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Abstract
Extreme weather events are expected to increase in frequency and intensity in South Amer-
ica, likely causing decreased plant productivity and altering species distributions. Yerba 
mate (Ilex paraguariensis) is a tree species native to South America and has an ecological, 
social, and economic importance in several countries. Natural forests and cultivated areas 
of yerba mate will be endangered by climate change because of the expected reduction in 
water availability. Here we determined how clonal genotypes of yerba mate (BRS BLD 
Yari, BRS BLD Aupaba, BRS 408, and EC40) respond to four levels of soil water holding 
capacity (100%, 80%, 60%, and 40% WHC) over 60 days, by evaluating the plants’ mor-
phophysiological and biochemical characteristics. We observed a reduction in plant height 
and biomass accumulation related to the decrease in water availability; physiological and 
biochemical parameters indicated that water-deficit stress reduced the plants’ C assimila-
tion and increased their production of bioactive compounds. BRS BLD Yari had a higher 
tolerance to low water availability, with greater biomass accumulation and photosynthetic 
rates that indicate greater water use efficiency. Understanding how different yerba mate 
genotypes respond to water deficit is essential for species conservation and developing cli-
mate-adapted breeding programs.
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Introduction

Climate change is altering forest ecosystems around the world (Seidl et al. 2017; Girona 
et al. 2023). Recent climate change projections indicate that South America will suffer 
a greater variability in rainfall patterns and longer and more intense periods of drought 
(Llopart et al. 2020; Gomes et al. 2022). These unpredictable drought cycles will have 
potentially devastating effects on forest and agricultural plantations, reducing produc-
tion capacity, and causing considerable economic losses (Grüter et  al. 2022; Jiménez 
et al. 2023). Production capacity will be reduced mainly because of water deficits that 
will affect cellular processes, leaf expansion, stomatal conductance, transpiration rates, 
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foliar abscission, and photosynthetic activities (King and Purcell 2017; Pappas et  al. 
2022). How plants will respond to these changing conditions is a critical question, and 
understanding the survival and growth mechanisms of various groups of plants and gen-
otypes will serve to guide future management strategies and breeding programs (Scol-
foro et al. 2017, 2019).

Yerba mate (I. paraguariensis A.St.-Hil.) is a tree species native to the South American 
humid subtropical forest of Brazil, Paraguay, and Argentina (Carvalho 2003). It is planted 
in monocultures, in agroforestry systems, semi-hydroponic systems, or exploited in native 
forests (Aguiar et al. 2022; Tomasi et al. 2024). In 2021, annual yerba mate production in 
Brazil was 1,060,441 tons (worth approximately US$ 285 million); it is the most important 
non-timber forest product in Southern Brazil (IBGE 2023a, b a, b). The leaves and young 
branches of yerba mate are used in South America mainly to produce beverages such as 
chimarrão, tereré, and tea; it therefore has an important social and cultural aspect related 
to its consumption (Duarte et al. 2020; Tomasi et al. 2021). Recently, its potential has been 
explored for use in food, pharmaceutical, cosmetical, and chemical industries because of its 
bioactive compounds as well as its antioxidant and anti-inflammatory properties. Moreo-
ver, the consumption of yerba mate has increased in nontraditional countries, including 
the United States, Germany, and Syria (Gullón et al. 2018; Vieira et al. 2021; Duarte et al. 
2022; Gerber et al. 2023).

The distribution patterns of yerba mate are determined mainly by temperature and rain-
fall, and climate change will likely negatively affect the productivity of commercial plan-
tations and alter its distribution by reducing its range to higher altitudes and more humid 
regions (Da Silva et al. 2018). The years of 2019 and 2020, for example, were uncommonly 
dry in Paraná State, Brazil, with an annual rainfall deficit of more than 600 mm, affecting 
yerba mate seedlings survival and growth (Aguiar et al. 2023). The latest IPCC report indi-
cates that southern South America will experience significant changes in the regional water 
regime, and extreme temperature and rainfall events will become more frequent (IPCC 
2022).

