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Abstract
Local terrain or microsite conditions influence the development of trees, particularly at 
early ages. These conditions might be described by edaphic or topographic variables. We 
mapped soil and topographic variables from four even-aged and even-spaced cork oak 
plantations located in two climatically distinct Portuguese regions. The major goal of this 
research was to understand the relation between soil and topographic fine-scale conditions 
and tree growth expressed by diameter without cork annual growth (idu). The methodology 
consisted in (1) analysing the spatial variability and autocorrelation of idu; (2) modelling 
idu with ordinary least squares (OLS) regressions; (3) comparing with spatial modelling 
of idu, incorporating spatial autocorrelation. The driest stands A and B, exhibited 
weaker spatial autocorrelation, distributed in smaller clusters  (R2 < 0.03, OLS models), 
while stands C  (R2 = 0.18, OLS models) and D  (R2 = 0.11, OLS models) showed higher 
predictive capacity. Spatial models increased  R2 scores, keeping most variables from OLS 
models and accounting for spatial autocorrelation. A + B + C + D OLS model obtained 
an  R2 = 0.34 and respective spatial model  R2 = 0.58. Apparent electrical conductivity at 
0.5 (ECa0.5) and 1 m of soil depth, slope, elevation and topography position index were 
included as predictors (OLS), but only ECa0.5, slope and elevation were selected in the 
spatial model. Models were fitted using average to high productivity stands and should be 
used cautiously outside this range. Local terrain conditions determine the growth of young 
cork oak trees. Mapping soil and topographic variables before establishing new plantations 
may identify limiting microsite conditions where using cork oak species is not suitable due 
to low growth rates expectations.
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Introduction

At early ages trees may be affected by stand density, tree genetics, intraspecific and 
interspecific competition, as well as soil and climate microsite conditions (Tomé and 
Burkhart 1989; Bullock and Burkhart 2005). These drivers are crucial not only for the 
individual tree growth but also for the whole spatiotemporal ecological dynamics that will 
be created with age progression (Costa et al. 2009; Andivia et al. 2015). Forest management 
options and planning are critical for aiming at successful sustainable production stands, in 
which the cork oak (Quercus suber L.) plantations for cork production are included. Young 
cork oak plantations average a stand density of 500 trees  ha−1 (AIFF 2010), but mature cork 
oak stands are typically found in densities lower than 120 trees  ha−1 (ICNF 2019). While 
for the majority of forest species timber is frequently one of the main productions, for cork 
oak species timber production is not considered since the cutting down trees is prohibited 
by Portuguese law. Cork oak stands are managed as agrosilvopastoral systems called 
montado, with the main product obtained being cork, thus the success and profitability of 
these systems depend on the management options at early stages (Natividade 1950).

Even though the species is adapted to the summer drought, typical in the Mediterranean 
climate, the severity of the drought impacts not only cork oak development but also its 
distribution (Costa et al. 2008; Paulo et al. 2015; Vessella et al. 2017). Climate associated 
with site factors are determinant to obtain equilibrium in the hydromorphic soil conditions, 
a relation between soil, topography, and water availability that is essential for the 
successful cork oak development (Costa et  al. 2010). Although a few suitability maps 
based soil and climate have been developed (e.g. Paulo et al. 2015, 2021), currently these 
aspects are frequently underlooked during the establishment of new cork oak plantations, 
as Portuguese regulations are defined for a national application and cork oak is considered 
a species of interest across the whole country (Coelho et al. 2012).

Tree species development is monitored by measuring tree growth at regular time 
intervals. Growth related measurements are focused on size characteristics such as tree 
diameter at breast height, total height or crown radius (e.g. Paulo and Tomé 2009; Li 
et al. 2019; Maleki et al. 2020). Tree diameter measuring is an easy method to obtain a 
standardized comparison between individuals or populations, identify patterns and trends 
(Bullock and Burkhart 2005; Li et  al. 2019). The individual variation of oak diameter 
growth may be affected by tree genetics (Sampaio et al. 2021), competition (Paulo et al. 
2002; Gea-Izquierdo and Cañellas 2009), management options (Faias et al. 2019; Lecomte 
et  al. 2022), but also by edaphic and topographic conditions (Brown and Fredericksen 
2008; Costa et al. 2008).

Topography has a direct effect on infiltration and runoff through their influence on 
superficial or underground water flow, which will impact soil properties (Rodrigues et al. 
2021). Both topographic and soil characteristics impact water availability and water 
distribution (Walker and del Moral 2003). Surveying the local variation of these factors can 
become cost and time demanding, particularly when considering soil sampling. Remote 
sensing techniques come as a relatively inexpensive alternative to fast map continuous 
areas. Digital mapping of topography is a common practice in forestry assessment (e.g. 
Davis and Goetz 1990; Plant 2019; Rocha et  al. 2020). Electromagnetic-induction-based 
methods are techniques to reliably characterize soil property variations in a mobile and non-
invasive way. These methods sense soil apparent electrical conductivity (ECa), the ability 
of soil to conduct an electrical current (Corwin and Lesch 2005). Applications of ECa 
measurements largely include precision agriculture, aiming at optimizing soil sampling 
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strategies, delineating soil management zones or predicting yield variability (Kühn et al. 
2009; Rudolph et al. 2016; Plant 2019). As for precision forest few applications are found, 
being mainly related to understanding soil properties (Mcbride et  al. 1990; Paillet et  al. 
2010).

