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Abstract
Genomic selection (GS) is poised to revolutionize eucalypt tree improvement by shorten-
ing breeding cycles and increasing selection intensities. This could be particularly valu-
able for alternative, non-mainstream Eucalyptus species that are still in the initial stages 
of breeding. Eucalyptus benthamii is important for its adaptation to frost-prone subtropi-
cal regions. In this work, we compared seven genomic prediction models, six Bayesian 
and one frequentist GBLUP (Genomic Best Linear Unbiased Prediction) with the conven-
tional pedigree-based ABLUP approach. Models were evaluated for their ability to esti-
mate heritabilities and predict wood quality traits (wood density, extractives, lignin, and 
carbohydrates content) and volume growth in 77 open-pollinated families of Eucalyptus 
benthamii. We also evaluated predictive abilities and heritabilities using variable numbers 
of SNP in the models. Heritabilities ranged from 0.09 (extractives content) using Bayesian 
Lasso (BL) to 0.55 (wood density) using ABLUP. Predictive abilities (PA) ranged from 
0.12 (for volume using ABLUP) to 0.44 (for wood density using three Bayesian models). 
All seven genomic models performed similarly well and better than the pedigree model for 
all traits, except extractives content. Subsets of 5000–7000 SNPs yielded heritabilities and 
PAs nearly as large as using all 15,293 SNPs. However, a low-density SNP panel might not 
be economically and technically advantageous compared to the current high-density multi-
species Eucalyptus EUCHIP60k. Our results support a positive outlook to implement GS 
to accelerate Eucalyptus benthamii breeding for adaptation to frost-prone regions.
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Introduction

Species of Eucalyptus are extensively planted worldwide, delivering fast growing, high 
productivity plantations with great adaptability and multipurpose products for several 
industries and small farmers (Mora and Garcia 2000; Myburg et  al. 2007). Brazil has 
become a reference in Eucalyptus forestry due to its advances in breeding, silviculture, 
and management. The total area of Eucalyptus planted in Brazil was 7.47 million hec-
tares in 2020, ranging from equatorial northern regions to southern areas (Ibá 2021). This 
wide plantation range has been made possible by exploiting the wide availability of spe-
cies in the genus with variable adaptive profiles and adequate wood properties. Eucalyptus 
benthamii Maiden et Cambage has become a species of great importance for its adapta-
tion to frost-prone regions (Butnor et al. 2019) common in southern Brazil (Fonseca et al. 
2010). E. benthamii displays high tolerance to cold (Hall et al. 2019) and can withstand 
absolute minimum temperatures ranging from −  6 to −  10  °C, providing better volume 
growth and better wood quality compared to tropical species (Lin et al. 2003; Costa et al. 
2016). The species has received increasing attention by industries and small farmers in 
these regions, when planted as a pure species or in hybrid combinations (Pirraglia et al. 
2012; Costa et al. 2016).

Eucalyptus benthamii naturally occurs along the coast of New South Wales (NSW), 
southwest of Sydney, Australia, on the plains along the Nepean River and its tributaries 
(Butcher et al. 2005; Han et al. 2020). It is now considered an endangered species in its 
natural range, since its genetic variability was drastically reduced to three small popula-
tions. These subpopulations are separated by gene flow barriers, due to direct and indi-
rect anthropic actions. These actions include the introduction of other species, agricultural 
expansion, flooding, and fires (Hall and Brooker 1973; Skinner 2003; Kjaer et  al. 2004; 
Butcher et al. 2005; Han et al. 2020).

Systematic breeding of E. benthamii is quite recent in Brazil. Current breeding strate-
gies focus on selecting clones from intraspecific recurrent selection programs and develop-
ing hybrids with other species. Breeding aims to increase yield, cold resistance, and wood 
quality for pulp production (Ferraz et al. 2020). Both strategies involve lengthy evaluations, 
using progeny and sequential clonal trials to identify superior individuals. Up to 18 years 
are required to select elite clones (Resende et  al. 2012a, b), and as many as 15 years to 
advance a recurrent breeding cycle.

The time required to identify superior genotypes is a common challenge to tree breeding 
programs (Namkoong et al. 1988; Grattapaglia et al. 2018). To increase genetic gain per 
unit time in plant and animal breeding, Genomic Selection (GS) was proposed 20 years ago 
(Meuwissen et al. 2001) and in forest trees, it was anticipated ten years after (Grattapaglia 
and Resende 2011). Since then, studies have shown its potential to revolutionize tree breed-
ing (reviewed in Grattapaglia et al. 2018). GS has the potential to shorten breeding cycles 
by skipping some stages of conventional breeding, increasing selection intensity by indi-
rectly evaluating a much larger number of individuals at the seedling stage, and increasing 
selection accuracy (Grattapaglia et al. 2018). Thus, GS could significantly accelerate the 
progress of forest tree breeding (Resende et al. 2012a, b; Grattapaglia 2014).