Climate change affects the morphological, physiological, and anatomical characteristics 
of plants as well as plant biomass production (Madani et al. 2018; Girona et al. 2023). The 
magnitude of the water deficit determines the strategy adopted by plants to overcome this 
stress. Initially, when soil moisture reaches a value lower than the soil water holding capac-
ity, plants maintain turgor to ensure growth continuity; however, after an extended period 
of water deprivation, photosynthesis decreases, and several mechanisms, e.g., the produc-
tion of abscisic acid and stomatal closure, are activated to avoid water loss and ensure 
osmotic adjustment (Tardieu and Simonneau 1998; Brunner et al. 2015).

Recent studies have characterized the molecular mechanisms associated with the 
drought response in yerba mate, such as leaf osmotic adjustments and alterations of the 
plant’s metabolic profile; the nature of these responses indicate that changes in water 
regimes may be the most significant factor influencing on yerba mate biomass production 
in the coming years (Acevedo et al. 2019). Drought resistance and recovery in yerba mate 
are regulated by gene expression; thus, a marked genetic effect will determine how dif-
ferent genotypes respond to climate change (Acevedo et al. 2016, 2018). Therefore, it is 
important to identify how genotypes used in breeding programs respond to drought. Such 
genotype-climate influence studies have not been undertaken for the Brazilian breeding 
program of yerba mate.

Here we evaluate the response of four yerba mate clonal genotypes to water deficit, as 
extensive dry periods are projected in South America in the future. We hypothesize that 
water availability alters plant growth, physiology, and biochemistry and that yerba mate 
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genotypes differ in their responses to water deficit given that breeding programs select 
yerba mate genotypes for various non-climate-related purposes and from different regions.

Material and methods

Treatments and experimental design

We used four genotypes of yerba mate propagated via a mini-cutting technique in 110 cm3 
polypropylene tubes; plants were on average 6  months old and 15 ± 3  cm in height. We 
selected four genotypes from the yerba mate breeding program of the Brazilian agricultural 
research corporation (Embrapa). Three genotypes (BRS BLD Yari, BRS BLD Aupaba, and 
BRS 408) are used at a commercial scale and are already registered with the Brazilian min-
istry of agriculture, livestock, and food supply (MAPA), and one (EC40) is still undergoing 
tests. The breeding program selects yerba mate genotypes based on leaf biomass productiv-
ity and leaf taste (Sturion et al. 2017; Wendling et al. 2018).

Each seedling was transplanted into a 3.8 L pot filled with 3.4 L of a ferralsol, a soil 
commonly underlying yerba mate plantation (Table S1; IUSS Working Group WRB 2015). 
The water holding capacity (WHC) of the soil was determined previously according to the 
methods of Normative Instruction N° 17 (MAPA, 2007). Five days post-transplanting, the 
plants were subjected to different water availabilities: 100%, 80%, 60%, and 40% WHC of 
the soil. Three pots filled with soil were randomly placed in the experiment and used as a 
parameter to replace the water in the treatments. For 60 days, between 8:00 and 9:00 AM, 
these samples were weighed to define the necessary water amount to reach the established 
WHC in each treatment.

The study was conducted in Colombo, Paraná, Brazil (25° 19′ 15″ S, 49° 09′ 31″ W; 
934 m), at the Brazilian agricultural research corporation (Embrapa Florestas), in a plastic-
sided greenhouse. The experiment was established as a randomized block design, in a dou-
ble factorial arrangement (four genotypes × four water availabilities); the treatments were 
distributed in four blocks comprising six plants each, resulting in 384 plants.