Spatial relations between individual diameter size are found in forest stands (Getzin 
et al. 2008; Petritan et al. 2012). The distribution patterns and neighbourhood relationships 
are important aspects of forest spatial structure. While the distribution patterns reflect the 
spatial distribution of individual plants, neighbourhood relationships describe fine-scale 
spatial relations of a small group of individuals, including the structural characteristics of 
several adjacent trees surrounding a reference tree (Li et al. 2019). These spatial patterns 
result from the adaptation of trees to their surrounding conditions, exhibiting usually 
position spatial autocorrelation patterns (Reed and Burkhart 1985; Sedda et  al. 2011). 
Fine-scale variations of soil and topography related factors may trigger spatial correlation 
on trees, along with sunlight or nutrient availability, potentially creating spatial patterns of 
tree characteristics within the stand.

Some studies have been centred on understanding spatial patterns on cork oak 
development (e.g., Costa and Oliveira 2001; Costa et al. 2008; Dettori et al. 2018; Sampaio 
et  al. 2021). Few have applied spatial analysis of cork oak individuals on continuous 
stands, based on tree height (Sedda et  al. 2011), crown diameter (Paulo et  al. 2002) or 
diameter (Sedda and Dettori 2006). None have used multiple stands to verify the possibility 
of responses of cork oak individuals to site conditions on distinct locations. Our study 
attempts to fill this gap by understanding how microsite conditions and spatial patterns may 
determine tree diameter on young cork oak plantations. Our work aims thus to 1) examine 
the relationships between young cork oak diameter and microsite conditions; 2) identify 
and analyse the presence of spatial correlation in individual tree diameter 3) quantify the 
benefits of integrating spatial correlation in tree diameter growth modelling.

Materials

Stands description

Four pure even-aged regular cork oak plantations were selected for tree measurement and 
soil variable collection according to their productivity. These stands contain part of the net-
work of long-term permanent inventory plots from the ForChange research group (Centro 
de Estudos Florestais; Instituto Superior de Agronomia), established in cork oak juvenile 
plantations. Stands contained between two and four 2000  m2 rectangular inventory plots, 
attempting to cover most of the variability observed in tree development. According to the 
permanent plots site index (S) values, the four stands showed average to high productivities 
(Paulo et al. 2015). Trees were either undebarked or were first debarked less than five years 
ago when the tree measurement occurred, thus were considered as juvenile trees character-
ized by a linear diameter growth trend (Paulo and Tomé 2009; Firmino et al. 2023). Stand 
A (5.3 ha) and B (6.5 ha) were situated in Santarém district, while stands C (4.2 ha) and 
D (3.9 ha) were in Castelo Branco district, Portugal (Fig. 1). Soil information was already 
available from previous characterization of the permanent plots by examination of opened 
soil profiles (Paulo et al. 2015), providing a description of usable soil depth and root sys-
tem depth. This information was complemented with the FAO soil group from the IUSS 
Working Group WRB (2006) classification. Four soil profiles had been opened in stand 
B and C, two in stand D. Stand A, having no soil profile opened, was classified according 
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to the FAO soil group. Stand and climatic characterization is shown in Table 1, displaying 
stand age, density, site index, climatic variables and usable soil depth and soil classifica-
tion. Site index was calculated for a base age of 80 years, determined by the height growth 

Fig. 1  Characterization of the four sampled stands, A, B, C and D: Left, localization along with the esti-
mated site index map produced by Paulo et al. (2015); Right, spatial arrangement of each stand, along with 
the location of the existing permanent inventory plots and soil profiles. Individual tree and soil profile loca-
tions are represented by ( ) and (•), respectively

Table 1  Site and cork oak stand characterization from stand A, B, C and D, according to the existing long-
term permanent inventory plots

Where t is the age of the stand, in years; N is the stand density given by the living trees per hectare; S 
is the site index value (m), estimated with the model developed by Sánchez-González et  al. (2005); Soil 
FAO classification is the classification according to the IUSS Working Group WRB (2006); Usable soil 
depth is the depth which the root system is able to develop and mean annual temperature (ºC) and annual 
precipitation (mm), were obtained according to the climatic normals of 1981–2010 provided by the Instituto 
Português do Mar e da Atmosfera (IPMA)

A B C D

t 20 28 28 16
N 233 235 353 445
S 18.4 17.0 14.7 15.7
Soil FAO classification Arenosols Arenosols/Cambisols Cambisols Cambisols
Usable soil depth 1.00 (estimated) 1.05–1.70 0.45–1.30 0.70–0.85
Mean temperature 16.8 643.1

16.8
15.9 15.9

Annual Precipitation 643.1 768.8 768.8
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model for dominant cork oak trees from Sánchez-González et al. (2005). Annual precipita-
tion and average temperature are from the 1981–2010 climate normals, provided by the 
Instituto Português do Mar e da Atmosfera (IPMA), available at www. http:// porta ldocl ima. 
pt/.

Tree measurements

Every tree was georeferenced, and the respective diameter was measured at breast height 
above cork. Absent trees in the plantation were considered mortality and excluded from the 
analysis. Plants without measurable diameter at 1.30 m were found in stand B (1.8%), stand 
C (10.9%) and stand D (16.7%), not being considered in our analysis. Diameter without 
cork (du) was either calculated by measuring cork thickness in debarked trees and subtract-
ing it twice to diameter, either estimated by using du equation in virgin cork oaks accord-
ing Paulo and Tomé (2014). Based on the linear growth stage of the tree development that 
characterizes the juvenile stage of cork oak growth (Faias et al. 2020; Firmino et al. 2023), 
diameter without cork annual growth (idu) was calculated by dividing du by the known 
stand age. Boxplots of idu measured in each stand are shown on Fig. 2.

