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Abstract Gender-specific incidence patterns and the

presence of hormonal receptors on tumor cells suggest that

sex hormones may play a role in the onset of primary brain

tumors. However, epidemiological studies on the relation

of hormonal risk factors to the risk of brain tumors have

been inconsistent. We examined the role of reproductive

factors in the onset of glioma and meningioma in a case–

control study conducted in the Southeastern US that

included 507 glioma cases, 247 meningioma cases, and 695

community-based and friend controls. Unconditional

logistic regression was used to estimate odds ratios (ORs)

and 95 % confidence intervals (CI) adjusting for age, race,

US state of residence, and education. An older age at

menarche was associated with an increased risk of glioma

(C15 vs. B12 years: OR 1.65; 95 % CI 1.11–2.45), with a

stronger association observed in pre-menopausal (OR 2.22;

95 % CI 1.12–4.39) than post-menopausal (OR 1.55; 95 %

CI 0.93–2.58) women. When compared to controls,

meningioma cases were more likely to have undergone

natural menopause (OR 1.52; 95 % CI 1.04–2.21) whereas

glioma cases were less likely to be long term users of oral

contraceptives (OR 0.47; 95 % CI 0.33–0.68). Increasing

parity was not related to the risk of either tumor. Current

findings are consistent with a limited role for hormones in

the onset of brain tumors in women. Results contribute to a

growing body of evidence that a later age at menarche

increases the risk of glioma in women.

Keywords Glioma �Meningioma � Reproductive factors �
Exogenous hormones � Menarche

Introduction

Gliomas and meningiomas are the most common types of

primary adult brain tumors [1]. Gliomas develop from glial

cells (astrocytes or oligodendrocytes) that surround and

support neurons in the brain [2]. Although relatively rare,

gliomas are one of the most aggressive human tumors with
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a median survival time of only 12–15 months for glio-

blastomas, the most frequently diagnosed and aggressive

type of glioma [3]. Meningiomas are mainly benign tumors

derived from meningothelial cells of the arachnoid mem-

brane covering the brain and spinal cord [2]. Although

meningiomas are generally slow growing and encapsu-

lated, they can be a source of extensive morbidity.

The etiology of these tumors remains poorly understood;

high dose ionizing radiation [4, 5] and genetic susceptibility

[6–8] in addition to several rare hereditary disorders [9]

remain the only established risk factors but account for a

small proportion of cases. The incidence of glioma is

approximately 50 % higher in men than women [10, 11],

with the largest gender differential reported to occur during

women’s reproductive years [12]. In contrast, the incidence

of meningioma is almost twice as high in women as com-

pared to men [10]. These observations suggest the possibility

that sex hormones play a role in the etiology of brain tumors.

In line with a lower incidence of glioma among women,

experimental evidence suggests that estrogen exposure may

protect against glioma development with estrogen shown to

inhibit cell proliferation and to promote apoptosis in glioma

cell lines [13–18]. In contrast, estrogen may increase risk of

meningioma as suggested by studies demonstrating higher

rates of proliferation in meningioma cell lines exposed to

estradiol or progesterone [19]. Progesterone, androgen, and

estrogen hormone receptors are expressed in both glioma

[20–22] and meningioma [23–25] tumors.

Epidemiologic studies examining associations between

hormonal and reproductive factors and the risk of brain

tumors were conflicting. In line with a possible untoward

influence of hormonal exposures in meningioma, female

meningioma cases are more likely to report a history of

estrogen-related conditions including breast cancer, uterine

fibroid tumors, and endometriosis [26–28]. A later age at

menarche has consistently been associated with a higher

risk of glioma, whereas findings for parity, menopause

status, and the use of oral contraceptives have been

inconsistent across studies for both brain tumors [29].

Given evidence of a possible role of sex hormones in brain

tumor development and conflicting results from previous

studies, we examined reproductive factors and oral contracep-

tive (OC) use as risk factors for glioma and meningioma among

females enrolled in a US case–control study that included 507

glioma cases, 247 meningioma cases, and 695 controls.