Morphological analysis

We measured plant height, stem diameter, and dry biomass 60 days after the beginning of 
water availability treatment, evaluating three plants of each block. For height, we meas-
ured plants from the base to the apex with a millimetric-scale ruler, and stem diameter was 
measured using a digital caliper. For dry biomass, we separated the aerial part and roots; 
both parts were packed in identified paper packages and dried in an oven with forced venti-
lation at 60 °C until a constant weight was attained, generally after 72 h. Dry biomass was 
weighed using a precision balance (0.002 mg Accuris™ Precision Balance, EuroPlug). We 
used these data to calculate total dry biomass and the shoot:root (SDB:RDB) dry biomass 
ratio.

Physiological analysis

Gas exchange was evaluated using gas exchange system (LCpro-SD, ADC BioScien-
tific®) at the end of the experiment. Readings were obtained between 9:00 and 11:00 
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AM on a sunny day (Haworth et al. 2018). We used the environmental CO2 concentration 
as a reference, which varied from 380 to 400  µmol CO2  mol−1; the difference in water 
vapour pressure was on average 6.54  mbar, the chamber temperature varied from 28 to 
30  °C and the leaf temperature from 29 to 32  °C. We used the equipment’s LED artifi-
cial (869  mol  s−1  m−2) lighting to avoid interference from external PAR variations. We 
recorded carbon assimilation (A, µmol CO2 m−2 s−1), transpiration (E, mol H2O m−2 s−1), 
stomatal conductance (gs, mol H2O  m−2  s−1), and intracellular carbon concentration (Ci, 
µmol  mol−1). From these data, we calculated water use efficiency (WUE, µmol CO2 mol 
H2O−1), and the carboxylation efficiency, determined by the A/Ci ratio. Physiological 
measurements were carried out in two plants of each block per treatment.

Preparation of plant material and aqueous extracts

After 60 days of water availability treatments, we collected about 50 g of mature leaves 
from all plants of each block only leaves showing no apparent damage for biochemical 
analysis and immediately dried the collected material in a microwave for 5 min. The sam-
ples were then ground and stored at − 4 °C until analysis, following the methodology of 
Tomasi et al. (2021). We used 0.50 g ± 0.01 g of ground leaves and 50 mL of boiling water 
(98  °C) to prepare an aqueous extract. The extract was vortexed for 30  s. The solutions 
were subjected to ultrasound at 30 °C for 30 min and then filtered through a qualitative fil-
ter paper, and the extract was made up to 100 mL by adding distilled water. To correct the 
mass for chemical analysis, sample moisture was determined by weighing 0.5 g of mate-
rial, drying it in a forced-air oven at 100 °C for 24 h, and then reweighing the material. 
All chemical analyses were performed at the Non-Timber Forest Products Laboratory of 
Embrapa Florestas and in triplicate for each block.

Total phenolic compounds

We quantified the total phenolic compounds using the Folin–Ciocalteau spectrophotomet-
ric method (Singleton and Rossi 1965). Briefly, using a 10 mL volumetric flask, we added 
0.1 mL of aqueous extract, 6.0 mL of distilled water, and 0.5 mL of Folin–Ciocalteau rea-
gent, followed by 1 min of vortex mixing. We then added 2 mL of 15% aqueous Na2CO3 
solution, again vortex mixing for 30 s, and we adjusted the final volume to 10 mL by add-
ing distilled water. After two hours of reaction in a dark room at 23 °C, sample absorbance 
was measured at 760  nm in a Shimadzu-1800 UV/Vis spectrophotometer (Shimadzu®, 
Japan). We used gallic acid within the range of 0.25–13 mg L−1 to produce a reference ana-
lytical curve. Our results were expressed in mg gallic acid equivalent per gram of sample 
(mg GAE g−1) on a dry basis.