Individual tree crown width, in meters, was estimated based on the diameter measure-
ments, according to the fixed effects models from Paulo et al. (2016). A circular area of 
influence was calculated for each tree, based on the expected size from the cork oak root 
system. Each area was calculated with a radius equal to 2.5 the average canopy radius of 
each tree (Moreno et al. 2005; Dinis 2014), previously estimated from tree diameter.

Fig. 2  Boxplot of diameter without cork annual growth (idu) for stands A, B, C and D

http://www.http://portaldoclima.pt/
http://www.http://portaldoclima.pt/
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Soil variables

Stand soil characterization was acquired by combining available information from soil pits 
(Paulo et al. 2015) and data collected in the field. A sensor model EM38-MK2 (Geonics 
Limited™) was used to obtain apparent electrical conductivity of soil (ECa), defined 
as the ability of the soil to conduct electric current (Domsch and Giebel 2004; Heil and 
Schmidhalter 2017). ECa data was collected in the whole stands, allowing the production 
of detailed soil digital mapping of the stands (Doerge et  al. 1999; Machado et  al. 2015; 
Neely et  al. 2016). Data was collected less than 48  h after raining, when soil was not 
excessively moist or dry. One measurement was executed per stand, since soil ECa pattern 
does not change significantly over time, unless any significant artificial or natural soil 
movement occurs (Doerge et  al. 1999). Elevation mapping was executed simultaneously 
with a ROVER™ iSurvey SL500 RTK GPS, allowing to create a digital terrain model of 
each stand. Generated maps, digital terrain models and ECa digital map, had a one-meter 
pixel size resolution.

Soil variables consisted in the soil apparent electrical conductivity (mS/m) at soil depth 
of 0.5 m (ECa0.5) and one meter (ECa1). These specific soil depths are known to contain 
most of cork oak root biomass distribution when considering the soil first depth m (Besson 
et al. 2014; Dinis 2014), thus soil physical properties at these depths should be of particular 
interest for tree water absorption.

Topographic variables

The digital terrain model was used to obtain terrain elevation and calculate variables 
Slope and Aspect. Since elevation impact can be scale-dependent (Príncipe et  al. 2022), 
two distinct variables were considered: the intra-stand variation of elevation (RelElev), 
standardised as the difference to each stand mean value, as the overall elevation according 
to the sea level (Elev). The distinction was made so RelElev focused on the fine-scale 
variation, while Elev, as computed at a broader regional scale. Since aspect in degrees 
is considered a circular variable, cosine (northerliness) variation was used instead for 
modelling. Northerliness values range from close to 1, north direction, and -1 if the aspect 
is southward.

Topographic position index (TPI) was obtained by the difference between the elevation 
at one position and the mean elevation of its surrounding (Wilson et  al. 2007). Positive 
values indicate higher locations in comparison to its surroundings, negative indicate lower 
locations and TPI values close to zero represent tendentially flat positions. Topograhic 
Ruggedness index (TRI) is similar to TPI, with the distinction of being expressed as the 
amount of elevation difference between the surrounding cells instead of the mean (Riley 
et al. 1999). We attempted to capture fine-scale topographic variations as micro-depressions 
and small ridges, using the 5 × 5 surrounding one-meter pixels (Salinas-Melgoza et  al. 
2018), as our analysis focused on the individual tree and the expected root extent area.

Topographic wetness index (TWI) is defined as the logarithm of the ratio between the 
local upslope area draining through a certain point per unit contour length and the tan-
gent of the local slope (Beven and Kirkby 1979). It has been widely used to study spatial 
scale effects on hydrological processes and identify hydrological flow paths, being useful 
for the characterization of biological processes. Higher TWI values estimate potentially 
higher water accumulation at a given location. Terrain variables were calculated with the 
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R software (R Core Team 2021) version 3.6, using raster package, with exception for TWI, 
calculated using whitebox package (Lindsay 2016).

Every tree position, including living, dead or absent trees, was associated with soil 
and terrain variables, by attributing the respective location pixel value. Trees within a 
five-meter proximity from the stand limits were considered as border trees and removed 
from modelling, minimizing the impact of any external factors that could influence tree 
development (Sedda et al. 2011).

Methods

Spatial weights matrix

Analysing the spatial patterns in idu requires the definition of the spatial weights matrix. 
This is a N × N symmetric matrix, with N being the number of individuals, where  Wij 
represents the proximity between individuals (i, j), which is set to 0 when two individuals 
are too far apart to be considered spatially related. Notice that individuals which are closer 
together have higher proximity.

The notion of proximity is usually determined either by the inverse of the distance or 
spatial lag. The distance can be simply the Euclidean distance between the location of 
individuals (i,j) up to a user-defined threshold, above which the proximity is set to 0. The 
spatial lag is computed through a two-step process: firstly a contiguity matrix is defined, 
where each pair of individuals is either classified as neighbours (1) or not neighbours (0) 
according to a user-defined rule; then, the spatial lag is the minimum number of spatial 
units to reach i from j for each pair (i,j). The weights between each pair of observations 
indicate the strength of their spatial relationship. Selecting an adequate spatial weights 
matrix depends on the data itself, on the expected spatial correlations to be captured and on 
the research question (Fortin and Dale 2005).

