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Abstract Targeted immunotherapy is founded on the

principle that augmentation of effector T cell activity in the

tumor microenvironment can translate to tumor regression.

Targeted checkpoint inhibitors in the form of agonist or

antagonist monoclonal antibodies have come to the fore as

a promising strategy to activate systemic immunity and

enhance T cell activity by blocking negative signals, en-

hancing positive signals, or altering the cytokine milieu.

This review will examine several immune checkpoints and

checkpoint modulators that play a role in cancer patho-

genesis, with an emphasis on malignant gliomas.

Keywords PD-1 � CTLA-4 � Immune checkpoint �
Glioblastoma multiforme

Introduction

Over the past two decades, checkpoint blockade has

emerged as a powerful and promising means of treating

human cancers [1]. Under normal conditions, immune

checkpoints provide stimulatory or inhibitory signals that

lead to a stereotyped up- or down-regulation of the immune

response (Fig. 1). Ideally, immune activity should increase

in times of physiologic and immunologic stress, such as in

infection or tumor infiltration. However, tumor cells have

been shown to hijack this carefully orchestrated system by

activating negative regulatory molecules on tumor-specific

immune cells and thereby suppressing the antitumor in-

flammatory response [1]. Glioblastoma multiforme (GBM),

the most common primary malignancy of the central ner-

vous system (CNS), has been shown to induce T cell an-

ergy and lymphopenia, impair antibody synthesis, increase

circulating levels of immunosuppressive cytokines (i.e. IL-

10 and transforming growth factor beta [TGF-b]), upre-

gulate T cell inhibiting molecules (i.e. Fas ligand [FasL]

and programmed death ligand-1 [PDL-1]), and recruit

suppressive cells such as regulatory T cells (Tregs) and

myeloid derived suppressor cells (MDSCs) [1–4]. In this

manner, GBM are able to evade the host antitumor re-

sponse at the levels of antigen recognition and immune

activation.

Targeted checkpoint modulators in the form of agonist

or antagonist monoclonal antibodies are now considered a

promising strategy to activate systemic immunity, protect

Tumor infiltrating lymphocytes (TILs) from the locally

immunosuppressive effects of immunoinhibitory signals

from both brain tumor and circulating monocytes, and

enhance T cell activity by blocking negative signals or

altering the cytokine milieu [5].

This paper includes a detailed discussion CNS tumors as

a potential target for immunotherapy, and a review of two

major checkpoint inhibitors, cytotoxic T lymphocyte anti-

gen-4 (CTLA-4) and programmed death-1 (PD-1) that have

reached clinical trials for the treatment of GBM. We will

also review other checkpoints that are currently in varying

stages of preclinical and clinical study and have potential

to be significant additions to the antitumor armamentarium.
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Brain tumor immunology

Immunogenicity and ‘‘immune privilege’’

Over the past decade, landmark successes in cancer im-

munotherapy have included the FDA approval of sip-

uleucel-T, the first active cellular cancer vaccine for

castration-resistant prostate cancer [6], and ipilimumab, the

first checkpoint inhibiting antibody therapy for melanoma

[7]. Both cancer types are notable for having well-char-

acterized antigens that are immunogenic and may play a

biologic role in tumor progression [8]. The inherent im-

munogenicity of each cancer lends itself to therapeutic

immune modulation. Tumors of the CNS, however, are

often overlooked as potential targets of immunotherapy,

having earned the reputation of being poorly immunogenic

cancers that reside in an immune-privileged location. Yet,

brain tumors may express and/or respond to the same

checkpoint molecules seen in peripheral or non-CNS

tumors, including PD-1 and CTLA-4. Several preclinical

studies have shown convincing anti-tumor effects of as

checkpoint blockade in gliomas, as well as synergy with

traditional therapeutics such as chemo- and radiotherapy

[9–11]. These findings strongly suggest that GBMs may be

more susceptible to immune processes than was once

believed.