Antioxidant activity (ABTS and DPPH free radicals)

Antioxidant activity of the aqueous extracts was determined using the free radicals DPPH 
(2, 2-diphenyl-1-picrylhydrazyl) and ABTS [2, 2’-azino-bis (3-ethylbenzothiazoline-6-sul-
fonic acid)] (Brand-Williams et al. 1995; Re et al. 1999). DPPH was determined by adding 
0.1 mL of sample to 3.9 mL of DPPH methanolic solution (0.06 mmol L−1). This reaction 
occurred in a dark room for 30 min, and the absorbance was measured at 515 nm.
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Antioxidant activity of ABTS was determined by reacting 10 mL of ABTS (7 mmol L−1) 
with 176 µL of potassium persulfate (140 mmol  L−1) in a dark room at 23 °C for 16 h. 
An aliquot of 1  mL of ABTS solution was added to 100  mL of sodium acetate buffer 
(48.5 mmol L−1) pH 4.5, with the absorbance adjusted to 0.7 ± 0.05. Then, 3 mL of ABTS 
buffered solution was added to 30 μL of extract. The samples were kept in the dark for 
2 hours and after the absorbance was measured at 734 nm. All antioxidant activities assays 
were performed in a spectrophotometer Shimadzu-1800 UV/VIS (Shimadzu®, Japan). 
Results were compared against a standard curve (Trolox 0–1000 μmol L−1 for DPPH and 
0–2500 μmol L−1 for ABTS) and expressed in μmol Trolox equivalent per gram of sample 
(TEAC μmol g−1) on a dry basis.

Statistical analysis

To explain the variability in genotype response to water availability and differentiate the 
morphological, physiological, and biochemical responses of the genotypes, we applied a 
generalized linear model (GLM) having a Gamma distribution and an identity link func-
tion. We set water availability and genotypes as fixed effects. We ran all our analyses in R 
software version 4.3.3 (R Core Team 2024) using packages dplyr, tibble and ggplot2.

Results

Genotype and water holding capacity (WHC) produced significant differences (p < 0.05) 
in most morphological variables, except for stem diameter and shoot:root biomass ratio 
(Table 1). Height was the only morphological variable with significant interaction between 
factors: EC40 genotype had a lower average when subjected to 40% WHC, however, with 
increasing WHC, it presented higher growth than the others, surpassing BRS408 and simi-
lar to Aupaba with 100% WHC (Fig. 1). Yari genotype showed the highest height for all 
water availability treatments. For shoot, root, and total dry biomass, there was a linear 
increase with the rise in WHC greater biomass accumulation with higher water availability. 
The highest biomass values were observed in the Aupaba and Yari genotypes.

There was interaction between genotypes and WHC for almost all physiological vari-
ables, except for A, and WUE, p < 0.05 (Table 2). Genotype significantly affected all vari-
ables; only the gs, and Ci variables were not impacted by the WHC factor. We observed 
an increase in the values of A and E variables as the WHC was increasing for all gen-
otypes (Fig.  2); EC40 was superior to other genotypes in all WHC conditions in both 

Table 1   ANOVA of GLM (Gamma function) to height (cm), stem diameter (mm), shoot dry biomass 
(SDB–g), root dry biomass (RDB–g), total dry biomass (TDB–g), and shoot:root ratio (SDB:RDB) of I. 
paraguariensis genotypes subjected to different water availabilities (WHC)

Effect Pr (> F)

Height Diameter SDB RDB TDB SDB:RDB

Genotype < 2.2 − 16 0.25 7.2−8 1.5−4 4.2−9 0.86
WHC 8.1−8 0.19 3.3−12 1.6−7 5.2−14 0.77
Genotype:WHC 1.9−4 0.33 0.86 0.47 0.57 0.85
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Fig. 1   Height (cm), stem diameter (mm), shoot, root, and total dry biomass (g), and shoot:root ratio 
(SDB:RDB) of I. paraguariensis genotypes (Aupaba, BRS408, EC40, and Yari) subjected to different water 
availabilities (WHC). 95% confidence interval predicted by GLM (Gamma function)