The first step in GS is to estimate the combined effect of a genome-wide panel of 
markers on the phenotype, using a “training population”. These markers are used to 
build prediction models that are tested and validated using a different set of genetically 
related individuals, the “validation population” (Grattapaglia et al. 2018). While tradi-
tional breeding is based on the expected genetic relationships represented by an additive 
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relationship matrix (A), GS adjusts and models the random Mendelian segregation term 
using the realized relationships estimated by a genomic relationship matrix (G) (Grat-
tapaglia et al. 2018).

For successful GS prediction, SNP (single nucleotide polymorphism) markers must 
capture the existing linkage disequilibrium (LD) between markers and quantitative trait 
loci (QTLs) and the relatedness between the training population and selection candi-
dates. The extent of LD between marker and QTL is influenced by the effective popula-
tion size (Ne); the larger the Ne, the more markers are needed to achieve a satisfactory 
predictive ability (Grattapaglia and Resende 2011; Grattapaglia 2014).

To apply GS, genomic prediction models are required, and these may use different 
prior assumptions. Bayesian approaches are efficient, flexible in their assumptions, and 
can generate more realistic credibility intervals, but demand more computational time 
when many markers are used (Kärkkäinen and Sillanpää 2012; Xavier 2019). In Bayes-
ian approaches, the variance explained by a single locus is assumed to follow a prior 
distribution, therefore, the variance can vary across loci (Tan et al. 2017). GS studies in 
Eucalyptus have shown, however, that frequentist mixed models that assume all markers 
as normally distributed with equal variance, perform as well as Bayesian models, espe-
cially for growth and wood quality traits (Gao et al. 2013; Isik et al. 2016; Müller et al. 
2017; Tan et al. 2017; Resende et al. 2017).

In this study, we evaluated and compared the ability of seven genomic additive pre-
diction models (six Bayesian models, and one frequentist model) and the commonly 
used pedigree-based model (ABLUP) to predict growth and wood quality traits. Wood 
density, extractives, lignin, and carbohydrates content were measured at age four and 
volume growth was measured at age 6 in an open-pollinated family trial of E. benthamii. 
We also compared the predictive abilities and heritabilities obtained using variable 
numbers of SNPs fitted in the genomic models.

Material and methods

Genetic material and SNP data

The phenotypic and genotypic data used in this study were previously described by Palu-
deto et al. (2021). Briefly, phenotypic data were obtained from an open-pollinated family 
trial of E. benthamii planted in October 2010 at Otacílio Costa, Santa Catarina state, Bra-
zil. The test plantation design was a randomized complete block design with 20 replicates 
of 81 open-pollinated families in single-tree plots, totaling 1,620 trees in the trial. Seeds 
used to establish the trial were collected from selected trees in three seedling seed orchards 
in Telêmaco Borba (Paraná state) established with 32 open pollinated families introduced 
from Kedumba Valley, NSW, Australia. SNP genotypes were collected using the genome-
wide Eucalyptus SNP chip (EUChip60K) containing 60,904 SNPs on an Illumina Infinium 
platform (Silva-Junior and Grattapaglia 2015). SNP discovery and ascertainment for the 
EUChip60K were developed from pooled whole-genome sequencing of 240 trees from the 
12 most widely planted Eucalyptus species worldwide, including E. benthamii. The delib-
erate goal of chip development was to provide a flexible, multi-species genotyping chip to 
accommodate the genotyping needs of eucalypt-based forest enterprises world-wide at a 
significantly reduced cost (Silva-Junior and Grattapaglia 2015).
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The final training population used in this study consisted of 780 individuals selected in 
77 out of the 81 families in the trial. Individuals were selected at age three for stem vol-
ume, using a mixed model REML/BLUP procedure:

where y is the vector of measured phenotypic values for volume growth, r is the vector of 
replicate effects (assumed to be fixed), a is the vector of individual additive genetic effects 
(assumed to be random), e is the vector of random errors or residues, being e ∼ N(0, I�2

e
) , 

and �2
e
 is the error variance. X and Z are the incidence matrices for their respective effects.

Wood quality was measured at age four on the training population using two increment 
cores extracted at breast-height. One core was used to determine the wood density, and 
another core was used for chemical characterization. The cores for wood chemical char-
acterization were ground to sawdust with a Thomas Model 4 Wiley® Mill. These samples 
were chemically analyzed for lignin content (%) (Goldschmid 1971; Gomide and Demu-
ner 1986), extractives content (%) (TAPPI T280 PM 99 2000), and carbohydrate content 
(%), i.e. the sum of the polymers that compose cellulose, glycans and hemicelluloses, i.e. 
xylans, arabinans, galactans and mannans (Wallis et  al. 1996). Wood density was deter-
mined from the second wood core, using the hydrostatic weighting method, according to 
the NBR 11941 (ABNT 2003). The wood density was obtained using the ratio between 
oven dry weight in stove (105 °C ± 1 °C) and the water-saturated volume of the sample, 
according to the equation: WD = Ms/Vu; where WD is the wood density (g/cm3), Ms is the 
core dry mass (g), and Vu is the water-saturated volume of the core (cm3). All individual 
trees were measured at age six for diameter at breast height, and height and wood stem vol-
ume was estimated (Volume) using a taper factor equal to 0.45.