The traditional conception of the brain as an immune

privileged organ also merits re-evaluation. Several pre-

clinical studies have demonstrated the variable perme-

ability of the blood–brain barrier (BBB) to immune cells,

as seen in the settings of septic encephalopathy, ex-

perimental autoimmune encephalomyelitis (EAE), or tu-

morigenesis [12–14]. In addition to the permeable BBB,

lymphatic communications between the CNS and the pe-

riphery provides an important challenge to the concept of

absolute immune privilege. Afferent lymphatic drainage

may travel from the brain parenchyma, along the perivas-

cular (Virchow-Robbins) spaces, through the cribriform

Fig. 1 Summary of co-stimulatory or -inhibitory immune checkpoints receptors expressed on T cells (blue), regulatory T cells (aqua), dendritic

cells (green), and natural killer cells (purple), and their associated ligands on tumor cells (red)
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plate, and out to the deep cervical lymph nodes [15]. This

model is supported by T cell trafficking studies, one of

which illustrated how immune cells injected into the en-

torhinal cortex migrated to the cervical lymph nodes by

way of the cribriform plate [16]. A subsequent study found

that antigen presenting cells (APCs) could migrate from the

brain to the cervical lymph nodes, and that the type and

extent of inflammation in the brain correlated with the

frequency of CNS antigens found in those draining nodes

[17].

It is important to note that relative immune privilege is

compartmentalized within the CNS. In contrast to brain

parenchyma, innate and active immune reactivity in the

ventricles, leptomeninges, and perivascular spaces is

similar to that seen in the periphery [15, 18, 19]. While

immune cells may enter these compartments seemingly at

random, there is evidence that only antigen-specific lym-

phocytes remain or cyclically re-enter the CNS; in contrast,

non-specific lymphocytes exit within a couple days [20–

22]. Thus, in the setting of an inflamed brain, effector T

cells are capable of entering the parenchyma to proliferate,

home or migrate to the tumor, and initiate an active in-

flammatory response [15, 19].

These findings combined suggest that the immune sys-

tem may not only have considerable access to the CNS, but

also play a significant role in host antitumor defense.

Therefore, while only a few of the growing number of

checkpoint inhibitors (namely, CTLA-4 and PD-1) have

been studied in GBMs, there is reason to believe that these

immune modulators can be effectively used to target tu-

mors of the CNS. Currently ongoing checkpoint trials for

GBM will provide better answers regarding feasibility and

efficacy in the coming months.

Immune checkpoints

CTLA-4

Biological overview

Identified in 1987, CTLA-4 is generally conceived as the

archetypal inhibitory checkpoint [23]. This transmembrane

glycoprotein is homologous with the costimulatory CD28

molecule (best known for its participation in ‘‘signal 2’’ of

T cell activation) and competes for the same ligands, B7-1

(CD80) and B7-2 (CD86). Whereas the CD28:B7 asso-

ciation leads to increased immune activation, CTLA-4

binds the ligand with nearly 20 times greater affinity and

results in immune downregulation [24].

CTLA-4 is expressed constitutively or rapidly induced

on naı̈ve CD4?, CD8? and plays a critical role in

modulating the threshold for immune cell activation and

lymphoproliferation [25]. Constitutive expression may also

be an absolute requirement for FOXP3? regulatory T cell

(Treg) development and activity [26]. CTLA-4 ligation has

been shown to decrease CD4? T cell production of pro-

inflammatory cytokines (i.e. interleukin-2 [IL-2] and in-

terferon-gamma [IFNc]), as well as increase production of

anti-inflammatory transforming growth factor-beta (TGFb)

[27]. In this manner, CTLA-4 regulates and maintains

tolerance to both self and foreign antigens. Knockout of the

CTLA-4 gene results in uncontrolled T cell expansion and

early death secondary to activation by self-antigens [28].

Clinical applications

First studied in a mouse model of B7-1 positive colon

cancer, anti-CTLA-4 monoclonal antibodies have been

shown to induce tumor regression and durable T cell

memory against tumor re-challenge [29]. Similar findings

have been noted in murine models of breast, prostate,

ovarian, and bladder cancers [30–33].