Table 2   ANOVA of GLM (Gamma function) to carbon assimilation (A, µmol CO2  m−2  s−1), transpira-
tion (E, mol H2O m−2 s−1), stomatal conductance (gs, mol H2O m−2 s−1), intracellular carbon concentration 
(Ci, µmol  mol−1), water use efficiency (WUE, µmol CO2 mol H2O−1), and carboxylation efficiency (A/Ci, 
mol m−2 s−1) of I. paraguariensis genotypes subjected to different water availabilities (WHC)

Effect Pr(> F)

A E gs Ci WUE A/Ci

Genotype 4.1−10 9.5−8 1.3−7 9.9−3 0.02 1.5−3

WHC 1.7−7 2.3−15 0.08 0.10 3.5−3 0.03
Genotype:WHC 0.66 4.1−3 0.02 0.02 0.16 0.02
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variables, while BRS408 presented the lowest means. For gs, EC40 had a sharp decrease 
with the WCH increase, while other genotypes remained practically stable. For Ci vari-
able, each genotype showed different responses to WHC increase: Aupaba and BRS408 
had a decrease, EC40 remained stable, and Yari showed an increase in this physiological 
parameter.

Regarding WUE, the Yari genotype presented the highest averages, and BRS408 the 
lowest; for this variable, there was a decreased tendency with increasing WHC (reduction 
of 52% for the EC40 genotype, comparing 40% and 100% of WHC). For A/Ci, the Aupaba 

Fig. 2   Physiological variables of I. paraguariensis genotypes (Aupaba, BRS408, EC40, and Yari) sub-
jected to different water availabilities (WHC): carbon assimilation (A, µmol CO2  m−2  s−1), transpiration 
(E, mol H2O  m−2  s−1), stomatal conductance (gs, mol H2O  m−2  s−1), intracellular carbon concentration 
(Ci, µmol  mol−1), water use efficiency (WUE, µmol CO2 mol H2O−1), and carboxylation efficiency (A/Ci, 
mol m−2 s−1). 95% confidence interval predicted by GLM (Gamma function)
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genotype presented a different response from others, showing a considerable increase in 
carboxylation efficiency with the increase in WHC, standing out with the highest averages 
in the conditions of 80% and 100% WHC.

There was an interaction between genotypes and WHC factors for total phenolic com-
pounds and antioxidant capacity (Table  3). Total phenolic compounds content and anti-
oxidant activity decreased 13%–32% for all clones as water availability increased from 
40 to 100%; however, interactions between factors indicate that each genotype responded 
differently to WHC (Table  3 and Fig.  3). When we observed the content of phenolic 
compounds in 40% WHC, EC40 and Yari genotypes stood out, with the highest values; 
however, with increasing in WHC, EC40 showed a significant decrease in the content of 
these compounds. For the free radicals ABTS and DPPH, the results of the genotypes was 
similar: EC40 and BRS408 had the highest levels at 40% WHC, but BRS408 showed a 
greater decrease with the highest WHC; regardless of WHC, the Aupaba genotype had 
the lowest antioxidant capacity. Antioxidant activity varied between 1571.67 and 2048.84 
TEAC µmol g−1 for ABTS and between 361.23 and 545.11 TEAC µmol g−1 for DPPH.

Discussion

Drought resilience is an important property for cultivated plants, particularly in the con-
text of expected future climate change. Studies of various plant species have elucidated 
the mechanisms related to drought resilience, and genotypes of the same species can differ 
in their strategies to cope with water deficits (Scolforo et  al. 2019; Krzyżak et  al. 2023; 
Toro et  al. 2023; Perera-Castro et  al. 2023). Using the regulation of leaf water potential 
by stomata, plants can be classified as having either an isohydric or anisohydric behav-
ior. Isohydric plants have a fast response to water deficits and close their stomata to avoid 
water loss. Anisohydric plants maintain water potential even under water deficit situations, 
being insensitive to decreases in soil water potential (Tardieu and Simonneau 1998; Pou 
et al. 2012; Martínez-Vilalta et al. 2014). Under minimal water deficit conditions, aniso-
hydric plants may have an advantage in terms of biomass production by keeping their sto-
mata open, although more severe and long-lasting water deficits will cause more damage 
to these plants than to isohydric species (Pou et al. 2012). The selection of genotypes that 
tend to have an isohydric behavior is therefore highly desirable in breeding programs for 
species that will likely encounter more severe drought situations in the field.