Methods

Study population

Persons aged 18 or older were enrolled in a clinic-based

case–control study examining risk factors for primary brain

tumors [30]. Brain tumor cases had a recent (within

3 months) diagnosis of primary glioma or meningioma and

were identified in neurosurgery and neurooncology clinics

in the Southeastern US including Vanderbilt University

Medical Center (Nashville, TN); Moffitt Cancer Center

(Tampa, FL); University of Alabama at Birmingham

(Birmingham, AL); Emory University (Atlanta, GA), and

Kentuckiana Cancer Institute (Louisville, KY). Eighty-

seven percent of eligible cases were enrolled in the study, a

median of 1.0 month following the brain tumor diagnosis

(interquartile range 2 weeks–1.7 months). A total of 20 of

754 case inteviews (2.6 %) were conducted with a proxy

respondent, generally the spouse. Controls included friends

and other nonblood-related associates of the cases

(n = 141) as well as residents from the same communities

as the cases (n = 554), the latter frequency matched on

state of residence, age and gender. In the case of the

community controls, for each case a commercial survey

firm provided a list of *20 residential phone numbers in

the same general neighborhood as the case based on census

track and with a presumed household member of the same

race, age, and gender as the case. A screening interview

was used to confirm presence of an eligible person in the

household and to elicit participation. An estimated 50 % of

contacted eligible households yielded a participating con-

trol. Controls reporting a personal history of brain tumor

were excluded. The study was approved by Investigational

Review Committees at each participating center, and all

participants provided written informed consent.

Data collection

Structured interviewer-administered questionnaires were

used to collect data on reproductive factors and exogenous

hormone use. Participants were asked to report number of

pregnancies, total number of children (including live and

stillbirths), age at the birth of the first and last child

(including live and stillbirths), age at menarche, age at last

period, and if menopausal, whether the menopause was due

to surgery. Women were also asked if they had used OCs

for at least 6 months, their total duration of OC use, and

whether they were current users.

Statistical analysis

Unconditional logistic regression was used to estimate odds

ratios (OR) and 95 % confidence intervals (CI) for the

association between reproductive factors, OC use and brain

tumor risk. Age, state, race, and education were adjusted

for in multivariable models based on the a priori assump-

tion that these factors confounded the association between

reproductive factors and brain tumor risk. To test for linear

trend, categorical variables were included in the models as
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ordinal terms. A woman was considered pre-menopausal if

she was still menstruating. Women no longer menstruating

with an intact uterus and ovaries were classified as having

undergone natural menopause. Those with a bilateral

oophorectomy and under age 55, the 90th percentile for age

at natural menopause among the controls, were classified as

having undergone surgical menopause. Women reporting a

hysterectomy without oophorectomy that were younger

than age 55 were considered to have an unknown meno-

pausal status, while those older than age 55 were classified

as having undergone natural menopause. Statistical analy-

ses were performed using SAS Version 9.2 (SAS Institute,

Inc., Cary, NC). A p value \0.05 was considered statisti-

cally significant and all statistical tests were two-sided.

Results

The median age at diagnosis for glioma and meningioma

cases was 54 and 53, respectively, and the median age of

controls at study enrollment was 55 (Table 1). Controls

were slightly more likely than either case group to be

college educated and the majority of subjects were Cau-

casian. Glioma cases were comprised of glioblastoma

multiforme (GBM) (58 %), lower grade astrocytomas

(23 %), oligodendroglial tumors (15 %), and gliomas of

other or unspecific histology type (4 %).

Table 2 presents results for reproductive factors in rela-

tion to the risk of glioma and meningioma. Later age at

menarche was associated with a significantly increased risk

for glioma (C15 vs. B12 years: OR 1.65; 95 % CI

1.11–2.45). When stratifying by menopause status, the

association with glioma was stronger among pre-meno-

pausal (OR 2.22; 95 % CI 1.12–4.39) than post-menopausal

(OR 1.55; 95 % CI 0.93–2.58) women (data not shown).

