ). MRI was performed either on 1.5 T magnets

(Echospeed, GE Medical Systems, Milwaukee, Wisconsin

and Achieva, Phillips Medical System, Netherlands) or 3 T

magnet (Achieva, Phillips Medical System, Netherlands).

3D fast spoiled gradient echo sequence (fSPGR) in the

axial plane (TR = 16.528 ms, TE = 7.472 ms,

FOV = 25 cm, slice thickness = 1.8 mm) was used in the

GE magnets, high resolution sensitivity encoded T1

weighted sequence (sT1 W 3D HR SENSE) in the axial

plane (TR = 25 ms, TE = 4.339 ms, FOV = 25 cm, slice

thickness = 1.8 mm) was used in the 1.5 T Phillips magnet

and 3D T1 turbo field echo (TFE) (TR = 15.0888 ms,

TE = 4.60005 ms, FOV = 25 cm, slice thick-

ness = 1.8 mm) was used in the 3 T Philips magnet. The

image matrix size of both the control group and the be-

vacizumab varied from 0.79–1.86 mm3.

Image analysis

All images were processed and analyzed by an imaging

scientist blinded to patient treatment history and then

validated by another imaging scientist who was also

blinded to the initial results as well as the treatment history.

The entire brain was segmented using an automated brain

segmentation tool, Object Extractor, which is supported by

a commercial image processing software package, Analyze

(version 11.0; Biomedical Imaging Resource, Mayo Clinic,

Rochester, MN). The ipsilateral hemisphere region (tumor

containing) was removed first, and then the brainstem and

cerebellum remaining in the contralateral hemisphere re-

gion were excluded manually using ImageJ (version 1.48o;

National Institutes of Health, Bethesda, MD). A global

threshold technique was applied to deselect regions that

appeared darker than grey matter, such as ventricles and

fissures. 3-dimensional median filtering (7 9 7 9 7) was

applied to suppress noise and to smooth out the object

boundary. The brain volume was calculated as the sum of

all voxels within the boundary multiplied by the unit voxel

size. The lateral ventricle in the contralateral hemisphere

region was segmented using a variational region-growing

method [12]. The ventricular volume was segmented ex-

cluding the volume of the choroid plexus. The quality of

segmentation was checked for all the images. During the

validation analysis, all segmented images were compared

with the original brain images, and any segmentation errors

were fixed. Finally, a neuroradiologist manually reassured

the quality of the segmentation.

Statistical methods

Differences in the change in absolute brain and ventricle

volume and percent change in these values were analyzed
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with repeated measures ANOVA. Data are presented as

mean ± standard deviation, and p values less than 0.05

were considered significant. To assess inter-rater agree-

ment, we calculated intra-class correlations initial analysis

and the validation analysis for each time point both for the

control group and for the bevacizumab group. SAS, version

9.4 (SAS Institute Inc., Cary, NC) were used to analyze all

data.

Results

Supplementary Fig. 2 demonstrates 3D volume rendered

images of contralateral hemispheres and ventricles in the

baseline and follow-up scans of one representative patient

from the bevacizumab treated group (Fig. 2a) and one

representative patient from the control group (Fig. 2b).

Contralateral hemisphere volumes in the control group at

the baseline and follow-up scans were 536.1 ± 50 cm3

(range 568.3–623.3 cm3) and 541 ± 46 cm3 (range

462.0–601.0 cm3) respectively. This change of volume

from baseline to follow-up imaging was not statistically

significant (p = 0.23). Contralateral ventricular volumes at

baseline and at follow-up scans of the same patient group

were 13 ± 8 cm3 (range 5.5–29.1 cm3) and 16 ± 9 cm3

(range 6.7–33.6 cm3) respectively (Supplementary

Table 1). This change of volume was statistically sig-

nificant (p\ 0.01). In the bevacizumab treated group, the

mean hemisphere volumes at the baseline and follow-up

scans were 579 ± 59 cm3 (range 491.4–672.8 cm3) and

559.7 cm3 (range 409.6–668.4 cm3) respectively. The

ventricular volumes at the baseline and at the follow-up

scan of the same patient group were 11 ± 7 cm3 (range

3.0–26.5 cm3) and 15 ± 10 cm3 (range 4.6–34.7 cm3).

There was no statistical difference in the base line con-

tralateral hemisphere (p = 0.0678) and contralateral ven-

tricular volume (p = 0.3878) between the patients in the

control group and the bevacizumab-treated group. Sup-

plementary Fig. 1 shows box plots of the contralateral

brain hemisphere and contralateral ventricle volumes.

Mean absolute contralateral hemisphere volume change

in the bevacizumab group was -18.3 ± 25.8 cm3. Mean

absolute contralateral hemisphere volume change in the

control group was 4.4 ± 13.2 cm3 (Table 2). The difference

in change of absolute contralateral hemisphere volume be-

tween the two treatment groups was statistically significant

(p = 0.0093). Mean absolute contralateral ventricle volume

change in the bevacizumab group was (4.1 ± 4.1 cm3)

compared to the control group (1.4 ± 1.7 cm3). This dif-

ference in change of ventricle volume was also statistically

significant (p = 0.0388).