Yerba mate is a typical isohydric plant, which explains the growth stagnation observed 
in conditions of less water availability; these plants close their stomata at a relatively high 

Table 3   ANOVA of GLM (Gamma function) to content of total phenolic compounds (mg GAE g−1) and 
antioxidant capacity of the free radicals ABTS and DPPH (TEAC μmol g−1) of I. paraguariensis genotypes 
subjected to different water availabilities (WHC)

Effect Pr(> F)

Phenolic ABTS DPPH

Genotype 6.0−9 < 2.2−16 < 2.2−16

WHC < 2.2−16 < 2.2−16 < 2.2−16

Genotype:WHC 2.7−3 9.6−11 1.9−14
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Fig. 3   Content of total phenolic 
compounds (mg GAE g−1) 
and antioxidant capacity of 
the free radicals DPPH and 
ABTS (TEAC μmol g−1) of 
I. paraguariensis genotypes 
(Aupaba, BRS408, EC40, and 
Yari) subjected to different water 
availabilities (WHC). 95% confi-
dence interval predicted by GLM 
(Gamma function)
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plant water status to avoid dehydration by limiting water loss (Tardieu and Simonneau 
1998; Acevedo et al. 2019). This behavior is important for the commercial plantations of 
yerba mate that use the plant’s leaves as the main product, considering that this drought 
resilience strategy avoids leaf abscission. All genotypes used in our study reduced pho-
tosynthesis and transpiration in the low water availability treatments, indicating stomatal 
closure (Chen et al. 2020). Lower stomatal conductance and photosynthesis rates have also 
been observed as part of the physiologic and metabolic changes triggered by drought in 
other yerba mate genotypes (Acevedo et  al. 2019). The BRS408 plants presented lower 
growth rates in any water availability; these results are supported by the physiological vari-
ables that indicate a lower C assimilation. Yari and EC40 clones showed a higher water use 
efficiency when subjected to reduced water availability, indicating a high tolerance of this 
pair of genotypes to water deficits. Water use efficiency is defined as the quantity of carbon 
assimilated per unit of water used by the plant; a higher water use efficiency is an advan-
tage to plants subjected to drought (Toro et  al. 2023). Hakamada et  al. (2020) observed 
significant differences in the water use efficiency among Eucalyptus clones subjected to 
various planting density and drought treatments, indicating that this physiological charac-
teristic is primarily inherited.

Our results demonstrate that water availability in the substrate significantly affects the 
morphological, physiological, and biochemical characteristics of yerba mate genotypes. 
Moreover, we observed that genotypes respond differently to water availability: in general, 
Yari seedlings had a higher tolerance to low water availability, indicated by the higher bio-
mass accumulation in all WHC treatments and the increased water use efficiency in the 
lower water availability treatments. Aupaba genotype showed similar growth to Yari but 
Aupaba had the most pronounced reduction in C assimilation as water availability was 
reduced. The EC40 genotype presented physiological responses similar to Yari but did not 
stand out in the morphological variables. Above all, the maximal isohydric behavior of 
Yari plants among the studied genotypes may be an important characteristic for its use in 
areas subjected to frequent droughts.

Although we observed a reduced growth and symptoms of water stress in seedlings 
subjected to a lower water availability, the treatments used in our study and the duration 
for which seedlings were subjected to this water availability (60  days) were insufficient 
to cause plant death. It should be noted that the seedlings were not subjected to a con-
stant water level–water availability in the soil was adjusted once a day, and water loss due 
to evapotranspiration was not controlled. Decreased growth in plants subjected to water 
deficit has been widely demonstrated for arboreal species and has also been observed in 
other yerba mate genotypes (Gortari et al. 2020). In the latter study, water deficits reduced 
plant height, and both seedlings and mini-cuttings responded similarly to water deficit after 
50 days.

