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Abstract
The projected northwards shift in the distribution suggests an expansion of European beech 
(Fagus sylvatica L.) into the Baltics and an increase of its commercial potential there. Fur-
thermore, recent studies have shown good long-term survival of underplanted, yet non-
rereleased beech under the presumedly limiting climate of the eastern part of Latvia, thus 
supporting the advance of the thermophilic species. Hence, the estimation of the responses 
of the underplanted beech to shelterwood removal is a logical step in the assessment of the 
specie’s growth potential. To analyse the effect of conventionally managed mature conif-
erous shelterwood thinning on the growth of underplanted European beech, six thinning 
treatments (100, 75, and 50% of canopy, second canopy storey, second canopy storey with 
understorey removed, and the control) were tested in the 33-year-old northeasternmost 
experimental plantation in Europe. Growth responses were evaluated five years after the 
treatment, when beech was 38  years old. The survival and growth responses to shelter-
wood thinning and local characteristics at the tree and stand level were estimated using 
linear models. The post-treatment survival/mortality was independent, yet the dimensions 
of beech, particularly stem diameter, were significantly affected by shelterwood thinning 
intensity (positively). Regarding tree height, the response was somewhat weaker compared 
to that of stem diameter, while being disproportional to thinning intensity, with moder-
ate thinning having the strongest positive effect. The estimated positive responsiveness of 
beech to shelterwood thinning suggested increasing growth potential of the species and 
expansion in the Baltics. Though the responses of beech were moderate probably due to the 
age and harsher climate.
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Introduction

The distribution of European beech (Fagus sylvatica L.), which is a common tree species 
in Central and Western Europe (Durrant et al. 2016), is projected to shift northwards as a 
consequence of the anticipated climatic changes (Fortu 2023; Martinez del Castillo et al. 
2022; Hickler et al. 2012; Allen et al. 2010; Kramer et al. 2010). Accordingly, the abun-
dance of the species is projected to increase northwards of its current range, particularly 
in the lowland southern Sweden and the Baltics, where species can become economically 
and ecologically important (Fortu 2023; Jansone et al. 2023; Hickler et al. 2012). Further-
more, the disproportional contraction of the trailing part of the species range emphasizes 
the importance of the eastern Baltic region for the future beech forests (Martinez del Cas-
tillo et al. 2022; Kramer et al. 2010).

The extension of vegetation season is the principal driver of the northward expansion 
of beech (Fortu 2023; Hickler et al. 2012). Still, the species is susceptible to cold spells 
and, particularly, late frosts, especially at a young age (Weigel et al. 2018; Petritan et al. 
2011; Tompson and Fennessy 2011; Bolte et al. 2007). Late frosts are considered the major 
threats to the commercial potential of beech under cool climates of the leading parts of the 
distribution (Petritan et  al. 2011; Bolte et  al. 2007). Accordingly, shelterwood is widely 
applied to protect young beech from frost and winter desiccation (Podrázský et al. 2019).

The means (intensity and design) of shelterwood removal and its effects on the sus-
tainability of the stand and the advance growth (understorey/underplanted saplings), in 
particular, vary regionally and locally (Reventlow et al. 2023, 2018; Weidig and Wagner 
2021; Diaconu et al. 2015; Boncina et al. 2007; Löf et al. 2005). Furthermore, the underly-
ing effects of shelterwood removal are complex as changes in light, climate and microcli-
mate interact (Čater et al. 2014; Övergaard et al. 2009; Lichtenthaler et al. 2007; Agestam 
et al. 2003). Shelter removal affects the stand moisture regime, to which beech is sensitive, 
and which might affect competitiveness (Leuschner 2020; Roibu et al. 2022; Kramer et al. 
2010). Hence, a locally/regionally optimized sheltering removal strategy is critical for the 
regeneration, survival, browsing protection, and stem quality of the regenerating trees (Löf, 
2000; Podrázský et al. 2019).