Linkage disequilibrium and effective population size

The effective population size ( Ne ) was estimated using the linkage disequilibrium method 
( LDNe ) (Waples and Do 2008) implemented by the NeEstimator v2.1 software (Do et al. 
2014). This was done using SNPs with MAF (minor allele frequency) ≥ 0.01, since very 
rare alleles can lead to biased Ne estimates (Waples and Do 2010). We used a random mat-
ing model and produced confidence intervals for the estimate of  Ne (95% probability) using 
a jackknife procedure (Waples and Do 2008). Pairwise estimates of LD were estimated 
using PLINK (Purcell et al. 2007) by the classical measure of the squared correlation of 
allele frequencies at diallelic loci (r2) without any correction for population structure or 
relatedness. The decay of r2 versus the pairwise distance between SNPs was modeled using 
the expression of Hill and Weir (1988), implemented using an R script adapted from Mar-
roni et al. (2011):

where n is the sample size and C is the parameter to be estimated, which representes the 
product of the population recombination parameter ( � = 4Ner ) and the distance between 
SNPs in base pairs. In the recombination parameter r is the recombination rate per base 
pair and Ne is the effective population size. In this analysis, we considered only SNPs with 
MAF ≥ 0.01, since very rare alleles can generate unrealistic results (F. Marroni Univ. of 
Udine, personal communication).

(1)y = �r + �a + e

(2)E
(

r2
)

=

[

10 + C

(2 + C)(11 + C)

][

1 +
(3 + C)(12 + 12C + C2)

n(2 + C)(11 + C)

]
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Statistical models and analyses

The ABLUP and GBLUP were fitted using Eq.  (1). The only difference is the vector 
of phenotypic values (y) varied with each analyzed trait. The main difference between 
the ABLUP and the GBLUP methods is that ABLUP uses the expected genetic rela-
tionship between individuals (A matrix) as the variance–covariance matrix to estimate 
the additive variance and breeding values, where a ∼ N(0,��2

a
) . The GBLUP method, 

on the other hand, uses the genomic relationship matrix, known as GRM or G  matrix 
(VanRaden 2008), estimated from SNP data, where a ∼ N(0,��2

a
) . ABLUP and GBLUP 

analyses were carried out using the R package rrBLUP, (Endelman 2011).
Five Bayesian additive genetic models were tested for genomic predictions: Bayes A, 

Bayes B, Bayes Cπ, Bayesian Lasso (BL) and Bayesian Ridge Regression (BRR). All 
methods were applied using the following model:

where y is the vector of phenotypic values; X and Z are the incidence matrices for the vec-
tors b (fixed block effects and general mean) and m (random marker effects);  e is the ran-
dom residual effect being e ∼ N(0, I�2

e
) ; and �2

e
 is the error variance.

For these models, the Z matrix was coded numerically, with markers genotypes 
AA, Aa and aa corresponding to 2, 1 and 0, respectively. In all evaluated Bayesian 
approaches, the following statistical assumptions were made:

where Se is a scale parameter and �e is the degrees of freedom.
Although all tested Bayesian models have the common assumptions listed above, 

each model uses different priors for the m vector:

•	 Bayesian Ridge Regression (BRR): Assumes that all markers contribute equally to 
the genetic variance and, therefore, have the same variance (Meuwissen et al. 2001):

where Sm is the scale parameter and �m is the degrees of freedom for marker effects.
•	 Bayes A: Assumes that marker effects have heterogeneous variances (Meuwissen 

et al. 2001; Pérez and De Los Campos 2014):

•	 Bayes B: Is similar to Bayes A for the marker variance assumptions, but also 
assumes that a proportion of markers have null effects (parameter π) (Meuwissen 
et al. 2001; Pérez and De Los Campos 2014):

(3)y = �b + �m + e

y|b,m, �2
e
∼ N(Xb + Zm, I�2

e
)

b ∼ N(0, 106I)

e|�2
e
∼ N(0, I�2

e
)

e|Se, ve ∼ X−2(ve, Se)

mi|�
2
m
∼ N(0, �2

m
)

�2
m
|Sm, �m ∼ �−2(Sm, �m = −2)

mi|�
2
mi

∼ N(0, �2
mi
)

�2
mi
|Sm, �m ∼ �−2(Sm, �m)
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•	 Bayes Cπ: This model assumes that all markers have the same variance, and, simi-
lar to BayesB, assumes that a proportion of markers have null effects (parameter π) 
(Habier et al. 2011):

where p0 and �0 are hyperparameters of the beta distribution.
•	 Bayesian Lasso (BL): Similar to Bayes A and Bayes B, this approach assumes that 

all markers have effects, and the variance of marker effects obeys the double expo-
nential distribution. This approach leads to a strong shrinkage of marker effects for a 
large number of markers (Park and Casella 2008; De Los Campos et al. 2009):

where � is a regularization parameter, �2
i
 is the extra variance component associated 

with each marker locus, and r and s are hyperparameters of the gamma distribution.