This study was based on point data, distributed along lines but not precisely arranged 
as regular grids, with a varying rate of absent points due to tree mortality and small tree 
size. As both distance-based measures and contiguity-based measures seemed reasonable 
to construct the weight matrix, we tested the best distance-based measures up to 15  m, 
two contiguity-based measures (4 and 8 nearest neighbours) and a more complex approach, 
based on the potential interaction distance between individuals. The latter approach con-
sisted in defining the potential area of influence of each tree, estimated in section “Tree 
measurements” based on the extent of their root system. A pair of trees would be defined 
as neighbours if their respective areas of influence overlapped (Fig. 3). This approach is 
based on the principle that contiguity is related to individual tree size, and not just to dis-
tance, which has been shown to be a more adequate concept to characterize the interac-
tions between close trees (e.g. Firmino et al. 2023). A row-normalized weights matrix was 
constructed, where all non-zero weights in each row are equal and their sum is 1. The most 
suitable spatial weights matrix was selected by analysing its adequacy for capturing the 
spatial relationships, based on Moran’s I tests statistics and based on the number of neigh-
bours per tree, so that only clearly isolated trees had no neighbours, and the spatial homo-
geneity of the number of neighbours per tree across the stand area (see Online Resource 1).
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Spatial autocorrelation analysis

Spatial autocorrelation was assessed by computing spatial correlograms and using the 
spatial weights matrix to calculate the Moran’s I statistics and fit spatial models.

The Moran’s I statistic is an indicator of the global presence of spatial autocorrelation 
among neighbours. It evaluates whether there is a pattern of similarity or dissimilarity 
among neighbouring observations, by allowing to test the null hypothesis of absence of 
spatial autocorrelation (Moran 1950; Bivand and Wong 2018). Moran’s I statistic value 
ranges from − 1, corresponding to the presence of negative autocorrelation, to 1, positive 
autocorrelation. A value of zero indicates the absence of spatial correlation. Moran’ I is 
calculated as:

where I is the Moran’s I statistic, i and j are point locations, n is the number of observations, 
Yi and Yj are variable values at location i and j, respectively, Y  is the mean of the variable 
of the n observations and wij is the ijth element of the spatial weights matrix and represents 
the proximity between locations i and j. In Eq. 1, the first term is just a normalization term 
that depends on the scale of the weights. The second term measures correlation between 
neighbours: the larger the deviation from the mean, the larger the magnitude of the cross-
product on the numerator. If no spatial correlation is present, the expected value of I is − 1/
(n − 1), which approaches 0 as n becomes larger.

Spatial correlograms show how the similarity of variable values varies between 
spatial units as function of a distance concept. They are advantageous to compare spatial 
autocorrelation between multiple stands, as they use Moran’s I statistics, which are 
standardized (Legendre and Fortin 1989). Spatial correlograms require the definition of 
spatial units, the lag h. The lag may correspond to a contiguity-based number of nearest 
neighbours or a distance-based band of defined range as illustrated in Fig. 3. The spatial 
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, with zi = Yi − Y; zj = Yj − Y

Fig. 3  Scheme of tree neighbour definition according to three approaches for the notion of proximity: Left, 
contiguity-based approach; Middle, distance-based approach; Right, Area of influence approach, with trees 
being considered neighbours if the respective areas of influence are overlapped. Lag corresponds to the 
minimum number of spatial units between a pair of observations, according to the notion of proximity used. 
Tree locations are represented with (•), tree area of influence with (◦) and overlapped areas of influence 
with ( )
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correlogram is obtained by computing Moran’s I statistic for each lag h, i.e. I(h) is the index 
I when only pairs (i, j) that are approximately distance h apart are considered. In practice, 
we consider all pairs of observations whose distance falls within a distance interval with a 
semi-amplitude of 3.5 m that includes h (see Fig. 5 for correlogram examples). This semi-
amplitude was uniform for all the stands to provide an accurate comparison, based on the 
previously defined notions of proximity in section “Spatial weights matrix”.

Spatial versus non‑spatial modelling

Our modelling phase consisted in fitting ordinary linear squares (OLS) linear models 
between idu and edaphic and topographic variables.

Predictors used were ECa0.5, ECa1, RelElev, Slope, Aspect, TPI, TRI and TWI for 
individual stand models, defined as local models. These models focused on inspecting the 
influence of predictors in each stand, with distinct variable ranges.

The same predictors and a ninth variable, Elev, were used to fit to the full data 
together, A + B + C + D model, defined as general model. The model aimed at showing the 
relationship between the response variables and predictors considering a wider range of 
variables.

If spatial autocorrelation was observed in the data, a spatial modelling approach was 
also applied. Plants without diameter at breast height were removed from the modelling 
phase, avoiding homoscedasticity assumption being violated (Myers 1990). The best 
sub models were selected using the LEAPS algorithm (Furnival and Wilson 1974) with 
a similar method to Cerasoli et  al. (2018). Generated models were compared with the 
determination coefficient  (R2) and the Akaike’s information criterion (AIC).

Spatial lags models (SLM), spatial errors models (SEM) and simultaneous 
autoregressive models (SAR) were considered as spatial models to fit the data (see 
Table 2). Lagrange multipliers tests (Anselin et al. 1996; Bivand et al. 2021) are used to 
check if either these models are useful, by considering a null hypothesis of ρ = 0 or λ = 0. 
Four outcomes are possible depending on rejection/non-rejection of the parameters null 
hypothesis: (1) both tests null hypotheses are rejected, thus OLS model was preferable; 
(2) one of the null hypothesis ρ = 0 or λ = 0 is rejected, then the corresponding model 
is selected; (3) neither test rejects the null hypothesis, then one cannot conclude that 
both effects (lag and error) are present, since each one of them have power against the 
other alternative, requiring the robust forms of the tests for SLM and SEM to provide a 
correction by making an asymptotic adjustment (Anselin et al. 1996); (4) both robust forms 
of the tests rejects the null hypothesis, the higher-order SAR model became a candidate 
which is tested with the portmanteau Spatial AutoRegressive Moving Average (SARMA) 
test (Anselin and Bera 1998; Bivand et al. 2021), for the null hypothesis ρ = 0 and λ = 0 
simultaneously. Finally, if two models showed close scores in Lagrange multipliers/
SARMA tests, a likelihood ratio test (Pace and LeSage 2003) was executed to verify if the 
model with simpler model (SLM/SEM) was equally adequate as the more complex (SAR). 
If both models were equally adequate, the simpler one was selected.