Regional differences in the effect of shelterwood are explicit for the survival of beech 
advance growth, with the positive effect increasing towards a cooler climate (Podrázský 
et  al. 2019; Caquet et  al. 2010; Kunstler et  al. 2005). The dimensions of the advance 
growth trees generally show a positive response to decreasing shelterwood density (Weidig 
and Wagner 2021; Reventlow et al. 2018; Diaconu et al. 2015; Löf et al. 2007). However, 
excessively released trees can form large and thick branches that often develop into forks 
(Fortu 2023), thus resulting in slower height growth and poorer stem quality (Reventlow 
et  al. 2018). Also, in the case of extreme shelter removal under cooler climates, height 
growth can even be decreased due to frost, winter desiccation, drought, or changes in 
crown shape (Reventlow et al. 2023; Agestam et al. 2003).

In the Baltics, Latvia currently appears as the Northeastern limit of beech growing in 
forest stands in Europe (Puriņa et  al. 2016a; b; Jansons et  al. 2015). Still, the precondi-
tions for wider advance of the species are already demonstrated by growth, successful 
self-regenerations, and acclimation of beech in stands in the coastal western part of Lat-
via (Matisons et al. 2018, 2017; Puriņa et al. 2016a, b; Jansons et al. 2015) and Lithuania 
(Linkevičius and Junevičiūtė, 2021). In a young (12 years) plantation in the central part 
of Latvia, good survival and increment have been observed also for unsheltered saplings 
(Puriņa et al. 2016a). However, there is insufficient information about the responsiveness 
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of beech to management (including sheltering) under such presumedly marginal condi-
tions. Furthermore, in an experimental plantation in the eastern part of Latvia, where the 
climate is presumedly extreme, underplanted beech has shown good (~ 80%) long-term 
(33 years) survival under mixed coniferous canopy despite several cold spells (Puriņa et al. 
2016b), thus indicating the efficiency of shelterwood. Hence in this site, which currently 
is the northeasternmost plantation of beech in Europe, the responses of beech to shelter 
removal appear indicative of growth potential, as well as of the optimal thinning intensity 
under extreme climate.

The study aimed to assess the growth response of underplanted European beech at the 
tree and stand levels concerning different shelterwood thinning intensities at the north-
easternmost plantation in Europe. We hypothesized that more intense thinning facilitated 
diameter growth, but had a lesser effect on height growth of underplanted beech. We also 
hypothesized that the responses would be moderate, as the harsher climate would have bur-
dened acclimation of beech to the rapid changes in light conditions.

Material and methods

Experimental site

The studied plantation was located in lowland conditions in the hemiboreal forest zone, 
in the central part of Latvia (56° 42′ N, 25° 56′ E). The regional climate in the area is 
moist continental; the mean monthly temperature ranges from − 4.5 °C in February being 
the coldest to 17.6 °C in July the warmest month (LEGMC 2020). During the last three 
decades, the six coldest six-hour mean temperature events were recorded in January 1987 
(− 31.1 °C), 2003 (− 31.7 °C) and 2006 (− 28.7 °C), and in February 1985 (− 31.2 °C), 
2007 (− 29.6 °C) and 2012 (− 28.9 °C). The late-spring frosts are frequently observed at 
the start of the growing season in May and up to the first days of June (LEGMC 2020). The 
mean annual sum of precipitation is 698.1 mm.