We also tested the RKHS model (Reproducing Kernel Hilbert Space) (Gianola et al. 
2006, 2010), a Bayesian semi-parametric method, that has the same assumptions as 
ABLUP and GBLUP for the a vector, where a ∼ N(0,��2

a
) . In this model � is a Gauss-

ian kernel matrix given by exp(−hdij) , with h as the bandwidth parameter that controls 
how fast the prior covariance among individuals declines with increasing Euclidean dis-
tance ( dij ). The dij between two individuals was computed as dij =

∑p

k=1
(mik − mjk)

2 at a 
normalized range from 0 to 1, where mik and mjk are the k th SNP markers for the i th and 
j th individuals.

All Bayesian models were implemented using the R package BGLR (Pérez and De 
Los Campos 2014) using 200,000 iterations of the Markov Chain Monte Carlo method 
(MCMC), with 50,000 cycles of burn-in. The convergence of the Markov chains was 
checked with a Geweke diagnostic (Geweke 1992).

We estimated predictive abilities (PA) as the correlations (rgy) between the GEBVs 
(genomic estimated breeding values) and the measured, unadjusted, phenotypic values. 
PAs were estimated using a tenfold cross validation method where the whole dataset 
was equally partitioned into k folds (k = 10). The GEBVs for the 10% individuals in 
each fold were predicted based on a model trained with the remaining 90% of individu-
als, and the obtained GEBV correlated with phenotypic values.

Narrow-sense heritabilities ( h2
a
 ) for all traits and all models (ABLUP, GBLUP, and 

Bayesian) were estimated by the same equation: h2
a
= �2

a
∕(�2

a
+ �2

e
) , where �2

a
 and �2

e
 

are the additive and residual variance estimates obtained from each model. Standard 

mi|�
2
m

{

∼ N(0, �2
m
) with probability equal1 − �

= 0 with probability equal �

�2
mi
|Sm, �m ∼ �−2(Sm, �m)

mi|�
2
m

{

∼ N(0, �2
m
) with probability equal1 − �

= 0 with probability equal �

�2
mi
|Sm, �m ∼ �−2(Sm, �m)

� ∼ Beta(p0,�0)

mi|�
2
e
, �2

i
∼ N(0, �2

e
× �2

i
)

�2
i
|� ∼ Exp(0.5�2)

�|r, s ∼ G(r, s)
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deviations of the heritability estimates were obtained using the same cross validation 
procedure described above for PA.

The impacts of progressive reductions in the number of SNPs fitted in the model on the 
estimates of heritabilities and PA were evaluated using the BRR model. The BRR model 
was fitted using different subsets of SNPs between 15,000 and 1000 SNPs in 1000-SNP 
reductions. This was followed by of 100-SNP drops. For each number of SNPs tested, ten 
replicates were randomly sampled and the average heritability and PA were calculated.

Results

Data for 15,293 high-quality SNP markers with call rates > 95% were obtained for 671 
individuals from 77 families. To include all rare alleles in the analyses no MAF cutoff 
was applied (i.e., MAF ≥ 0.000745 given that 671 individuals were sampled). The genomic 
relationship matrix (GRM) identified 53 putatively selfed individuals (pairwise relatedness 
values above 0.75). The diagonal elements of the GRM for these putatively selfed individu-
als ranged from 0.91 to 3.68, with a mean of 1.33. Thus, the FGRM, which is the diagonal 
elements minus 1, ranged from − 0.09 to 2.68, with mean 0.33. For the entire population, 
the GRM diagonal elements ranged from 0.82 to 3.68, with mean 1.00. This means that the 
FGRM ranged from − 0.18 to 2.68, with mean zero.

Linkage disequilibrium and effective population size

Pairwise estimates of LD were obtained using SNPs with MAF ≥ 0.01 and no correction 
for population structure or relatedness (Fig. 1). The modeled LD dropped below 0.2 within 
12.3 Kb. Considering SNPs with MAF ≥ 0.01, the estimated effective population size (Ne) 
was 80.1 with CI95% = [75.3–87.7].