Residuals homoscedasticity and normality verification guarantees that the dispersion 
of model residuals does not show a bias or pattern across the predicted values, and that 
residuals are normally distributed, thus validating the models reliability and accuracy for 
statistical inference and result interpretation. We checked residuals homoscedasticity and 
normality by plotting studentized residuals against the predicted values and inspecting the 
quantile–quantile plot, respectively, for both OLS and spatial models (Myers 1990).
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The presence of multicollinearity was evaluated since it may lead to unreliable param-
eter estimation. The Variance Inflation Factor (VIF) was calculated for each predictor, 
where one represents the absence of multicollinearity, and a value exceeding five leads to 
inspecting the possibility of removing the variable (Myers 1990).

Statistical analysis was made with the R software (R Core Team 2021) version 3.6, 
using the following packages: ‘car’ (Fox and Weisberg 2019) for model multicollinearity 
evaluation; ‘spdep’ (Bivand and Wong 2018) for executing Moran I tests and correlograms; 
‘leaps’ for helping find the best subsets on linear model selection (Lumley 2009); 
‘spatialreg’ for fitting spatial models (Bivand et al. 2013).

Results

Spatial autocorrelation analysis

Distance-based proximity measures were the most adequate for capturing spatial auto-
correlation in stands A and B, but contiguity-based performed better for stands C and D. 
Proximity measures based on the tree area of influence showed consistently lower scores. 
Spatial units with smaller distances showed a better ability to capture spatial autocorrela-
tion in each of the stands (A = 6 m; B = 7 m; C = 4 neighbours; D = 4 neighbours), with the 
number of neighbours in stand A and B varying between zero and five (Fig. 4; Table 3). 
When considering the spatial autocorrelation from all the stands (A + B + C + D), contigu-
ity-based proximity measures considering four neighbours were more adequate to capture 
spatial autocorrelation.

All juvenile cork oak stands showed presence of positive spatial autocorrelation 
(Moran’s I statistic: A = 0.177; B = 0.192; C = 0.295; D = 0.323; all P-values < 0.001). By 
analysing each correlogram, the distance until the idu spatial autocorrelation became a ran-
dom process (no autocorrelation) varied from 20 to 150 m (Fig.  5). The combined data 
from all stands A + B + C + D showed also a positive spatial autocorrelation (Moran’s I sta-
tistic: A = 0.547; P-value < 0.001).

Spatial versus non‑spatial modelling

A total of 3844 tree diameter measurements were taken across all four stands. Summary 
statistics for each of the variables collected are presented in Table 4.

Fig. 4  Moran’s I statistics calculated for each stand (A, B, C and D) and combined data (A + B + C + D) 
according to: Left, notion of proximity based on contiguity-based measures, for 4, 8 nearest neighbours; 
Right, notion of proximity based on distance-based measures up to 15 m
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Terrain variables tested as predictors, when fitted on OLS linear models, showed a 
very small impact on explaining the cork oak idu variability in stands A and B, but some 
predictive capacity in stand D and particularly in stand C  (R2: A = 0.028; B = 0.013; 
C = 0.203; D = 0.073). The general model showed a predictive capacity of  R2 = 0.344 
(Table  5). Fitted OLS models included distinct predictors with each individual stand. 
The general model, where predictors had a wider range of values, showed ECa0.5 and 
ECa1 as important variables with estimates of opposite signal, Elevation with a positive 
parameter estimate, and RelElev, Slope and TPI with negative estimates (Table 5).

Both normality and homoscedasticity assumptions from the residuals were verified 
on all the fitted models. No multicollinearity was observed between predictors, 
with VIF values being consistently lower than 5. Autocorrelation was found on 
individual stand models residuals (Moran I test: A Moran statistic = 0.147 P < 0.001; 
B Moran statistic = 0.187 P < 0.001; C Moran statistic = 0.103 P < 0.001; D Moran 
statistic = 0.184 P < 0.001).

Spatial modelling incorporated the observed spatial autocorrelation on the fitted OLS 
models. The simpler model SEM was selected for stand A, but SAR performed better in 

Table 3  Moran’s I test statistics using spatial weights matrices constructed by six proximity notions: three 
distance-based measures, 5, 6 and 7 m; two contiguity-based measures, 4 and 8 closest neighbours; the area 
of influence approach

For each proximity were applied row-normalized weights
No significance information is shown, since all Moran’s I tests were significant, with P-value < 0.001

Stand Dist
5 m

Dist
6 m

Dist
7 m

k-neigh
4

k-neigh
8

Area of influence

A 0.143 0.176 0.175 0.158 0.128 0.087
B 0.139 0.184 0.186 0.171 0.172 0.108
C 0.250 0.268 0.278 0.292 0.280 0.197
D 0.291 0.312 0.294 0.310 0.268 0.273
A + B + C + D 0.468 0.509 0.526 0.543 0.534 0.461

Fig. 5  Correlograms with Moran’s I statistic for diameter without cork (du) in the four studied stands. Lags 
correspond to distance-based bands of 7 m between the lower and upper bounds in which trees are consid-
ered neighbours. Horizontal line (y = 0) corresponds to the absence of spatial autocorrelation
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stands B, C and D. All spatial models included the same respective OLS variables and sim-
ilar estimates, with exception of TPI variable in stand A. All  R2 scores improved with the 
spatial models (Table 6). CEa0.5, Elev and Slope were the variables kept in SAR, the best 
performing spatial model for A + B + C + D. Model assumptions were verified, including 
the absence of spatial autocorrelation on the residuals (Moran’s I test on model residuals: 
A, P = 0.573; B, P = 0.594; C, P = 0.558; D, P = 0.558; A + B + C + D, P = 0.879).