The study site was an unfenced sheltered experimental plantation of beech established 
in 1983, which to the authors’ knowledge is the northeasternmost forest plantation of the 
species in Europe (Purina et al. 2016b). The stand was growing on moderately dry, freely 
draining mesotrophic loamy soil with an acidic reaction (comparable to a site index of 
28–30 m for conifers). The topography of the site was generally flat with a relative eleva-
tion of < 6 m. The plantlets of beech raised from the seed material from beech stands in 
the western part of Latvia (2–3 years old) were planted along the trailing lines (3 m width 
skidding, maintenance corridors; distance between them ranged from 3.5 to 8.5 m) with 
the spacing of 0.75–0.95  m. The shelterwood was a mature (ca. 90  years old) naturally 
regenerated and conventionally managed (two thinnings from the below with occasional 
deadwood/firewood collection) mixed coniferous stand dominated by mature Scots pine 
(Pinus sylvestris L.) or Norway spruce (Picea abies L. H. Karst.) with some silver birch 
(Betula pendula Roth.) admixture. The stand had a scarce second canopy storey (trees of 
50–75% of the mean dominant canopy height) prevailed by spruce with a slight birch and 
oak (Quercus robur L.) admixture. The understory was scarce with hazel (Corylus avel-
lana L.) being the most common. More details on the shelterwood and underplanted birch 
are given in Supplementary material (Table S1). Prior to shelterwood thinning, the planted 
beeches have had high survival (~ 4000 plantlets alive, ~ 80% survival over 33 years), their 
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height and diameter at breast height were variable ranging 0.3–13.0  m and 2–149  mm, 
respectively (Puriņa et al., 2016B).

Thinning treatments and measurements

In the autumn/winter of 2016, the stand was divided into 45 regular 25 × 25 m sample plots 
(Fig. 1) and a complete shelterwood inventory was conducted (measuring all canopy trees 
and estimating understory density). Tree height (H) was measured by the Vertex clinom-
eter (Haglöf Sweden AB) with a precision of 0.10 m and stem diameter at 1.3 m height 
(DBH) was measured with a calliper with a precision of one mm precision. Within each 
plot, beech saplings (advance growth) exceeding 30 cm in height have been mapped; 4094 
trees in total. For each beech, height, and for those above 1.6 m, also DBH were measured. 
The condition of trees (living or dead), as well as damages (cut or damaged due to thinning 
performance, browsing damages) for each beech were recorded (Puriņa et al., 2016b).

In December 2016, the shelterwood thinning was performed by manual harvesting to 
minimize damage to the remaining trees and the beech advanced growth. The experimental 
design included six different levels of thinning treatments with diverse intensities (100, 
75, and 50% of the upper canopy, second canopy storey, and second canopy storey with 
understorey removed) each carried under Scots pine and Norway spruce canopy (Table 1). 
Hence, for each treatment intensity and canopy species, two to seven plots were established 
(Table 1). The thinning was systematic (single stem), and the intensity was defined by the 
basal area removed (which correlated with the number of canopy trees). Second canopy 
storey removal and understory removal corresponded to < 20% of basal areas of shelter-
wood. The repeated measurements were done five years after the thinning treatment in 
autumn of 2021.

Fig. 1  Schematic depiction of thinning treatment design of the underplanted European beech in the north-
easternmost plantation in Europe in the eastern part of Latvia. For each plot (total of 45) shelterwood spe-
cies and treatment intensity are shown
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Statistical analysis

For the description of the mortality of beech in the plots of different thinning intensities 
during the five years, the total mortality rate r% was calculated as:

where  N0 is the number of living beeches at the beginning of the observation;  Nt is the 
number of living beeches at the end of the observation. For the description of shelterwood 
before and after the thinning, stand density, mean diameter and height increment, basal 
area, and standing volume (and their changes) were calculated. Stemwood volume was esti-
mated based on local exponential species-specific equations (Liepa 1996).

To assess the effects of shelterwood treatments on the performance of stand, as well as 
on individual tree growth, according to the regional differences in management approaches, 
the effects of the treatments were estimated using linear models (analysis of covariance) 
at the tree and plot levels, respectively. At the plot (stand) level analysis, multiple linear 
(fixed) regression was used for each response variable. The models in general form were as 
follows:

where  yi is the mean plot-level characteristics of beech (mortality, mean changes in DBH 
and H, basal area and stemwood volume five years after thinning) of the i-th plot;  Ti is the 
thinning treatment (factorial, six levels);  Si is the dominant species of shelterwood prior 
thinning (factorial, two levels);  DENSi is the density of beech prior to thinning (numeric 
covariate);  DBHi and  Hi is the mean stem diameter at 1.3 m height and mean height of 
beech before thinning, respectively (numeric covariates). Generalization according to the 
binomial distribution was applied for survival data.