The percentage change of volume of the contralateral

hemisphere and contralateral lateral ventricle in each pa-

tient from both the control group and the bevacizumab

treated group is shown in Fig. 2 and Table 2. Mean of the

percentage change of brain volume in the control group

was 1 ± 0.6 % compared to -3.2 ± 1.5 % in the beva-

cizumab group. Mean of the percentage change of ventricle

volume in the control group was 11.0 ± 2.6 % versus

33.2 ± 9 % in the bevacizumab group. The percentage

changes in brain volume (p = 0.0114) and ventricle vol-

ume (p = 0.0144) between the base line scan and the

Fig. 2 Bar diagram showing percentage change of volumes of

contralateral hemisphere and contralateral ventricle from baseline

scan to follow-up scan from the initial analysis. a Percentage change

of contralateral hemisphere volume in each patient in the control

group (blue bars) and in the bevacizumab group (red bars).

Contralateral hemisphere volume is considered 100 % for each

patient at the baseline. b Percentage change of contralateral ventricle

volume in each patient in the control group (blue bars) and in the

bevacizumab group (red bars). Contralateral ventricle volume is

considered 100 % for each patient at the baseline
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follow-up scan are significantly different between beva-

cizumab and the control group.

The results of the validation analysis (Table 3) by the

second imaging scientist were similar to the original analysis

(Supplementary Table 2). At baseline contralateral hemi-

sphere volume of the control group was 535 ± 14 cm3 and

of the bevacizumab group was 578 ± 16 cm3 (p = 0.0646).

At baseline contralateral ventricle volume of the control

group was 14 ± 2 cm3 and of the bevacizumab group was

11 ± 2 cm3 (p = 0.3876). Percentage change of the con-

tralateral hemisphere from baseline to follow-up MRI in the

control group was 0.79 ± 0.61 % (p = 0.2061) and in the

bevacizumab group was -3.4 ± 1.42 % (p = 0.0106).

Percentage change of the contralateral ventricle from base-

line to follow-up MRI in the control group was

10.01 ± 3.19 % and in the bevacizumab group was

40.28 ± 11.13 % (p = 0.0126). There was almost perfect

agreement between the initial analysis and the validation

analysis with intra-class correlation coefficient of[0.99 in

all the measurements except for the measurement of the

contralateral hemisphere volume measurement at follow-up

that demonstrates intra-class correlation coefficient of 0.85

(Supplementary Table 3).

Discussion

VEGF is one of the key proangioangemic molecules ex-

pressed in high-grade gliomas [29, 30]. In addition to an-

giogenesis, recent studies have discovered that autocrine

and paracrine VEGF signaling contribute to key aspects of

tumorigenesis, independently of angiogenesis in high grade

glioma [31, 32]. This led to the development of anti-an-

giogenic therapy, either VEGF- or VEGFR-targeted agents,

for the treatment of high grade gliomas [33] In 2009, the

US Food and Drug Administration (FDA) granted accel-

erated approval of bevacizumab for treatment of recurrent

GBM based on two phase II trials showing improved re-

sponse rates and 6-month progression-free survival com-

pared to historical controls [21, 22]. Bevacizumab-

mediated inhibition of VEGF is currently the predominant

mode of anti-angiogenic therapy in high-grade gliomas and

in cancers of many other body parts [33, 34]. We believe

that the results of our study identifies a potential adverse

event of long term bevacizumab therapy and should be

validated with a large number of patients. The results of

our study are particularly important to patients who have

longer overall survival.

Two recently published large phase III trials aimed at

determining the efficacy of first-line bevacizumab in newly

diagnosed GBM show somewhat different outcomes. Ra-

diation Therapy Oncology Group Study 0825 (RTOG8025)

found no improvement in overall survival nor a significant

prolongation of PFS, while the industry-sponsored AVA-

glio trial found improved PFS and patient-reported out-

comes, but no improvement in overall survival [25, 35].