Discussion

Spatial correlation analysis

This study has shown that spatial analysis tools are useful resources to explore underly-
ing within-stand patterns of cork oak idu. Spatial weights matrices showed that shorter 
lags were more appropriate to identify spatial autocorrelation on cork oak growth, inde-
pendently of being distance-based or contiguity-based. Using an area of influence met-
ric to account for neighbours showed an overall lower ability to detect spatial autocor-
relation, possibly due to the range of tree diameters in the stands. Stands with higher 
average du showed a large difference in the detection of spatial autocorrelation com-
pared to other approaches, probably due to considering a larger number and more dis-
tant neighbours (Online Resource 1). Stand D, much younger and with lower du values, 

Table 4  Site and cork oak stand traits from stand A, B, C and D: minimum, maximum, mean and standard 
deviation values

Where n is the number of trees measured per stand, du is the individual diameter without cork (cm), idu is 
the individual annual diameter growth without cork (cm  year−1), Elev is terrain elevation (m), Slope (%), 
soil apparent electrical conductivity at 0.5 m (ECa0.5) and 1 m (ECa1) of soil depth (mS/m), Topographic 
position index (TPI), Topographic ruggedness index (TRI) and Topographic wetness index (TWI) and 
Aspect (cosine of aspect). TPI, TRI, TWI and Aspect are dimensionless

n du idu Elev Slope ECa0.5 ECa1 TPI TWI TRI Aspect

A Min 831 3.3 0.17 151 0.4 2.6 3.4 − 2.3 3.5 0.0 − 1.0
Max 30.8 1.54 157 8.0 4.5 5.7 2.0 9.4 0.7 1.0
mean 18.4 0.92 155 3.9 3.3 4.1 − 0.1 6.1 0.3 0.0
Sd 4.8 0.24 1.3 1.5 0.3 0.4 1.0 0.9 0.2 0.7

B Min 1131 0.0 0.0 132 1.9 2.5 2.8 − 2.2 3.6 0.0 − 1.0
Max 37.9 1.35 148 19.4 5.1 6.8 2.1 8.8 2.4 1.0
mean 18.0 0.64 140 7.4 3.3 3.9 0.2 5.6 0.5 0.0
Sd 6.9 0.25 3.7 2.3 0.4 0.6 0.9 0.9 0.3 0.7

C Min 1041 0.0 0.00 386 0.1 0.8 1.5 − 0.8 1.1 0.0 − 1.0
Max 29.5 1.05 397 20.6 7.1 9.2 0.5 14.1 2.3 1.0
mean 9.6 0.34 392 4.2 2.9 3.4 − 0.1 5.8 0.4 0.0
Sd 6.9 0.25 2.5 2.0 1.2 1.2 0.1 1.5 0.3 0.7

D Min 841 0.0 0.00 430 0.1 1.6 4.6 − 0.4 2.6 0.0 − 1.0
Max 22.7 1.42 441 16.7 4.9 10.0 0.6 16.7 1.7 1.0
mean 5.8 0.37 436 3.7 3.1 6.3 0.1 6.0 0.4 0.0
Sd 4.9 0.31 3.4 2.0 0.5 1.0 0.1 1.6 0.2 0.7
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Table 5  Ordinary least squares model and simultaneous autoregressive model (SAR) estimates and statistics for 
the four individual stands (A, B, C and D) and the combined data (A + B + C + D). DF is the Degrees of Free-
dom,  R2 is the model coefficient of determination and AIC is the Akaike’s information criterion

Where ECa0.5 and ECa1 are the soil apparent electrical conductivity at 0.5 and 1  m of soil depth, 
respectively, TWI is the topographic wetness index, TPI is the topographic position index, TRI is the 
topographic roughness index. *P < 0.05; **P < 0.01; ***P < 0.001

Stand Model Predictor Estimates DF R2 AIC

A OLS linear model Intercept 0.861*** 826 0.028 − 16.8
ECa0.5 − 0.157***
ECa1 0.098**
TPI − 0.160*
TWI 0.027**

SEM model Intercept 0.873*** 825 0.052 − 30.1
ECa0.5 − 0.151**
ECa1 0.095*
TWI 0.024*

B OLS linear model Intercept 0.632*** 1128 0.010 − 80.2
Slope 0.023**
TRI − 0.158**

SAR model Intercept 0.677*** 1125 0.074 − 113.4
Slope 0.024**
TRI − 0.163**

C OLS linear model Intercept − 9.546*** 1038 0.177 − 309.4
ECa0.5 − 0.098***
RelElev 0.026***

SAR model Intercept − 4.057*** 1035 0.319 − 359.9
ECa0.5 − 0.043***
RelElev 0.011***

D OLS linear model Intercept − 6.129*** 836 0.109 188.3
ECa1 − 0.029***
RelElev 0.015***
Slope − 0.026***
TWI 0.022**

SAR model Intercept − 3.482*** 833 0.300 104.0
RelElev 0.008***
Slope − 0.011***
TWI 0.015**

A + B + C + D OLS linear model Intercept 1.233*** 3837 0.344 523.3
ECa0.5 − 0.083***
ECa1 0.020***
Elev − 0.001***
RelElev 0.006***
Slope − 0.018***
TPI − 0.102**

SAR model Intercept 0.305*** 3837 0.582 − 216.2
ECa0.5 − 0.019***
Elev − 0.0003***
Slope − 0.006***
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had a lower number of neighbours due to smaller individual influence areas and showed 
closer results compared to the contiguity and distance-based metrics. (Table 4).