Glioma risk was elevated among nulliparous women when

compared to women with 2 children (OR 1.43; 95 % CI

1.00–2.03), though the trend for increasing parity was not

statistically significant (p for trend = 0.05). There was a

suggestion of an inverse association between age at first birth

and glioma risk (p for trend = 0.05), although no individual

odds ratio was statistically significant. Time since last giving

birth and menopausal status were not associated with glioma

risk. For meningioma, women undergoing natural meno-

pause had a significant increased risk when compared to pre-

menopausal women (OR 1.52; 95 % CI 1.04–2.21), with a

slight though non-significant excess risk also observed for

surgical menopause (OR 1.21; 95 % CI 0.73–2.00). Women

reporting ever use of OCs had a non-significant decreased

risk of glioma (OR 0.77; 95 % CI 0.57–1.03). A significant

Table 1 Characteristics of

female cases and controls
Variable Controls

(N = 695)

Glioma cases

(N = 507)

Meningioma cases

(N = 247)

Age

Mean (SD) 54.2 (14.0) 52.6 (15.2) 55.1 (12.8)

Median (range) 55 (19–90) 54 (18–88) 53 (26–87)

Education, N (%)

High school or less 202 (29.1) 193 (38.1) 87 (35.2)

Some college 208 (29.9) 142 (28.0) 74 (30.0)

College degree 180 (25.9) 94 (18.5) 57 (23.1)

Graduate degree 105 (15.1) 78 (15.4) 29 (11.7)

State of residence, N (%)

FL 190 (27.3) 177 (34.9) 68 (27.5)

TN 221 (31.8) 113 (22.3) 102 (41.3)

AL 83 (11.9) 100 (19.7) 13 (5.3)

GA 79 (11.4) 53 (10.5) 33 (13.4)

KY 70 (10.1) 37 (7.3) 22 (8.9)

Other 52 (7.5) 27 (5.3) 9 (3.6)

Race, N (%)

Caucasian 653 (94.0) 478 (94.3) 221 (89.5)

Non-Caucasian 42 (6.0) 29 (5.7) 26 (10.5)

Glioma histology, N (%)

Glioblastomas 292 (57.6)

Lower grade astrocytomas 118 (23.3)

Oligodendroglial tumors 74 (14.6)

Other gliomas 23 (4.5)
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inverse association was restricted to women using OCs for

10 years or longer (OR 0.47; 95 % CI 0.33–0.68). Menin-

gioma risk was unrelated to OC use. Other reproductive

factors including age at menarche, parity, age at first birth,

and years since last giving birth had no association with

meningioma risk. Age at menopause and total years of

menstruation had no association with the risk of glioma or

meningioma (data not shown).

The findings were essentially unchanged when the

control group was restricted to community controls. For

example, the association between long term OC use

(C10 years) and glioma risk remained significantly inverse

after excluding friend controls from the analysis (OR 0.43;

95 % CI 0.29–0.62). The results for glioma, including the

observed increased risk for older age at menarche and

reduced risk with OC use, were similar after restricting the

glioma case group to GBMs (Supplemental Table 1). The

only difference was that natural menopause, which was not

associated with overall glioma risk, was positively asso-

ciated with risk of GBM (OR 2.29; 95 % CI 1.57–3.36).

Discussion

In this case–control study, an increased risk of glioma was

observed among women that reported a later age at men-

arche. Long-term use of OCs (10 or more years) was

inversely associated with glioma though not meningioma.

Glioma cases were more likely to be nulliparous when

compared to controls and menopause was associated with

an increased risk for meningioma, although the positive

association was only significant for natural menopause.

Other factors including increasing parity, age at first birth,

and years since last giving birth were not associated with

the risk of either type of brain tumor.