Heritabilities

Narrow-sense heritabilities estimated using the pedigree-based model (ABLUP) were gen-
erally higher than those obtained using all genomic models, except for Volume (Table 1). 
Bayesian estimates of heritability were similar across models and ranged from a low 0.09 
for extractives content (BL model) to a high 0.50 for wood density (BayesA and BRR 
models). Compared to the other Bayesian models the BL model yielded lower estimates 
for extractives content and Volume. Bayesian estimates were also similar to those from 
GBLUP, which ranged from 0.20 (extractives content) to 0.49 (wood density).

Empirical prediction ability from cross‑validation

Predictive abilities obtained using the GBLUP model ranged from 0.18 for extractives content 
to 0.43 for wood density. These were generally higher than those estimated using the pedigree-
based model (ABLUP), which ranged from 0.13 for Volume to 0.27 for wood density (Fig. 2). 
It is worth reminding that the two predictions are completely different. While ABLUP predic-
tions are based on the midparent value, GBLUP predictions are based on the individual itself. 
The same was observed for the other Bayesian models employed, with PAs ranging from 
0.16 for extractives content using the RKHS model, to 0.44 for wood density, using BayesCπ, 
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BRR, and RKHS (Fig. 2). Overall, the PAs using the genomic models were higher than those 
obtained using the pedigree-based model, with the exception of extractives content. The PAs 
were essentially equivalent between the pedigree and the genomic models for this last trait 
(Fig.  2). In general, all Bayesian genomic models provided PAs similar to those using the 
standard GBLUP approach. However, for Volume, the RKHS method yielded a better predic-
tion. Bayesian Lasso (BL) was inferior to the other genomic methods for wood density.

Genomic heritabilities and predictions with variable numbers of SNPs

To evaluate the impact of varying the number of SNPs on the estimates of heritability and PA, 
we used the BRR model, since it closely resembles the traditional and most commonly used 
GBLUP method in its prior assumptions. Heritabilities increased rapidly and reached a pla-
teau around 10,000 SNPs for all traits (Fig. 3a). PAs also increased rapidly as more SNPs were 
added to the model, plateauing at around 5000–7000 SNPs. (Fig. 3b).

Discussion

Inbreeding, linkage disequilibrium, and effective population size

The value of SNP data for more precisely estimating genetic parameters in forest trees 
has been well documented (reviewed in Grattapaglia et al. 2018). A genomic relationship 

0.0
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Fig. 1   Trend line of the average decay of the pairwise LD (r2) with physical distance, estimated using SNPs 
with MAF > 0.01 in 77 open-pollinated families of E. benthamii. The dashed line corresponds to the com-
monly used threshold of r2 = 0.2 at which LD stops to exist and equilibrium is reached
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matrix (GRM) built with marker data provides the realized genetic relatedness among indi-
viduals, instead of the expected relatedness, which may be based on inaccurate pedigree 
information. Additionally, the diagonal of the GRM can be used to detect inbreeding in the 
population, since the average of the diagonal elements corresponds to the average inbreed-
ing coefficient for a given population (Isik et al. 2017). If we subtract one from the diago-
nal of a GRM, an F statistic called FGRM is obtained (Zhang et al. 2015; Ghoreishifar et al. 
2020). In a non-inbred population, the average of the diagonal elements of the GRM is 
expected to be 1 (Isik et al. 2017), which means an average zero for the FGRM. This is the 

Table 1   Estimates of narrow-
sense heritabilities (h2) and 
their standard deviations using 
ABLUP, GBLUP, and five 
Bayesian models for the traits 
measured in 77 open-pollinated 
families of E. benthamii 

Model Trait h
2

a
SD.h

2

a

ABLUP Wood density 0.55 0.06
Extractives content 0.28 0.06
Lignin content 0.40 0.03
Carbohydrates content 0.37 0.04
Volume 0.18 0.04

BayesA Wood density 0.50 0.05
Extractives content 0.17 0.05
Lignin content 0.26 0.04
Carbohydrates content 0.25 0.05
Volume 0.22 0.06

BayesB Wood density 0.48 0.05
Extractives content 0.16 0.05
Lignin content 0.25 0.05
Carbohydrates content 0.27 0.04
Volume 0.24 0.06

BayesCπ Wood density 0.48 0.05
Extractives content 0.16 0.04
Lignin content 0.26 0.04
Carbohydrates content 0.27 0.04
Volume 0.22 0.05

BL Wood density 0.46 0.03
Extractives content 0.09 0.04
Lignin content 0.24 0.04
Carbohydrates content 0.24 0.04
Volume 0.18 0.06

BRR Wood density 0.50 0.05
Extractives content 0.20 0.04
Lignin content 0.29 0.04
Carbohydrates content 0.29 0.04
Volume 0.27 0.05

GBLUP Wood density 0.49 0.06
Extractives content 0.20 0.05
Lignin content 0.30 0.05
Carbohydrates content 0.30 0.05
Volume 0.24 0.06
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average estimate we obtained in our E. benthamii breeding population. For the 53 puta-
tively selfed individuals, the average of the GRM diagonal elements was greater than one 
(1.33), indicating that the average FGRM for these individuals is 0.33. This is explained by 
the typically mixed mating system of E. benthamii with outcrossing rate (tm) varying from 
0.45 to 0.68. This suggests there is considerable amount of self-fertilization or biparental 
inbreeding in this species (Butcher et al. 2005).