At the tree level, linear mixed-effects models with a plot as the random effect (intercept) 
were used to evaluate the effects of treatment on the characteristics of individual trees, 

(1)r% =
N
0
− N

t

N
0

.

(2)yi = � + Ti + Si + DENSi + DBHi + Hi + �i,

Table 1  Shelterwood thinning treatment description and number of plots in the underplanted European 
beech in the northeasternmost plantation in Europe in the eastern part of Latvia

Dominant shelter species Treatment intensity Nr of plots

Scots pine None (control) 2
Norway spruce None (control) 2
Scots pine 100% Canopy removed 4
Norway spruce 100% Canopy removed 4
Scots pine 75% Canopy removed 4
Norway spruce 75% Canopy removed 4
Scots pine 50% Canopy removed 4
Norway spruce 50% Canopy removed 4
Scots pine Second canopy storey and understorey removed 3
Norway spruce Second canopy storey and understorey removed 4
Scots pine Second canopy storey removed 8
Norway spruce Second canopy storey removed 2
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while accounting for the spatial dependencies. The models fit for each response variable in 
general form were as follows:

where  yi is the mean individual characteristics (stem diameter at 1.3 m height, tree height, 
and their absolute and relative increments five year after thinning) of the j-th beech in the 
i-th plot;  Ti is the thinning treatment (factorial, six levels);  Si is the dominant species of 
shelterwood prior thinning (factorial, two levels);  DENSi is the density of beech prior to 
thinning (numeric covariate);  dbhij and  hij is the diameter at 1.3 m height and height of 
beech before thinning, respectively (numeric covariates);  (pi) is the random effect of plot 
(factorial, 45 levels). The models were fit using a restricted maximum likelihood approach. 
The Wald’s type II χ2 test was used to estimate the significance of the fixed effects. The 
levels of treatment intensity were compared using the Tukey’s test. The data analysis was 
performed in R v. 4.2.2 (R Core Team 2022) using the package “lme4” (Bates et al. 2015).

Results

Before the shelterwood thinning in the winter of 2016, beech averaged 3.94 ± 0.09  m 
(mean ± standard error) in height and 2.38 ± 0.69  cm in DBH, which varied moderately 
among the sample plots (coefficient of variation was 0.23 and 0.17, respectively). The den-
sity of beech between the plots ranged from 336 to 2320 with the mean of 1446 ± 68 trees 
 ha−1 (Supplementary material, Table S1). Overall during the five years after the thinning, 
mean H and DBH have increased by 1.55 ± 0.07 m and 2.42 ± 0.07 cm, respectively. The 
density of beech advance growth (underplanted saplings) in the second survey decreased 
to 1264 ± 370 trees  ha−1, while showing a similar range as before (334–1888 trees  ha−1). 
Five years after the thinning, 87.4% of beeches (3578 trees) had successfully survived, 
indicating overall low mortality. Among the 12.6% mortality of beech, 1.9% of trees died 
explicitly due to thinning (cut or broken). Although 14.3% of beeches had some browsing 
damage, it alone comprised < 1%, while likely contributing to 4.2% of the total mortality.

The tree-level analysis showed that the dimensions (size) of individual beeches and their 
increment in 2022 were significantly affected by treatment intensity, yet the effects were 
considerably stronger on DBH than H (Table 2). There, however, were no differences in 
responses of beech regarding the dominant shelterwood species, which were both conifers. 
The tree size covariates were strictly significant for all responses, yet the initial (before 
thinning) beech density lacked a significant effect. The marginal  R2 values of the statisti-
cal models were high for the dimension and their increment, while the relative increments 
were considerably less affected by the treatments and pre-treatment conditions of trees. 
The effect of the plot was generally low, as the random variance comprised up to 10% 
(ICC ≤ 0.10), indicating spatially consistent responses.