In the context of brain tumors, CTLA-4’s role in

maintaining an immunosuppressive tumor microenviron-

ment requires further elucidation. TIL analysis has shown

that the ratio of immunosuppressive Tregs to effector T

cells increases in the gliomas, and that CTLA-4 expression

is increased on these Tregs [2, 34]. In a subsequent study,

treatment of murine glioma with anti-CTLA-4 antibody led

to 80 % long-term survival and restored CD4? effector

activity [4]. Combinations of anti-CTLA-4 with anti-CD25

(IL-2 receptor, a chain) [35] or Gvax, a whole cell tumor

vaccine [36] has also been employed to successfully in-

crease survival in glioma-bearing mice.

Given the preclinical success of this therapeutic anti-

body, phase I and II clinical trials of two humanized anti-

CTLA-4 antibodies—ipilumumab (BMS) and tremeli-

mumab (Pfizer)—were initiated in 2000. Objective re-

sponse rates of about 10 % were noted in melanoma

patients given either antibody [37, 38]. However, a phase

III tremelilumab trial was discontinued after it failed to

improve survival compared to standard of care che-

motherapies [39].

In 2011, ipilimumab received FDA approval for unre-

sectable and metastatic melanoma following a triple arm

clinical trial that demonstrated a 3.5 month survival benefit

in patients with metastatic melanoma (including brain

metastases) who received ipilimumab (18 % survival) as

compared to treatment with a melanoma-specific gp100

peptide vaccine, PMEL (5 % survival). Addition of PMEL

to ipilimumab did not further increase survival [7, 40, 41].

Subsequent phase I and II trials have further examined the

use of anti-CTLA-4 antibody (as monotherapy or combi-

nation therapy) in pancreatic, prostate, and small cell lung

cancers, and phase I-IV trials in melanoma, lymphoma, and
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non-small cell lung, prostate, cervical, pancreatic, and

colorectal cancers are ongoing [41, 42] (See Table 1 for

summary of CTLA-4 clinical trials). The Radiation Ther-

apy Oncology Group (RTOG 1125) recently received ap-

proval for a randomized, phase II and III clinical trial for

the treatment of newly diagnosed GBM with ipilimumab

plus temozolomide (current standard of care chemotherapy

[43]. The results from this and similar studies will help

determine the role of CTLA-4 blockade in brain tumor

immunotherapy.

PD-1/PDL-1

Biological overview

PD-1 (CD279) is an inhibitory checkpoint that, like CTLA-

4, acts as a negative regulator of the immune response.

Whereas CTLA-4 inhibits naı̈ve lymphocytes, PD-1 is

mostly expressed on activated peripheral lymphocytes and

protects host tissues from inflammatory processes. PD-1 is

also a marker of mature T cell exhaustion in the setting of

chronic inflammation or tumor growth [1]. Its ligands in-

clude PD ligand-1 (PDL-1, also known as B7-H1 or

CD274) and PDL-2 (also known as B7-DC or CD273) [44].

PD-1 ligation and activation leads to suppressed IFNc, IL-

2, and tumor necrosis factor alpha (TNFa) synthesis, as

well as increased IL-10 production. This altered cytokine

milieu not only suppresses lymphocyte activity, but also

induces anergy and apoptosis of antigen-specific lympho-

cytes [44]. Furthermore, PD-1 expression on B cells, NK

cells, and macrophages is associated with diminished im-

munoglobulin production, reduced cytotoxicity, and im-

proper activation, respectively [45–47].

Preclinical studies have helped elucidate PD-1’s role in

induction and maintenance of immune tolerance. Knockout

of the PD-1 gene results in loss of self-tolerance and de-

velopment of local and systemic autoimmunity [44].

Conversely, PD-1 upregulation leads to significant im-

munosuppression, as seen in chronic infection or tumori-

genesis. Though normally found on immune cells, PDL-1

is also expressed on the surface of several immunogenic

tumors such as gliomas, melanomas, and various carcino-

mas [48]. Binding of tumor PDL-1 by host immune cell

PD-1 receptors results in inactivation and even death of

antitumor TILs [49].