The extent of identified idu spatial patterns varied between short distances (stand A) to 
much wider radius patterns (stand C), showing the in-site variability of tree development 
that may be found on cork oak high-density plantations. The lower spatial autocorrelation 
was observed where the tested edaphic and topographic variables had a lower relation with 
idu, hinting that the spatial variation of these variables in stands C and D may be responsi-
ble for the presence of more evident spatial patterns.

All fitted spatial models improved their respective OLS versions. The considerable 
improvement of predictive capacity in fitted models proves that its advantageous integrat-
ing the spatial autocorrelation when modelling cork oak idu, particularly when stronger 
spatial autocorrelation is present. The spatial approach has potential for a more accurate 
modelling and prediction of individual tree diameter development, which shows that intra-
stand variability is an important aspect to consider for management decisions.

The SEM outperformed the SLM on stands A and B, but on the contrary, SLM had 
slightly better scores in stands C and D. In fact, in stand A the source of autocorrelation 
related to the influence from neighbours (ρ parameter) was residual, making SEM a better 
choice. In this stand the existing spatial autocorrelation was associated with the error term, 
suggesting that other factors not considered in our OLS model may be responsible for this 
spatial autocorrelation. A similar assumption could be made for stand B, even though SAR 
was chosen. Stands C and D showed similar scores for both types of spatial autocorrela-
tion. The stronger positive ρ parameter suggests that trees are responding similarly to the 
underlying spatial patterns, and these patterns are partially explained in the models, poten-
tially reducing the λ parameter, which was verified on the higher predictive capacity on the 
OLS models.

Although our results show that modelling autocorrelation is very useful, the practical 
requirement of acquiring the precise position and measurement of every tree diameter in 
wide areas can be challenging. To avoid this problem, remote sensing techniques based 
on precision photography or LiDAR data could be used for acquiring tree position, as well 
as obtaining tree size metrics as tree height or canopy size (Surový et al. 2018; Simonson 
et al. 2018).

Table 6  Statistics of spatial dependence of OLS fitting residuals for model selection, using Lagrange multi-
plier and SARMA tests, for each local model (A, B, C and D) and the general model (A + B + C + D)

Where *P < 0.05; **P < 0.01; ***P < 0.001; SAC = SEM indicates both models perform equally well; 
SAC > SLM or SAC > SEM indicates SAC model performs better than SLM or SEM, according to 
Likelihood ratio tests

Test A B C D A + B + C + D

Residuals Moran’s I 3.898*** 4.843*** 6.968*** 9.101*** 26.849***
SLM 7.712** 12.276** 44.979*** 90.569*** 745.790***
SEM 17.500*** 34.738*** 43.391*** 81.573*** 718.600***
Robust SLM 0.157 3.537 1.789 14.038*** 42.486***
robust SEM 9.937** 25.999*** 0.201 5.0417* 15.303***
SARMA 17.657*** 38.275*** 45.18*** 95.611*** 761.09***
Likelihood ratio tests SAC = SEM SAC > SEM* SAC > SLM***

SAC > SEM***
SAC > SLM***
SAC > SEM***

SAC > SLM***
SAC > SEM***
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Effect of edaphic and topographic variables on growth modelling

This study successfully used edaphic and topographic data, obtained from digital mapping 
methods, to explore its fine-scale relationships with individual trees of cork oak under 
high-density young plantations. We observed that despite each local spatial and non-spatial 
model showing differences in the final set of variables included as statistically significant, 
the parameter values presented a consistent effect in relation to the response variable idu. 
This observation was then supported by the parameter values of the general model, and 
therefore coped with the larger variability of the explanatory variables but also with the 
higher variability of tree du and idu.

When analyzing the selected general model, we noticed that at least a variable related 
to soil, topography and elevation were kept, evidencing these different characteristics 
are simultaneously relevant to tree growth. In fact, these fitted models, in particular the 
spatial model, showed a good predictive capacity based solely on these variables and the 
respective range of values we observed. It should be noted, however, that the fitted model 
should be considered with caution, as it is limited by the range of explanatory variables 
used and by the average to high site index. Further testing this methodology in more 
stands with more variability of site conditions could reinforce our finding and contribute to 
improved general model, based on wider edaphic and topographic conditions.

The differences in precipitation and soil characteristics may constitute a determining 
factor on the soil–water-topography dynamics. Stands A and B, located in the drier region, 
were constituted predominantly by sandy soils, known as very favourable to cork oak 
species (Costa et al. 2008; Paulo et al. 2015). These soils have higher permeability and thus 
lower water storage capacity, which can constrain cork oak growth due the lack of water 
in the Mediterranean dry season, but exhibit high soil depths and unconsolidated parent 
material, favourable to root development and access to groundwater (Fisher and Binkley 
2000). In fact, according to our soil profile examination, the usable soil layer was thinner in 
stands C and D, likely constraining root development. These considerable soil differences 
may change the effect of water retention as deficient drainage can lead to flooding, known 
to be associated to a reduction of root respiration rates (Kozlowski 1984), and increased 
dissemination of pests such as Phytophthora cinnamomi (Moreira and Martins 2005).