Thinning intensity (treatments) had a generally positive, yet disproportional effect 
on DBH and, particularly, H of the underplanted beech (Fig. 2A). The lowest and high-
est DBH, which differed significantly, were estimated in the case of unthinned (control) 
and heavily (100% of canopy) thinned shelterwood, respectively. The differences between 
the weaker contrasts (understorey and/or second canopy storey, 50%, and 75% of shel-
terwood removed) were non-significant. The lowest H was estimated for the unthinned, 
slightly (second canopy storey and understorey removed) and heavily (100% of canopy) 
thinned shelterwood, which mutually lacked significant differences. The highest H and its 

(2)yij = � + Ti + Si + DENSi + dbhij + hij +
(

pi
)

+ �ij,
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increment were estimated under the intermediate thinning intensities (understorey and sec-
ond canopy storey or 50% and 75% of shelterwood removed), which were similar. Still, the 
relative H increment lacked significant differences among the thinning treatments due to 
higher variability, although it followed a pattern similar to H.

The effect of shelterwood thinning at the stand level was generally weaker (Table  2) 
being significant (p-value < 0.05) for the increment of DBH, H, and standing volume of the 

Table 2  The ANOVA-like table of the linear statistical models

The strength (χ2) and statistical significance (p-value) of the effects of dominant shelterwood species, shel-
terwood thinning treatments, density, stem diameter at 1.3 m height, and height of the underplanted beech 
prior to thinning (initial) on the characteristics of the underplanted beech at the age of 38 years (five years 
after the treatment) growing in the northeasternmost forest plantation in Europe, as well as variance of the 
responses related to sample plot. The abbreviations of the responses (characteristics of underplanted beech): 
DBH—diameter of best height, ΔDBH—DBH increment, ΔDBH%—relative ΔDBH, H—tree height, 
ΔH—H increment, ΔH%—relative ΔH, ΔG—basal area increment, ΔM—standing volume increment, 
ICC—inter-class correlation. Five-year increments are implied. Significance codes, p-values: * < 0.05, 
** < 0.01, *** < 0.001

Tree level

Mean DBH ΔDBH ΔDBH% Mean H ΔH ΔH%

Fixed effects, χ2 values
Dominant shelterwood 

species
0.23 0.22 1.22 2.75 2.75 3.49

Shelterwood thinning (treat-
ment)

34.98*** 34.98*** 28.44*** 11.62* 11.62* 7.86

Initial beech density 0.003 0.003 2.34 0.94 0.94 1.33
Initial beech DBH 5906.13*** 617.38*** 62.64*** 1794.90*** 1794.90*** 40.07***
Initial beech H 4.56* 4.56* 18.53*** 319.78*** 1549.35*** 108.16***
Random effects, variance
Plot 14.95 14.95 0.08 0.08 0.08 0.006
Residual 141.24 141.24 3.18 1.42 1.42 0.09
ICC 0.10 0.10 0.02 0.05 0.05 0.06
General statistics
Marginal  R2 0.87 0.48 0.16 0.81 0.46 0.07
Conditional  R2 0.88 0.50 0.18 0.82 0.49 0.13

Stand level

Mortality* ΔDBH ΔH ΔG incr ΔM incr

Fixed effects, χ2 (F values*)
Dominant shelterwood spe-

cies
0.06 4.25* 1.91 5.04* 0.03

Shelterwood thinning (treat-
ment)

8.77 3.30* 3.54* 1.80 4.85**

Initial beech density 3.70 1.64 0.16 34.61*** 24.04***
Initial beech DBH 2.65 2.7 4.32* 12.64** 7.26*
Initial beech H 3.06 1.21 2.43 0.33 0.11
General statistic
Adjusted  R2 0.36 0.33 0.25 0.65 0.59
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underplanted beech. The thinning treatment showed a near significant effect (p-value ~ 0.08) 
on survival, while the changes in the stand basal area of beech were not affected. Regard-
ing the increment of DBH and hence the basal area of beech, the dominant shelterwood 
species showed a significant effect. The tree size covariate (DBH before the shelterwood 
treatment) had a significant effect on the increment of H, basal area, and standing volume 
of the underplanted beech.