Anti-PD-1 and anti-PDL-1 antibodies have been suc-

cessfully employed to block PD-1:PDL-1 ligation and

protect TIL activity in preclinical studies of immunogenic

tumors. PD-1 blockade has also been shown to increase

levels of the immunostimulatory cytokine, IFNc. Since

IFNc production is associated with TH1 lymphocyte ac-

tivity and CD8? activation, these findings suggest that PD-

1 blockade may improve effector T cell activity [50]. PD-1

and PDL-1 blockade may also result in restoration of

CD8? T cell function, down-regulated FOXP3 expression,

and tumor regression in a variety of murine cancer models

[49]. Specifically in an orthotopic GBM mouse model,

combination PD-1 blockade and focal radiotherapy has

been shown to significantly improve TIL infiltration and

activity, immune memory, and long-term survival.

Clinical applications

At this time, numerous monoclonal anti-PD-1 and -PDL-1

antibodies are in the clinical testing stage. Commercially

produced anti-PD-1 antibodies include Nivolumab (BMS),

Lambrolizumab (Merck), AMP-224 (Amplimmune), and

Pidilizumab (CureTech). Anti-PDL-1 antibodies include

BMS-936559 (BMS), MEDI4736 (Medimmune),

MPDL3280A (Genentech), and MSB0010718C (Merck).

The anti-PDL-2 antibody rHigM12B7 (Mayo Foundation)

is also available.

In 2013, two influential clinical reports on PD-1

blockade were published. In one, Hamid et al. presented

the results of their phase I clinical trial of lambrolizumab

monotherapy for melanoma (NCT01295827), which

showed that all tested doses of humanized anti-PD1 anti-

body were safe and resulted in tumor regression with in-

creased TIL presence [51]. In another phase I trial

(NCT01024231), Wolchok et al. found that combined

Nivolumab (a humanized anti-PD1 antibody) and

Ipilimumab (anti-CTLA-4) resulted in significant tumor

regression in 53 % of study patients with advanced me-

lanoma [52]. Additional phase I, II, and III trials are cur-

rently underway to investigate the utility of anti-PD-1

antibodies in melanoma, lung, colorectal, blood, and other

solid cancers [41] (Table 2). A phase I/II trial

(NCT01952769) has also begun recruiting participants to

investigate the safety and efficacy of Pidilizumab (hu-

manized anti-PD-1 antibody) in the setting of relapsed

GBM and diffuse intrinsic pontine glioma (DIPG).

Additional checkpoints: negative regulators

LAG-3

Lymphocyte-activation gene 3 (LAG-3, CD223) is

upregulated on the surface of activated T and NK cells and

is a negative regulator of T cell expansion during inflam-

mation [53]. LAG-3 also promotes Treg immunosuppres-

sive functions [54] and may induce dendritic cell (DC)

production of IL-12 and TNF [55]. Though its precise

mechanism is not yet fully understood, Tregs from LAG-3

knockout mice have been shown to have significantly de-

creased inhibitory activity; effector T cells from these

416 J Neurooncol (2015) 123:413–423

123



T
a
b
le

1
C

li
n

ic
al

st
u

d
y

o
u

tc
o

m
es

o
f

ip
il

im
u

m
ab

(a
n

ti
-C

T
L

A
-4

)
in

so
li

d
tu

m
o

rs

C
li

n
ic

al
T

ri
al

s.
g

o
v

re
g

is
tr

at
io

n
n

o
.

P
h

as
e

C
an

ce
rs

C
o

m
b

in
at

io
n

/s
im

u
lt

an
eo

u
s

th
er

ap
ie

s

S
ta

tu
s

N
o

.
o

f

p
at

ie
n

ts

O
u

tc
o

m
e

N
C

T
0

0
0

9
4

6
5

3
II

I
M

el
an

o
m

a
N

o
n

e
P

u
b

li
sh

ed
re

su
lt

s
6

7
6

3
-y

ea
r

su
rv

iv
al

ra
te

2
5

%
,

B
O

R
R

3
7

.5
%

[2
3
]