Interestingly, RTOG8025 study also incorporated assess-

ment of neurocognitive function, and confirmed a significantly

decline in neurocognitive function in the bevacizumab treated

group in a large cohort of patients with appropriate control

group. The authors did not propose any biologic explanation of

neurocognitive decline.Neurocognitive decline in patientswith

Table 2 Results. Absolute and percentage change of brain volumes between the bevacizumab group and control group

Control group [mean

(in cm3) ± SD]

Bevacizumab group

[mean (in cm3) ± SD]

p value

Absolute contralateral hemisphere volume change 4.4 ± 13.2 -18.3 ± 25.8 0.0093

Absolute contralateral ventricular volume change 1.4 ± 1.7 4.1 ± 4.1 0.0388

Percentage contralateral hemisphere volume change 1.0 ± 2.2 -3.2 ± 4.9 0.0114

Percentage contralateral ventricular volume change 11.1 ± 9.5 40.4 ± 38.7 0.0144

Table 3 Results of the validation analysis

Control group

(mean ± SD)

Bevacizumab group

(mean ± SD)

p value

Contralateral hemisphere volume (cm3) at baseline 536.1 ± 50.1 578.1 ± 59.3 0.0646

Contralateral ventricular volume (cm3) at baseline 14.1 ± 8.1 11.4 ± 8.1 0.3876

Percentage change of contralateral hemisphere volume from baseline to

follow-up

1.0 ± 2.2 % -3.4 ± 4.9 % 0.0106

Percentage change of contralateral ventricle volume from baseline to

follow-up

10.0 ± 11.5 % 40.3 ± 38.6 % 0.0126
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GBM can be related to treatment such as radiation therapy,

chemotherapy or even surgery (if medial temporal lobe or

frontal lobe have been removed) or can be due to tumor infil-

tration of the key areas brain responsible for memory and ex-

ecutive functions. It is difficult to precisely identify the cause of

neurocognitive decline. In the RTOG 0825 clinical trial, pa-

tients in both the control and the bevacizumab groups were

treated with radiation, chemotherapy and surgery. The only

difference between the two groups was use of bevacizumab

versus placebo. This raises a concern if neurocognitive decline

is related to bevacizumab treatment particularlywith theknown

fact that VEGF has many critical memory functions. Our study

did not include any neuropsychiatric evaluation and the rela-

tionship of neurocognitive decline and brain atrophy cannot be

established from our study. As atrophy of different brain re-

gions is strongly associated with neurocognitive decline in

many neurodegenerative diseases such as Alzheimer’s de-

mentia, frontotemporal dementia, it may be possible that be-

vacizumab induced brain atrophy is associated with

bevacizumab induced neurocognitive decline. This hypothesis

needs to be validated in a properly designed clinical trial,

preferably in patients with cancers of other body parts without

brain metastasis undergoing treatment with bevacizumab.

Our study demonstrates that patients who received be-

vacizumab had a significant decrease in brain volume and a

significant increase in ventricular volume from baseline to

follow-up imaging as compared to a control group patients

who did not receive bevacizumab. We analyzed the volume

of the contralateral hemisphere to avoid the anti-edema

effect of bevacizumab and steroids that are frequently co-

administered. Although there was an increase in the brain

volume in the control group from baseline to follow-up

imaging, the difference was not statistically significant

(p = 0.23). The underlying cause of this apparent increase

of the brain volume over time is not clear. This could be

related to different hydration status [36], different dose of

steroids [37], different image acquisition techniques or

different magnets, between the baseline and follow-up scan

or due to limitation in the segmentation technique.

Astrocytes are the major producers of VEGF in adult

brain parenchyma [5], but VEGF is also expressed in other

cells including CA1 pyramidal neurons in the hippocampus

[38, 39], pyramidal neurons in the cortex [38], and Purkinje

cells in the cerebellum [1, 40]. While the physiological

function of VEGF in the adult brain is not well understood,

recent evidence showed that VEGF is functionally important

in maintaining neural stem cells, in neuroblast production

and in neuronal differentiation in the hippocampus [3, 9–11]

and in the subventricular zone [10–14]. It is noteworthy that

all of these sites of constitutive VEGF expression are an-

giogenically quiescent, thus suggesting non-angiogenic

roles of VEGF. Perturbation ofVEGF by bevacizumab could

have a direct effect on these neurogenic processes. The

atrophy of the brain could be related to blockade of

homeostatic functions of VEGF by bevacizumab.

The current study is limited by its retrospective nature

and small sample size. The small sample size can be ex-

plained by very short overall survival of patients with re-

current high-grade gliomas and strict inclusion criteria.

Only 40.25 % of the patients in the bevacizumab arm lived

[1 year. Neurocognitive data and exact steroid dose in the

control group were not available. Another limitation is

radiation dose spills to the contralateral hemisphere could

not be assessed in all the patients. In addition, we are un-

able to segment grey matter, white matter, or hippocampus

due to poor contrast to define the region boundary. Dif-

ferent image acquisition protocols and different magnetic

field strength might be other concerns, although the slice

thickness and image resolution were comparable through-

out all images. Future analysis of a larger data set with

concurrent image acquisition and neurocognitive assess-

ment will help to overcome the limitations.

In conclusion, the results of this pilot study suggest that

prolonged administration of bevacizumab is associated

with brain atrophy. This study sets the stage for prospective

clinical trials that will include a large number of patients at

many different time points, simultaneous neurocognitive

assessment and regional brain volume assessment to eval-

uate temporal as well as regional variation of brain volume

loss associated with bevacizumab therapy.
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