The highest mortality of beech (16.5%) occurred in the plots where 100% canopy 
was removed, however, in the other plots, it was still quite similar (ca.11.66%; Fig. 2B), 

Fig. 2  The estimated marginal mean values of the underplanted beech size, survival, and increment accord-
ing to shelterwood thinning treatments at the tree (A) and stand (B) level five years after the treatment in 
the easternmost forest plantation in Europe. The whiskers denote the estimated 95% confidence intervals 
of the marginal means. Similar letters above the bars denote a lack of significant differences according to 
Tukey’s test (p-value < 0.05). DBH—stem diameter at the 1.3 m height; H—tree height; G—basal area of 
stand; M—standing stock



1275New Forests (2024) 55:1267–1281 

1 3

though the significance of the differences was near marginal (p-value ~ 0.06). Surpris-
ingly, the second highest mean DBH, though with the highest variability, was estimated 
for the control treatment, where all shelterwood was maintained. Still, the highest mean 
DBH was estimated when 75% of shelterwood was removed. The lowest DBH was esti-
mated for the low intensity shelterwood thinning treatments, particularly if only the second 
canopy storey was removed; however, the differences were significant only between the 
strongest contrasts. The DBH increment under pine and spruce shelter was 2.67 ± 0.19 and 
2.16 ± 0.09 cm  5y−1, respectively.

Contrasting DBH, the moderate shelterwood thinning (second canopy storey and 50% 
of the canopy removed) was estimated with the highest H increment, while the lowest H 
increment occurred in the unthinned plots, as well as in the case when second canopy sto-
rey and understorey was removed (Fig. 2B). The basal area increment followed the inten-
sity of thinning, yet the differences among the treatments were not significant. Still, the 
basal area of beech was significantly higher (Table 2) under pine than spruce (2.22 ± 0.19 
and 1.86 ± 0.17  m2  ha−1  5y−1, respectively). Moderate shelterwood thinning, when 50% of 
shelterwood was removed, had a positive effect on the standing volume of beech, which 
was considerably and significantly higher compared to the control treatment (Fig. 2B).

Discussion

Shelterwood thinning generally had a positive effect on the growth of 33-year-old under-
planted beech supporting the ability of the species to utilize canopy openings (Weidig and 
Wagner 2021; Annighöfer 2018; Collet et al. 2011; Caquet et al. 2010). This agrees with 
previous studies, which have highlighted the importance of light gradients on growth pat-
terns of beech under different shelterwood removal intensities (e.g., Weidig and Wagner 
2021; Caquet et al. 2010; Collet et al. 2001). Beech growth is sensitive to environmental 
impacts and changes (Diaconu et al. 2015; Dittmar et al. 2003), hence growth responses 
can be explicit even in short-term surveys (Bontemps et al. 2010; Collet et al. 2001). The 
increase in DBH after the release, though, was more pronounced compared to H, similarly 
as observed within the current distribution range (Weidig and Wagner 2021; Collet and 
Chenost 2006). The sampling plot, had a low effect on the responses of beech, as suggested 
by the variance of random effect (Table 2) indicating homogeneous growing conditions. 
Alternatively, this might also indicate minimal effects of micro-site conditions despite the 
harsher climate (Cavin and Jump 2017). Still, the relative changes in beech dimensions 
were highly stochastic as indicated by low  R2 values, while the dimension and increment 
were rather deterministic, implying dependence on the management (Bontemps et al. 2010; 
Dittmar et al. 2003; Collet et al. 2001).

The estimated overall mortality (including the thinning-related) over the post-treatment 
period (12.6% over five years, which corresponds to 2.7% annually) was slightly higher 
than observed in the core part of the distribution (~ 1.7% annually; Caquet et  al. 2010; 
Kunstler et al. 2005), probably due to harsher climate (Weigel et al. 2018; Tompson and 
Fennessy 2011; Bolte et  al. 2007). Nevertheless, the survival of beech did not differ by 
treatment, as observed previously (Caquet et  al. 2010; Kunstler et  al. 2005), indicating 
the robustness of underplanted beech regarding changes in illumination and microclimate 
(Wang et al. 2022; Čater et al. 2014; Lichtenthaler et al. 2007; Aussenac 2000). This con-
trasts the responsiveness to canopy opening of Norway spruce, which can be considered 
the main shade-tolerant competitor of beech in the northern part of the range (Parish and 
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Antos 2005; Örlander and Karlsson 2000), supporting preconditions for the spread of beech 
in the understorey of coniferous stands. Although the studied plantation was unfenced, the 
beech mortality due to animal browsing was negligible, likely as the trees have long been 
present on the site (Puriņa et al. 2016b). Still, shelterwood thinning had increased browsing 
damage, similar to previous studies (Löf et al. 2005).