An older age at menarche has consistently been asso-

ciated with an increased glioma risk in epidemiologic

studies. In a meta-analysis of six case–control studies, the

oldest versus youngest category for age at menarche

(variously defined) was associated with a significant 40 %

excess risk for glioma [31]. Two prospective cohort studies

also provide evidence in support of the association. In the

study of Kabat et al. [32] based on the NIH-AARP cohort,

authors reported a significant positive association with

glioma for an age at menarche at 15 years or older versus

12 years or younger adjusting for confounding factors (HR

1.67; 95 % CI 1.03–2.69). In a second prospective analysis

based on the Canadian National Breast Screening Study

that included almost 90,000 women among whom 120

glioma cases were identified, an older age at menarche was

also positively associated with glioma risk though results

did not achieve statistical significance (p trend on

increasing age at menarche = 0.06) [33]. In both of theseT
a

b
le

2
co

n
ti

n
u

ed

V
ar

ia
b

le
G

li
o

m
a

ca
se

s
n

(%
)

M
en

in
g

io
m

a

ca
se

s
n

(%
)

C
o

n
tr

o
ls

n
(%

)

G
li

o
m

a
M

en
in

g
io

m
a

C
ru

d
e

O
R

(9
5

%
C

I)

M
u

lt
iv

ar
ia

b
le

O
R

(9
5

%
C

I)
a

p
v

al
u

e
C

ru
d

e
O

R

(9
5

%
C

I)

M
u

lt
iv

ar
ia

b
le

O
R

(9
5

%
C

I)
a

p
v

al
u

e

C
1

0
y

ea
rs

9
2

(1
9

.5
)

6
6

(2
7

.3
)

2
0

5
(3

0
.4

)
0

.5
4

(0
.3

9
,

0
.7

5
)

0
.4

7
(0

.3
3

,
0

.6
8

)
\

0
.0

0
0

1
0

.8
5

(0
.5

8
,

1
.2

6
)

0
.8

6
(0

.5
6

,
1

.3
3

)
0

.5
0

P
tr

e
n
d

\
0

.0
0

0
1

0
.4

6

a
M

u
lt

iv
ar

ia
b

le
m

o
d

el
s

ad
ju

st
ed

fo
r

ag
e

at
d

ia
g

n
o

si
s

(3
-y

ea
r

ca
te

g
o

ri
es

),
st

at
e

o
f

re
si

d
en

ce
,

ra
ce

(C
au

ca
si

an
/n

o
n

-C
au

ca
si

an
),

an
d

ed
u

ca
ti

o
n

(h
ig

h
sc

h
o

o
l

o
r

le
ss

,
so

m
e

co
ll

eg
e,

co
ll

eg
e

g
ra

d
u

at
e,

g
ra

d
u

at
e

ed
u

ca
ti

o
n

)
b

M
o

d
el

d
o

es
n

o
t

in
cl

u
d

e
ag

e
c

M
o

d
el

al
so

ad
ju

st
ed

fo
r

m
ar

it
al

st
at

u
s

d
M

o
d

el
al

so
ad

ju
st

ed
fo

r
n

u
m

b
er

o
f

ch
il

d
re

n
(0

–
1

,
2

,
C

3
)

J Neurooncol (2014) 118:297–304 301

123



studies, no other examined hormonal or reproductive risk

factor was associated with glioma risk. Delayed menarche,

and therefore fewer menstrual cycles, may be a marker of a

lower cumulative estrogen exposure in women, consistent

with a beneficial influence of estrogen on glioma risk. On

the other hand, menarche is also associated with develop-

mental maturation and the finding may reflect exposure to

growth factors that increase glioma risk. Menarche at a later

age has been linked to a taller adult height [34], which is

positively associated with insulin-like growth factor 1 (IGF-1)

levels during prepubertal growth [35]. Taller adult height

has been linked to an increased risk of glioma in some data

[36], although this association was not observed in the

present study [30]. The finding for age at menarche was not

confounded by adult stature in our study, with the positive

association for increased age at menarche observed

regardless of adult height (Supplemental Table 2). This

suggests that the mechanism explaining the finding for age

at menarche is not related to exposure to growth factors

determining height. In our study, the positive association

with later age at menarche was stronger in pre-menopausal

women, possibly because younger women more accurately

recalled their age at menarche when compared to post-

menopausal women and misclassification in the latter group

biased results to the null. Age at menarche was not asso-

ciated with the risk of meningioma in the current study; one

cohort study of meningioma found a significant increased

risk with an older age at menarche [37], however, all other

studies observed no association [38–45].