CEa variables had an important role in describing cork oak development. CEa 
parameters were significant in three of the four studied stands and in the A + B + C + D 
model. In fact, the linear regression with CEa0.5 as predictor explained 11.34% of idu 
variability in stand C and 2.76% in stand D. We observed that CEa0.5 estimates were 
negative in any model, while the parameter estimates associated to CEa at 1  m were 
positive except on stand D, showing an opposite effect of cork oak growth at the two soil 
depths. CEa interpretation may be complex since it depends on several factors such as 
soil texture, salinity, cation exchange capacity or temperature (Corwin and Lesch 2005). 
According to previous studies, as long as soils are non-saline ECa is well related with soil 
texture (Corwin and Lesch 2005; Sudduth et al. 2017; Plant 2019), with higher ECa value 
being observed in finer textures. This suggests that coarser textures benefit cork oak growth 
at 0.5 m of soil depth while the opposite is observed at 1 m for the studied soils. Due to 
this complexity, soil samples may be taken additionally to identify the specific nutrients/
organic matter relations with CEa in a specific stand soil (Johnson et  al. 2005). In this 
study, the goal was understanding the role and reliability of CEa on explaining spatial 
differences on cork oak development. To further advance on this subject, a study dedicated 
to understanding what factors are correlated to CEa variability in each stand, and then tree 
growth, would be needed.
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The two elevation variables showed distinct impacts on idu. RelElev, representing 
the elevation fine-scale standardised variations was not significant in the sandy soil and 
smoother topographic stands, but a positive relation to idu was observed in stands C and D. 
Fricker et al. (2019) and Príncipe et al. (2022) showed the importance of elevation at finer 
scales to tree development, as proxy to microclimatic conditions as water availability, solar 
radiation or wind exposure. Our results are in accordance with the existence of microcli-
matic differences, but with the relation to tree development depending on soil depth and 
potential water drainage on less elevated zones. Elev, the elevation above sea level, show-
ing a negative relation to idu instead. The interpretation of this result is complex, as the 
variable integrates the geographic location and macroclimatic variations between stands, 
which ultimately affect cork oak productivity. In that sense, it indicates stands C and D 
higher altitudes combined with geographic location have less conditions for cork oak 
development, which is corroborated by (Paulo et al. 2015).

Slope was found to have a negative relation with idu, meaning steeper slopes being less 
adequate to cork oak growth, which is in accordance to Costa et al. (2010), even if the used 
slope range was limited to smooth hillsides. The same negative relation was observed with 
TPI, showing that trees in higher positions relative to their neighbours had lesser idu.

TWI, a variable that expresses the potential soil moisture based on elevation and slope 
conditions, was only significant in stands A and D. For both, the parameter estimates 
showed a positive relationship with idu suggesting the more humid locations benefit 
observed tree growth, which agrees with (Costa et al. 2008). One could expect a negative 
relation between TWI and tree growth, due to the potential for periods of waterlogging of 
the studied stands. On one side, cork oak species has tolerance for wetter soils, and thus 
higher TWI (Petroselli et al. 2013), on the other side, the negative effects of water excess 
on tree development may be underlooked in these results, being expressed as mortality 
instead of growth.

Our study focuses on variables which could be digitally mapped with a low cost and logis-
tic effort, testing if such a method could present a reliable and easy way to obtain information 
to aid afforestation and forest management plans. We did not explore the potential of intraspe-
cific competition as a factor influencing either tree growth or the spatial autocorrelation pro-
cess. This decision was made based on the findings of Faias et al. (2020) and Firmino et al. 
(2023), who investigated intraspecific competition using inventory plots, including those on 
these stands, and found no evidence of competition impacting tree growth. Over time, the 
competition effect is likely to increase and cause dissimilarity between neighbouring trees 
(Pommerening and Sánchez-Meador 2018), in contrast to the spatial effect from microsite 
conditions. Also, we did not access the spatial variation of soil under 1 m or mapped usable 
soil depth for the whole areas, which we observed to vary considerably at least in stand C 
according to soil profiles. Such variables are of interest as the primary cork oak root system 
is developed to reach lower soil levels, accessing groundwater and minerals that are likely 
unreachable by neighbour trees (Moreno et al. 2005; David et al. 2007). Mortality was also not 
explored and likely could complement this analysis. Factors underlying tree cork oak mortal-
ity represent an important problem (e.g. Torres 2008; Costa et al. 2010; Alves 2014) and a 
study of spatial analysis of these factors could bring vital information to its knowledge.

Conclusion

Edaphic and topographic microsite conditions exhibited a weak correlation to cork oak 
diameter growth, when the analysis was carried out on each stand separately, in particular in 
the stands characterised by sandy soils and smooth topographic variations. The correlation 
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increased to moderate in the stands where topographic variations were higher, which com-
bined with lower soil depth, potentially became restrictive for cork oak development. When 
stands were observed together, the increase of the range of site conditions allowed a better 
observation on the relationship of the variables with diameter growth, namely ECa0.5, Elev 
and Slope. These variations should, therefore, be accessed when defining management plans 
for new plantations, as they may influence the success and productivity of the stands.

The presence of spatial diameter growth patterns varied between stands, being 
possibly accentuated by more restrictive site conditions, related to the resource variation 
at a microscale. Integrating this spatial autocorrelation overall improved diameter growth 
modelling when compared to ordinary linear models, even though they reveal essentially 
the same set of predictors. The fitted general spatial model showed a substancial predictive 
capacity of  R2 = 0.58, which suggests that spatial statistical approaches are of interest to 
improve modelling and an improved understanding of relationships between drivers and 
growth in cork oak plantations. However, the fitted models are based on medium to high site 
index stands and should be considered with caution outside this range.
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