The pre-release size (H and, particularly, DBH) was a strong predictor of post-treatment 
dimensions of individual beeches (Table 2), thus indicating the effects of the initial condi-
tion and long-term beech seedling dominance (Caquet et al. 2010). However, at the stand 
level, the pre-release size of beech had a weaker effect on post treatment stand character-
istics (Table 2), supporting robustness and resilience of the underplanted advance growth. 
The pre-release stand density had a significant positive effect on stand basal area and vol-
ume increment (Table  2), as previously observed by Weidig and Wagner (2021), which 
might be explained by the low initial density of beech saplings (ca. 1800 saplings  ha−1; 
Puriņa et al. 2016b). Under such a low density, beech intra-specific competition was low, 
favouring horizontal crown development and diameter growth, hence volume growth of the 
stand (Collet and Chenost 2006; Leder and Weihs 2000). The increased mean DBH and 
basal area increment under Scots pine compared to Norway spruce canopy (Table 2) might 
be related to light transmission (Felton et al. 2020), which favours diameter growth of the 
shade tolerant species (Hara et al. 1991).

The explicit positive effect of shelterwood thinning, particularly that of high intensity 
(Fig. 2A) on individual trees complied with growth release in response to light availability 
(Weidig and Wagner 2021; Annighöfer 2018; Collet et al. 2011; Caquet et al. 2010; Col-
let and Chenost 2006). The additional increment of DBH of individual beech caused by 
shelterwood thinning over the 5 years (~ 12 mm; Fig. 2A), however, was lower compared 
to that in Germany (26.9 mm over 6 years; Weidig and Wagner 2021) likely due to harsher 
conditions. Though the stand/plot DBH responded to thinning disproportionally (Fig. 2B), 
suggesting the effect of light saturation (Linnert 2009; Petritan et al. 2009), which appar-
ently reached an optimum level at 75% shelterwood removed, while excessive light caused 
inhibitory effects (Kunstler et al. 2005; Ammer 2003). The high plot DBH in the case of 
control treatment, however, can be an artefact of site design, as the control plots bordered 
with the plots of 50, 75 and 100% shelterwood thinning intensity, which likely provided 
additional light sufficient to stimulate growth (Kunstler et al. 2005; Ammer 2003).

The estimated additional annual H increment of beech under thinned shelterwood of 
4–12  cm   year−1 (compared to control; Fig.  2A, B) was comparable to that in Germany 
(15–20  cm   year−1; Weidig and Wagner 2021), indicating quite efficient growth release. 
Although light availability and height growth of underplanted beech are correlated (Stiers 
et al. 2019; Petritan et al. 2007; Collet et al. 2002), the responses of H to thinning intensity 
were disproportional both at the tree and stand level (Fig. 2A, B) implying independence 
of density. Nevertheless, the disproportional responses can be explained by the interac-
tion between the effects of light saturation (Linnert 2009; Petritan et al. 2009) and micro-
climate under harsher climate (Petritan et  al. 2011; Klumpp et  al. 2010). The lowest H 
increment was observed in plots where the second canopy and understorey were removed 
(Fig. 2), likely as the protection from frosts was absent (Petritan et al. 2011), yet light has 
not reached an optimal level (Ammer 2003). Accordingly, removing the second canopy 
storey maintaining the understorey likely minimized the effect of frosts aiding height 
growth. The highest H was estimated when 50% of shelterwood was removed, which likely 
matched optimal light conditions for primary growth (Kunstler et al. 2005; Ammer 2003), 
with radial increment being moderate (Collet and Chenost 2006; Leder and Weihs 2000). 
The reduction of H exceeding 50% of canopy removal (Fig. 2) might be associated with a 
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saturation threshold, which corresponds to approximately 25% of the irradiation in an open 
field (Petritan et al. 2009; Collet and Chenost 2006; Stancioiu and O’Hara 2006). Exceed-
ing the threshold, inhibitory effects of light on height growth can occur (Linnert 2009; 
Petritan et  al. 2009; Robakowski and Antczak 2008; Aranda et  al. 2001), as well as the 
growth tradeoffs might shift to radial growth (Collet and Chenost 2006; Leder and Weihs 
2000).