Biomass accumulation is often the main morphological characteristic affected by water 
deficit (Amaral et al. 2023; Leite et al. 2023). We observed that all yerba mate genotypes 
decreased biomass accumulation at a lower water availability. Griebeler et  al. (2021) 
obtained similar responses after subjecting Cedrella fissilis and Eucalyptus saligna to vari-
ous irrigation regimes (continuous irrigation and daily irrigation at different intervals). The 
authors observed increased biomass in both species when the plants had a higher water 
availability. Griebeler et al. (2021) also noted that the shoot:root ratio differed between spe-
cies: E. saligna experienced a decreased ratio when subjected to water restrictions, whereas 
the ratio for C. fissilis did not differ between treatments. An increase in the root biomass 
and a stagnation in the aerial part (lower shoot:root ratio) are expected when plants are 
subjected to a water deficit, as a strategy to reduce water loss and increase water absorption 
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capacity. In our study, however, we observed that when subjected to a water deficit instead 
of increased root growth, yerba mate plants stagnated growth in both, shoots and roots, not 
affecting shoot:root ratio biomass. Similar results were obtained by Gortari et al. (2020) 
after subjecting yerba mate seedlings and mini-cuttings to simulated drought periods.

Yerba mate is known for its high content of phenolic compounds and its antioxidant 
activity (Vieira et al. 2021; Duarte et al. 2022). Environmental factors such as temperature, 
water and nutrient availability, and solar radiation, as well as the plant development stage 
can influence total phenolic compound levels and antioxidant activity in yerba mate (Croge 
et al. 2021). We observed that yerba mate subjected to a lower water availability increased 
phenolic compound contents and antioxidant activity. Phenolic compounds are the larg-
est group of secondary metabolites in plants and have several physiological and metabolic 
functions. The accumulation of phenolic compounds in plants subjected to abiotic stresses 
is a known adaptative response to unfavorable conditions (Sharma et al. 2019). The action 
of phenolic compounds in plants under drought stress is related mainly to inhibiting the 
production of reactive oxygen species and their accumulation, a phenomenon observed in 
several plant species (Nina et al. 2023; Shao et al. 2023; Shohani et al. 2023).

The expected increase in the frequency, duration, and severity of drought events requires 
selecting water deficit-resistant genotypes of yerba mate for both production plantations 
and genetic conservation purposes (Acevedo et al. 2016, 2019). In Brazil, the yerba mate 
breeding program focuses primarily on leaf productivity, the main product obtained from 
yerba mate plantations (Wendling et al. 2016; Sturion et al. 2017); however, as we found, 
these genotypes do not respond similarly to water deficit. In general, the Yari and Aupaba 
genotypes presented the best biomass accumulation among the different water availabili-
ties, although Aupaba showed inferior physiological responses. Subjecting different yerba 
mate genotypes to a controlled water restriction helps predict a genotype’s behavior to 
water deficits in the field and guides future decisions in yerba mate breeding programs. 
Since yerba mate clones respond differently to water deficit, new studies, and breeding pro-
grams must focus on selecting and developing water deficit-resistant genotypes.

Conclusion

Decreased water availability to yerba mate plants reduces plant growth and biomass accu-
mulation, alters physiological activities, and enhances the accumulation of phenolic com-
pounds and antioxidant activity. Among the evaluated genotypes, BRS BLD Yari showed 
a higher tolerance to low water availability, concerning its morphological and physio-
logical parameters. We recommend the use of drought-resistant genotypes in yerba mate 
plantations for maintaining commercial production, conserving the species, and adapting 
to climate change. New research is necessary to detail the yerba mate drought resistance 
mechanisms.
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