Genome-wide linkage disequilibrium was estimated to decay below 0.2 within 12.3 Kb 
(Fig. 1). This estimate is close to a previous estimate of 15.6 kb for another E. benthamii 
population studied by Müller et al. (2017). While that population was mostly composed of 
selected seed seed sources from wild Australian populations, our population had substan-
tial family structure and had experienced one round of selection. Nonetheless, the estimates 
of LD decay were similar, suggesting that our population still resembles a natural popula-
tion in terms of effective population size.

Earlier LD estimates for natural populations of Eucalyptus, which were based on short 
range sequence data in candidate genes, suggested that LD decayed within 1 kb (Grattapa-
glia and Kirst 2008; Thavamanikumar et al. 2011; Denis et al. 2013). However, genome-
wide estimates in a natural population of E. grandis showed that LD decayed over a larger 
distance (4–6 kb), with considerable variation from absence to complete LD up to 50 kb 
(Silva-Junior and Grattapaglia 2015). Our LD values also indicate that LD extends over 
several kb, which facilitates GS and the durability of genomic prediction models across 
generations.

0.0

0.1

0.2

0.3

0.4

Carbohydrates content Wood density Extractives content Lignin content Volume-6yr
Trait

r g
y

Methods
ABLUP

BayesA

BayesB

BayesCπ

BL

BRR

GBLUP

RKHS

Fig. 2   Predictive abilities (rgy) and standard error bars estimated using different genomic prediction models 
and a pedigree-based model (ABLUP) for wood properties and volume growth in 77 open-pollinated fami-
lies of E. benthamii 
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Our estimate of Ne (80.1) was obtained using SNP markers with MAF ≥ 0.01 to provide 
a good balance between maximizing precision and reducing bias (Waples and Do 2010). 
This Ne should provide abundant variability for sustained long term genetic gains (Nam-
koong et al. 1988; White et al. 2007). The effective population size also affects the suc-
cess of genomic selection. The smaller the Ne the smaller the number of independently 
segregating chromosome segments and the fewer SNPs are needed to capture all the QTLs 
co-segregating with those segments. Conversely, the larger the Ne the lower will be the 
average genetic relatedness with the selection candidates in the next generation. Thus, 
the larger the Ne , the more markers are needed to capture the LD between markers and 
quantitative trait loci (QTLs). In other words, more markers are needed to ensure adequate 
levels of genetic relatedness to drive accurate predictions across generations (Grattapaglia 
and Resende 2011; Grattapaglia 2014; Lee et al. 2017). Deterministic simulations showed 
that ~ 15 markers/cM will provide a PA of 0.6–0.7 for a population with Ne = 60–100 and a 
trait with a heritability of 0.2 (Grattapaglia and Resende 2011). With a Eucalyptus recom-
bining genome around 1000–1200  cM (Silva-Junior and Grattapaglia 2015) the 15,293 
SNPs provided by the EUChip60K should be enough to obtain accurate genomic predic-
tions in our E. benthamii population.

Heritabilities and predictive abilities

As in other Eucalyptus species, our E. benthamii population displayed a high heritability 
for wood density, moderate heritabilities for extractives, lignin, and carbohydrate content, 
and a low heritability for volume growth (Resende et al. 2017; De Moraes et al. 2018; Tan 
et al. 2018; Lima et al. 2019; Suontama et al. 2019; Mphahlele et al. 2020). All genomic 
models provided similar heritability estimates, with only slight differences (Table 1) attrib-
utable to the variable prior assumptions of the models. GBLUP and BRR had very similar 
heritabilities, as expected, given their same assumptions regarding homogeneity of marker 
effects. Heritabilities estimated using ABLUP were somewhat higher than those obtained 
with all genomic models, except for volume growth. Regarding the trend observed for the 
other traits, it has been shown that ABLUP may overestimate the additive variance and, 
thus, heritability. This is because estimates of additive variance may contain non-addi-
tive variance following the lack of orthogonality of additive and non-additive effects in 
breeding (non-idealized) populations (Muñoz et  al. 2014). Experimental evidences have 
shown that the inclusion of dominance effects in genomic models decreased the magni-
tude of the estimated additive genetic variance and heritability (Müller et al. 2017; Resende 
et al. 2017; Tan et al. 2017; De Almeida Filho et al. 2019; Paludeto et al. 2021). However, 
the ABLUP estimate of heritability for volume (0.18) was smaller when compared to the 
GBLUP estimate (0.24) which is different from previous reports and therefore possibly 
underestimated.