N
C

T
0

0
6

2
3

7
6

6
II

M
el

an
o

m
a

w
it

h
b

ra
in

m
et

as
ta

si
s

N
o

n
e

P
u

b
li

sh
ed

re
su

lt
s

9
3

D
is

ea
se

co
n

tr
o

l,
1

8
%

in
n

eu
ro

lo
g

ic
al

ly

as
y

m
p

to
m

at
ic

p
at

ie
n

ts
n

o
t

o
n

C
C

S
;

5
%

in

sy
m

p
to

m
at

ic
p

at
ie

n
ts

o
n

C
C

S
[2

1
]

N
C

T
0

1
6

5
4

6
9

2
N

/A
M

el
an

o
m

a
N

o
n

e
P

u
b

li
sh

ed
re

su
lt

s
2

7
2

-y
r

su
rv

iv
al

ra
te

2
3

.5
%

[6
1
]

N
C

T
0

0
1

1
2

5
8

0
II

P
an

cr
ea

ti
c

ad
en

o
ca

rc
in

o
m

a
N

o
n

e
P

u
b

li
sh

ed
re

su
lt

s
2

7
N

o
re

sp
o

n
d

er
s

[6
2

]

N
C

T
0

0
2

8
9

6
2

7
II

M
el

an
o

m
a

N
o

n
e

P
u

b
li

sh
ed

re
su

lt
s

1
5

5
B

O
R

R
5

.8
%

[6
3
]

N
C

T
0

0
2

8
9

6
4

0
II

M
el

an
o

m
a

N
o

n
e

P
u

b
li

sh
ed

re
su

lt
s

2
1

7
B

O
R

R
1

1
.1

%
[3

3
]

N
C

T
0

0
0

5
7

8
8

9
II

R
C

C
N

o
n

e
P

u
b

li
sh

ed
re

su
lt

s
4

0
P

R
1

2
.5

%
[6

4
]

N
C

T
0

1
7

1
1

5
1

5
I

L
o

ca
ll

y
ad

v
an

ce
d

ce
rv

ic
al

ca
rc

in
o

m
a

?
R

T
?

ci
sp

la
ti

n
C

u
rr

en
tl

y
re

cr
u

it
in

g
N

/A
N

/A

N
C

T
0

1
7

6
9

2
2

2
I/

II
C

R
C

,
re

cu
rr

en
t

m
el

an
o

m
a,

N
o

n
-H

o
d

g
k

in
ly

m
p

h
o

m
a

?
lo

ca
l

R
T

T
em

p
o

ra
ri

ly
su

sp
en

d
ed

N
/A

N
/A

N
C

T
0

1
8

6
0

4
3

0
Ib

L
o

ca
ll

y
ad

v
an

ce
d

h
ea

d
n

ec
k

ca
n

ce
r

?
R

T
?

ce
tu

x
im

ab
C

u
rr

en
tl

y
re

cr
u

it
in

g
N

/A
N

/A

N
C

T
0

1
9

3
5

9
2

1
I

S
ta

g
e

II
-I

V
B

h
ea

d
n

ec
k

ca
n

ce
r

?
R

T
?

ce
tu

x
im

ab
C

u
rr

en
tl

y
re

cr
u

it
in

g
N

/A
N

/A

N
C

T
0

1
5

5
7

1
1

4
I

U
n

re
se

ct
ab

le
ad

v
an

ce
d

m
al

ig
n

an
t

m
el

an
o

m
a

?
R

T
C

u
rr

en
tl

y
re

cr
u

it
in

g
N

/A
N

/A

N
C

T
0

1
7

0
3

5
0

7
I

M
el

an
o

m
a

w
it

h
b

ra
in

m
et

as
ta

se
s

?
S

R
S

o
r

W
B

R
T

C
u

rr
en

tl
y

re
cr

u
it

in
g

N
/A

N
/A

[3
2
]