The disproportional responses beech to shelterwood thinning intensity (Fig.  2A, B) 
might also be related to the dynamics of adjustments to changes in light conditions (Weidig 
and Wagner 2021; Lüttge et al. 2005; Valladares et al. 2002). For the understorey beech, 
adaptation of the photosynthetic apparatus to increased light might take up to a couple of 
years (Ammer 2003; Valladares et al. 2002; Aussenac 2000; Tognetti et al. 1998), imply-
ing an inability to immediately get advantage of ameliorated conditions (Annighöfer 
2018; Martens and Preißler 2010; Collet and Chenost 2006). Furthermore, radial incre-
ment usually responds faster than height increment, which can show up to a three-year 
lag (Annighöfer 2018; Martens and Preißler 2010; Collet and Chenost 2006), as well as 
the duration of the environmental effects differ between them (Weidig and Wagner 2021; 
Martens and Preißler 2010). Furthermore, these relationships can be modulated by climatic 
conditions (Collet and Chenost 2006). Unfortunately, the study data disabled such analysis 
as the increment was not measured annually, nor they could be reliably reconstructed in the 
field (Weidig and Wagner 2021). Hence further monitoring of growth dynamics is neces-
sary for the estimated mid-term responses to the treatment and sustainability of the stand.

The positive responsiveness of beech to shelterwood thinning (Fig. 2, Table 2), despite 
the reduction of protection against frosts and winter desiccation (Podrázský et al. 2019), 
supports the increasing growth potential of the species in the northern part of its projected 
distribution (Fortu 2023; Martinez del Castillo et al. 2022). Although the dataset was lim-
ited, the observed response of H suggests that the thinning of 50% of sheltering canopy 
trees in terms of basal area optimal for releasing underplanted beech. Regarding DBH, 
thinning of 75% of shelterwood caused the strongest increase of the basal area of under-
planted beech, still, such an intense release might facilitate branching and reduce stem 
quality. Considering high survival before and after thinning and positive responses to mod-
erate shelterwood thinning, underplanting of beech also appears as a promising tool for 
introducing deciduous admixture in coniferous stands thus facilitating their transformation 
according to the continuous cover approach. Still, as a single plantation was analysed, the 
obtained results encourage the extension of the research aiming to assess of responses of 
beech to management across a wider gradient of site conditions and compositions, as well 
as the timing of thinning.

Conclusions

Underplanted beech under marginal conditions in the northeasternmost outpost plantation 
in Europe responded positively to shelterwood thinning showing growth release despite the 
presumedly harsh climate. Such a positive response indicated ameliorating growing condi-
tions and hence growing potential of the species in the Baltics. As hypothesized, thinning 
had a somewhat stronger effect on diameter than height growth. However, the estimated 
responses of beech growth proxies suggested the presence of thinning intensity when the 
basal area of canopy trees was reduced by half, yet undergrowth retained. Still, the growth 
release in the absolute numbers was moderate, likely due to relatively harsh climate and 
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mesotrophic site. Considering high long-term survival and positive responsiveness to shel-
terwood thinning, underplating of beech appears as a promising tool for facilitating the 
transformation of coniferous stands according to the continuous cover approach. Based on 
the estimated responses, an extension of the research aiming to assessment of responses 
of beech to management across the wider ecological gradients in Latvia and the Baltics is 
encouraged.
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