It is important to point out that genomic models are expected to provide more real-
istic estimates of variance components and heritabilities compared to pedigree-based 
models. This is especially true for species with mixed-mating systems which are com-
mon in forest trees that result in unknown levels of inbreeding, incomplete or impre-
cise pedigrees (Klápště et al. 2017; Paludeto et al. 2021; Ratcliffe et al. 2017; Tamba-
russi et  al. 2018). Pedigree based methods not only ignore relationships beyond those 
included in the known pedigree, but also operate with expected rather than actual rela-
tionships. Moreover, pedigree relationships are exact only under an infinitesimal model. 
Under a more realistic finite-locus model with linkage, the actual relationships will be 
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distributed around the expectation, with variable relationships among half and full-
sibs. Furthermore, because pedigree-based analyses assume homogeneous relationships 
among the same type of relatives, the genetic (co)variance components are estimated 
based on between-family variation only. This is because the Mendelian sampling devia-
tions cannot be separated from residual non-genetic sources of error (Ødegård and Meu-
wissen 2012). Finally, the use of a GRM has a major impact when major pedigree errors 
exist, allowing the rescue of field trials that suffer from erroneous identification of trees 
and, and would otherwise be completely useless for genetic parameter estimation (Mül-
ler et al. 2017; Tan et al. 2018).

Except for extractives content, predictive abilities based on genomic approaches were 
generally higher than those based on the pedigree-based approach, ABLUP (Fig.  2). 
Similar results were reported for Eucalyptus hybrids (Tan et al. 2017), Eucalyptus pel-
lita (Müller et al. 2017), Eucalyptus polybractea (Kainer et al. 2018), Picea abies (Lenz 
et  al. 2020), and Pinus taeda (De Almeida Filho et  al. 2019). In general, PAs using 
GBLUP and the Bayesian models were similar for wood quality and volume growth, 
in agreement with results reported previously for Eucalyptus (Müller et  al. 2017; 
Tan et al. 2018) and other forest tree species (Resende et al. 2012a, b; Beaulieu et al. 
2014a; Ratcliffe et al. 2015; Isik et al. 2016). Interestingly, the machine-learning RKHS 
model yielded a considerably greater PA for volume when compared to all other mod-
els (Fig. 1). This is consistent with previous results for growth traits in Eucalyptus sp. 
and Pinus taeda (Müller et  al. 2017; Tan et  al. 2017; De Almeida Filho et  al. 2019). 
Two factors may explain these results. First, RKHS can account for non-additive varia-
tion, and dominance variation is known to be important for growth traits in Eucalyptus 
(Resende et  al. 2017; Tan et  al. 2018; Lima et  al. 2019). Second, because RKHS is a 
semi-parametric method, it is less affected by the choice of priors. Given its focus on 
prediction, the RKHS method is better for dealing with noisy, redundant or inconsist-
ent information (Gianola and van Kaam 2008; González-Recio et al. 2009). Neverthe-
less, RKHS performed slightly worse than the other models for all traits, except wood 
density.

Overall, only slight differences in PAs were found using different Bayesian models, 
despite the differences in priors. BayesA, BayesB, and BL, do not assume a normal 
distribution of marker effects, but instead assume that some major QTL loci are pre-
sent. BayesB, nevertheless, performed slightly better than all other Bayesian models, 
and almost as well as RKHS for Volume. BayesB is frequently suggested as the best 
approach for traits controlled by major effect QTLs (Daetwyler et al. 2010; Wang et al. 
2019), although this would not be expected for volume growth in Eucalyptus. A pos-
sible explanation for the better performance of BayesB might be its ability to capture 
non-additive effects. Among all models Bayesian Lasso had the poorest performance. 
From the practical standpoint, it is relevant to highlight the equivalent efficiency of the 
frequentist GBLUP and Bayesian models to predict growth and wood quality traits in 
Eucalyptus. These results further support the hypothesis that these traits have a multi-
factorial genetic architecture with no major effect loci, thus adequately fitting the infini-
tesimal model.

Fig. 3   a Genomic narrow-sense heritability ( h2
a
 ) estimated using increasing numbers of SNPs and the 

Bayesian Ridge Regression (BRR) genomic model for wood properties and volume growth in 77 open-
pollinated families of E. benthamii. b Predictive abilities (rgy) estimated using a Bayesian Ridge Regression 
(BRR) genomic model with increasing numbers of SNPs for wood properties and volume growth in 77 
open-pollinated families of E. benthamii 
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Impact of SNP number on genomic predictions

We simulated the impact of SNP number on the estimates of heritability and PA. Results 
showed that smaller numbers of SNPs, in the range of a few thousand, can result in similar 
prediction abilities and heritabilities when compared to using all 15,000 SNPs, even in our 
population with relatively large effective size ( Ne = 80.1). Similar results have been reported in 
Picea glauca (Beaulieu et al. 2014b), Picea mariana (Lenz et al. 2017) and Picea abies (Chen 
et al. 2018). These results suggest that relatedness rather than LD, is the main driver of PA 
(Müller et al. 2017; Chen et al. 2018).