O
u

tc
o

m
es

ar
e

b
es

t
o

u
tc

o
m

es
in

ea
ch

st
u

d
y

,
in

p
at

ie
n

ts
re

ce
iv

in
g

Ip
il

im
u

m
ab

o
n

ly

B
O
R
R

b
es

t
o

v
er

al
l

re
sp

o
n

se
ra

te
,
R
C
C

re
n

al
ce

ll
ca

rc
in

o
m

a,
C
C
S

co
rt

ic
o

st
er

o
id

s,
P
R

p
ar

ti
al

re
sp

o
n

se
,
O
R

o
b

je
ct

iv
e

re
sp

o
n

se
,
P
S
A

p
ro

st
at

e
sp

ec
ifi

c
an

ti
g

en
,
R
T

ra
d

ia
ti

o
n

th
er

ap
y

,
S
R
S

st
er

eo
ta

ct
ic

ra
d

io
su

rg
er

y
,
W
B
R
T

w
h

o
le

b
ra

in
ra

d
ia

ti
o

n
th

er
ap

y
,
C
R
C

co
lo

re
ct

al
ca

n
ce

r

J Neurooncol (2015) 123:413–423 417

123



knockout mice demonstrated increased lymphocyte prolif-

erative capacity and immune memory [53]. In murine tu-

mor models, blocking the checkpoint with anti-LAG-3

antibody has also been shown to diminish Treg inhibition,

enhance antitumor CD8? T cell expansion, and restrict

tumorigenesis [56].

IMP321, a chimeric anti-LAG-3 antibody, has undergone

phase I testing in combination with gemcitabine for the treat-

ment of advanced pancreatic adenocarcinoma, the results of

which suggest that while well tolerated, an efficacious dose was

not reached during the course of the study [57]. A phase I/II

study of metastatic breast cancer patients treated with IMP321

and paclitaxel reported an increase in APC and NK activation,

CD8? memory cell proliferation, and overall tumor response

[58]. A phase 1 study of BMS-986016 (anti-LAG-3) with or

without nivolumab is currently underway [41].

TIM-3

Like PD-1, T cell immunoglobulin mucin-3 (TIM-3) is a

widely expressed surface receptor and a marker of T cell

exhaustion in states of chronic antigen exposure [59, 60].

Once bound to its ligand, galectin-9, TIM-3 triggers ag-

gregation and apoptosis of effector lymphocytes [60]. T

cells that co-express PD-1 and TIM-3 may represent a

severely exhausted or impaired population of lymphocytes

in the tumor microenvironment. Presence of PD-1?/TIM-

3? TILs has been associated with disease progression in a

variety of murine cancers including melanoma, sarcoma,

colon and breast cancers, and acute myelogenous leukemia

[60, 61], and combined treatment with PD-1 and TIM-3

blockade has been shown to prolong survival and cause

tumor regression in several of these mouse models [59, 61].

Though there are no ongoing clinical trials of anti-TIM-3

antibody at this time, promising preclinical results suggest a

potential role for TIM-3 blockade in cancer immunotherapy.

KIR

Killer immunoglobulin-like receptors (KIRs) encompass a

variety of proteins that bind MHCI to inhibit NK activity.

NK cells comprise approximately 15 % of peripheral

lymphocytes and play an important role in innate immunity

against viral infections and cancers. Because they do not

have finely tuned antigen specificity as seen with B and T

cells, NK cells rely on KIRs to prevent autoimmunity. By

recognizing self-HLA molecules, activated KIRs may to-

lerize NK cells against self-antigens [62]. Early studies

suggested that NK cells play an important role in rejecting

tumors that lack self MHCI molecules, a supposition that

was borne out in adoptive transfer experiments of KIR-

ligand mismatched NK cells, which led to increased anti-

tumor cytotoxic activity [63]. Furthermore, anti-KIR anti-

bodies have been used to prevent tolerance induction

against tumor antigens in various leukemia models [64,

65].

Two human anti-KIR antibodies, Lirilumab (IPH2102,

BMS) and IPH2101 (Innate Pharma), are being currently

tested in early clinical trials. At present, IPH2101 is un-

dergoing phase I clinical testing for monotherapeutic use in

patients with multiple myeloma or AML. Results from a

phase I and II trial of Lirilumab (NCT01714739,

NCT01750580) in combination with ipilimumab and

nivolumab have demonstrated both safety and early effi-

cacy [41].