In the present study, women with meningioma were more

likely to have undergone menopause, in particular, natural

menopause, when compared to controls. The observed

excess risk associated with menopause is at variance with

the concept that estrogen promotes meningioma given that

post-menopausal women have lower cumulative exposure to

estrogen as compared to age-similar pre-menopausal

women. Post-menopausal status was associated with an

elevated risk of meningioma in some [43, 46], though not all

[42, 44, 45] prior case–control studies; whereas cohort

studies suggested either no association [41] or a signifi-

cantly lower risk [37] among post-menopausal women.

Similar to our finding, most studies [32, 33, 41, 42, 45–49],

including three cohort studies [32, 33, 41] observed no

association between menopause status and risk of glioma.

Consistent with existing literature our study does not

support a role for parity in the onset of brain tumors in

women. Although we found a borderline excess risk of

glioma in nulliparous women, previous studies have not

supported an association of parity with glioma risk [32, 33,

41, 42, 47, 49–52]. Also in line with the present findings,

most studies observed no association of parity with risk of

meningioma [37, 39–43, 45, 48, 51]. With regard to age at

first birth, one case–control study observed a significant

inverse association with glioma risk for an early age at first

birth compared to nulliparity [45], however consistent with

our findings, most studies observed no association between

age at first birth and glioma risk [32, 33, 41, 42, 47, 50, 51,

53]. Similarly, no association has been observed between

age at first birth and risk of meningioma [37, 38, 40, 41,

43–45, 51, 53]. To the best of our knowledge, no previous

studies have reported on associations between years since

last giving birth and risk of glioma or meningioma.

In the current study, long-term OC use was associated

with a reduction in the risk of glioma but had no associa-

tion with meningioma. Several case–control studies also

observed an inverse association of glioma with ever use of

OCs [45, 47, 54]. However, prospective studies have con-

sistently found no association of OC use with glioma risk

[32, 33, 41, 51]. Consistent with our finding for meningi-

oma, most studies did not observe an association between

OC use and the risk of meningioma [37, 39, 40, 43, 45, 51,

55, 56].

Strengths of this study include pathologic confirmation of

all glioma cases and high enrollment rates among the

cases with limited reliance on proxy respondents for brain

tumor cases. Also, the relatively large number of glioma

cases given the rarity of the disease offered substantial power

to examine associations of interest. A limitation, however, is

the lower than optimal response rate among controls and

resultant potential for selection bias in the data. Controls in

this study were more educated than either case group and, to

the extent that hormone use is more common among women

of higher socioeconomic status [57], selection bias may

potentially have contributed to the protective association

observed for glioma with long term OC use in the pres-

ent data. While selection bias is difficult to rule out, the lack

of a similar inverse association for OC use in relation to

meningioma argues against selective enrollment of OC-

using controls, and suggests that the finding for OCs in gli-

oma may potentially have arisen by chance. Another

potential source of bias is the use of friend controls since

friends are likely to be similar with regard to lifestyle

behaviors and socioeconomic status [58]. However, our

findings were not materially changed when friend controls

were removed from the analysis, suggesting that the inclu-

sion of these controls had no material influence on the results.

In summary, our findings when considered in the context

of previous literature offer no consistent evidence for a role

of reproductive factors in the onset of brain tumors in

women. The study adds to a growing body of evidence that

a later age at menarche confers an increased risk of glioma

occurrence in women.
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