Despite the declining costs of SNP chip genotyping technologies, high-density chips are 
still expensive for tree breeding programs run on tight budgets. Thus, low-density SNP chips 
could be an attractive alternative, provided that the final cost per genotyped sample decreases 
linearly with the number of SNPs (Gorjanc et al. 2015; Bhandari et al. 2019), which is not 
currently the case. However, there are two hurdles to using low-density SNP chips in the case 
of Eucalyptus. First, this would entail selecting SNPs optimized for polymorphism for a par-
ticular breeding population, rather than using the more flexible multi-species EUChip60K. 
Currently, the cost of manufacturing and using a SNP chip mostly depends on the prospec-
tive number of samples to be genotyped, rather than on the number of SNPs. In other words, 
the cost reduction from a 60 K SNP chip to a 10 K SNP chip is not linear. Thus, unless tens 
of thousands of samples can be contracted upfront, a custom chip will be considerably more 
expensive than using the existing multi-species EUChip60K. This “community” chip has been 
used by a large number of breeding programs that jointly contract and process thousands of 
samples per year. The second hurdle involves changes in SNP allele frequencies and LD struc-
ture from one generation to the next. The number of informative SNPs in the initial generation 
may decline as allele frequencies change or even become fixed after a few generations as result 
of selection, drift and recombination. This might be a particular concern in aggressive euca-
lypt genomic selection programs, that involve small effective population sizes, short breeding 
cycles with early flower induction, combined with high selection intensities (Grattapaglia and 
Resende 2011; Grattapaglia et al. 2018; Paludeto et al. 2021). Furthermore, simulations have 
shown that higher marker densities can keep genomic selection effective for more generations 
and yield larger genetic gains when compared to using lower marker density, as the accu-
racy and the effectiveness of selection drop very quickly in the latter case (Long et al. 2011; 
DoVale et al. 2021). Furthermore, even in the absence of selection, recombination under low 
marker density more rapidly dissipates descent relationships when compared to higher marker 
densities, negatively impacting genomic predictions (Long et al. 2011). Therefore, it is valu-
able or even necessary to have an excess of informative SNPs on the chip in the best interest 
of ensuring some level of redundancy while avoiding the risk of over-optimization of the sys-
tem. Evidently, this can be achieved in a high-density SNP chip and not in a customized low-
density SNP chip. The original concept behind the design of the multi-species EuCHIP60K 
was to provide a common SNP platform to encompass all main planted Eucalyptus species 
and provide the necessary flexibility, redundancy and low cost for the implementation of long-
term genomic selection by many breeding programs worldwide (Silva-Junior et al. 2015).
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Conclusions

From the applied breeding standpoint our study has some limitations that will require fur-
ther investigation before genomic selection is routinely adopted in E. benthamii. Estimates 
of prediction ability were based on contemporary training and validation sets grown in the 
same environment. Thus, these estimates do not necessarily match what to expect on the 
performance of GS in a future generation after genetic recombination. Moreover, heritabil-
ity and PAs estimates apply to this particular population test and tree age. Given our sin-
gle experimental trial, no assessment was made of the impact of genotype by environment 
interaction on the accuracy of predictions and how these will perform with exposure to the 
evolving environment. Nevertheless, our results corroborate a large number of reports in 
forest trees showing that SNP markers can be used to improve estimates of genetic param-
eters and predictions of wood properties and growth (Grattapaglia et  al. 2018). Benefits 
result from the ability to capture realized genetic relationships among individuals, particu-
larly for open pollinated breeding populations. This in turn provides more realistic esti-
mates of heritabilities to inform more accurate expectations of genetic gains in a breeding 
program.

Furthermore, the implementation of genomic selection in E. benthamii can shorten 
breeding cycles by early selection of genetically superior material at the seedling stage. 
By eliminating the need for field progeny trials, the breeding cycle could be reduced by 
four to nine years depending on the duration of the follow up clonal trials of the genomi-
cally selected seedlings (Resende et al. 2017). For wood quality traits, the GBLUP model 
provided similar PAs to all Bayesian methods tested. However, for volume growth, RKHS 
and BayesB were better and are recommended, given their ability to capture non-additive 
genetic variance. Finally, satisfactory estimates of predictive ability in this population were 
obtained with as few as ~ 5000 SNPs. However, the use of a custom low-density SNP chip 
should only be considered aware of the cost and long-term technical advantages of using 
the more flexible and higher density SNP chip currently available for Eucalyptus species.
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