Additional checkpoints: positive regulators

4-1BB

In contrast to the previously checkpoints, 4-1BB (also

known as CD137) represents a costimulatory molecule that

is expressed on activated effector T cells, NK cells, neu-

trophils, and DCs [66]. Ostensibly, its role in T cell

regulation is to enhance or salvage inadequate immune

responses. Upon binding to the 4-1BB ligand (4-1BBL) on

B cells, DCs, or macrophages, the 4-1BB receptor activates

pro-survival signaling pathways and upregulates tran-

scription of the anti-apoptotic BcL-x(L) and Bfl-1 genes.

This translates to significant prolongation of CD8? T cell

survival and raises the possibility of augmenting

Table 2 Clinical study outcomes of anti-PD-1 or anti-PD-L1 antibody in solid tumors [81–85]

ClinicalTrials.gov registration no. Phase Antibody type Cancer No. of patients Outcome

NCT01295827 II Lambrolizumab Melanoma 135 RECIST 1.1

RR: 38 % [32]

NCT01176461 I Nivolumab Melanoma 90 RECIST 1.1

RR: 25 % [30]

NCT00730639 I Nivolumab Advanced solid cancers 296 OR 18-36 % [5]

NCT00729664 I Anti-PDL1 Advanced solid cancers 207 OR 6-17 % [65]

RECIST response evaluation criteria in solid tumors, OR objective response, as defined by partial or complete tumor regression, RR response rate,

CRR cumulative response rate
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recognition and immune response to poorly immunogenic

cancer cells [66]. Administering stimulatory anti-4-1BB

antibodies has been shown to increase tumor-specific

CD8? T cell activity, which corresponds to tumor re-

gression in preclinical animal studies of sarcoma, masto-

cytoma, breast, and colon cancers [66–68]. Similarly, in a

pI trial of BMS-663513 (a humanized anti-4-1BB agoniz-

ing antibody), melanoma, renal, and ovarian cancers pa-

tients were found to have increased numbers of circulating

effector T cells, as well as increased transcription of IFNy-

associated genes [69].

GITR

Glucocorticoid-induced TNFR family related gene (GITR)

is a positive regulator that is constitutively or inducibly

expressed on CD4? , CD8? and regulatory T cells. When

bound to GITR ligand (GITRL), which is widely expressed

on APCs as well as on endothelial and epithelial tissues,

GITR initiates a signaling pathway that results in both Treg

suppression and CD4? T cell stimulation [70]. In the set-

ting of an immunosuppressive tumor microenvironment,

agonizing antibodies against the GITR receptor have been

shown to decrease the number of tumor infiltrating Tregs,

FOXP3 expression, Treg activity [71]. As demonstrated in

B16 melanoma-bearing mice, these changes in TIL profile

are associated with significant tumor regression [71].

Conversely, antagonizing antibodies have been shown to

increase CD4? T cell sensitivity to Treg suppression [72].

TRX518 (Tolerx) is a ‘‘first in class’’ humanized agonist

antibody that blocks GITR:GITRL interactions and results

in enhanced stimulation of peripheral lymphocytes [73].

This non-depleting antibody is currently in phase I studies

for the treatment of late stage melanoma and additional

solid tumors (NCT01239134). A phase I study of combi-

nation therapy with DC vaccines and anti-CTLA-4 or anti-

GITR in melanoma has been approved but is currently

suspended, pending additional funding (NCT01239134).

Combination therapies

Combination checkpoints

Given the preclinical and clinical successes of anti-

checkpoint monotherapy, it has been hypothesized that two

or more anti-checkpoint antibodies could achieve additive,

if not synergistic, antitumor benefits. TILs can express

multiple checkpoints in varying combinations, and ex-

pression of two or more checkpoints may denote a more

severely exhausted or downregulated T cell phenotype

[74]. Curran et al. demonstrated in a B16 melanoma model

that simultaneous administration of anti-CTLA-4 and anti-

PD-1 antibodies after antitumor vaccination could sig-

nificantly improve survival compared to vaccination plus a

single checkpoint inhibitor, due to a more favorable im-

mune profile [75]. Similar findings have been seen in ani-

mal studies of anti-PD-1 and -LAG-3 [76] or anti-PD-1 and

-TIM-3 [60]. In a recent phase I clinical trial, Wolchok

et al. demonstrated that combination therapy with ip-

ilimumab (anti-CTLA-4) and nivolumab (anti-PD1) was

relatively safe and resulted in rapid, durable tumor re-

gression and improved survival in patients with advanced

melanoma [52].

Combination with chemotherapy or radiation

Additional studies have explored the efficacy of combining

checkpoint therapy with more conventional treatment

modalities such as chemotherapy and radiation. As men-

tioned in the above section on CTLA-4, RTOG 1125 has

commenced a phase II/III trial of ipilimumab and temo-

zolomide for the treatment of newly diagnosed GBM [43].

Numerous ongoing clinical trials have also begun inte-

grating checkpoint blockade with traditional chemotherapy

such as cisplatin, cyclophosphamide, and paclitaxel in a

various solid and liquid cancers [41].

Though lymphocytes are exquisitely sensitive to the

lethal effects of ionizing radiation, several studies have

demonstrated that radiation may synergize with im-

munotherapy by exposing tumor-specific antigens and re-

leasing activating cytokines from damaged cells and

stroma [77]. Combination of ipilimumab and ionizing ra-

diation is being studied in several phase I and II trials for

patients with metastatic melanoma (including brain

metastases), lymphoma, and various solid tumors [41].

Caveats for checkpoint blockade

As the search for immunotherapeutic targets broadens, it

has become clear that there are a multitude of intrinsic

checkpoints that, together, constitute a built-in safety

mechanism against immune overstimulation. Whether or

not they are constitutively or inducibly expressed, these

checkpoints act in a coordinated fashion to maintain tol-

erance against self-antigens, and fine-tune or temper re-

sponses to foreign antigens. Loss of a functioning

checkpoint, therefore, may correspond with lymphoprolif-

eration and autoimmunity, as demonstrated by human and

animal studies of CTLA-4 [78, 79] and PD-1 [80]

deficiency.

Correspondingly, one of the greatest risks of checkpoint

blockade is autoimmunity secondary to unrestrained im-

mune activation. The most common adverse events re-

ported in humans include colitis, hypophysitis, vitiligo,

J Neurooncol (2015) 123:413–423 419

123



pancreatitis and hepatitis. In one noteworthy ipilimumab

trial [7], over 60 % of patients experienced immune related

adverse events (irAEs); moreover, 10-15 % were reported

to have had grade 3 or 4 severe irAEs. Topalian et al. also

reported a 14 % grade 3 and 4 irAE rate in patients re-

ceiving anti-PD1 therapy (nivolumab), with pneumonitis

being a unique toxicity seen in 1 % of patients (3 % for all

grades) [5]. Wolchok et al. found that 54 % of patients

receiving both nivolumib and ipililumab experienced grade

3 or 4 toxicities, which were generally reversible. Inter-

estingly, this rate was similar to those seen in the mono-

therapy arm [52]. In light of these findings, it is critical that

the therapeutic benefits are weighed against the significant

toxicity risks, and that dosing and combination strategies

are purposefully constructed to ensure that irAEs are

minimized, anticipated, and well managed.

Summary

Checkpoint modulating agonist and antagonist antibodies

are a powerful addition to the armamentarium of anticancer

drugs. Since the discovery of the archetypal negative

regulator, CTLA-4, several other checkpoints (i.e. PD-1,

LAG-3, TIM-3, KIR, 4-1BB, and GITR) have emerged as

promising targets for passive immunotherapies. Preclinical

studies of anti-CTLA-4 and anti-PD-1 suggest a role for

these antibodies in the treatment of GBMs, and have led to

ongoing clinical trials for primary and recurrent brain tu-

mors. Future applications may include synergistic combi-

nations with other checkpoint inhibitors, anticancer

vaccines, chemotherapy, or radiation. In the meantime,

further clinical testing and development will allow for a

more thorough understanding of the limits and therapeutic

potential of checkpoint modulation.
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