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Abstract
We revisited a Pinus ponderosa planting 32 years after it was established with one-year-old 
seedlings grown in copper-treated containers that modified their root systems. This tech-
nique was intended to promote more root egress after outplanting from the entire length of 
the root plug with a goal of providing greater stem stability. After excavating and digitiz-
ing the root systems of five treated and five non-treated plants, we observed that regardless 
of treatment, all trees initiated more roots and accumulated more root volume in appar-
ent response to mechanical stresses invoked by wind and slope, with more roots occurring 
windward and downslope. Few differences were noted between treatments for root length 
and volume for either the cage or the entire root system. Trees treated with copper were 
taller (8%) with stouter taproots (less taper) and less root volume in the lower soil profile 
than control trees. Although the copper treatment may have induced short-term changes 
to root system architecture, the long-term, plastic response of this species to mechanical 
stresses, and the time duration involved, was more critical to the observed expression of 
traits.
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Introduction

Wind-caused disturbance is a necessary agent in some forest ecosystems to maintain bio-
logical diversity and stand heterogeneity (Johnson and Miyanishi 2010), but this type of 
disturbance can also have enormous, deleterious economic impacts. More than half of the 
timber volume loss in European forests during the past two centuries can be linked to wind-
storms (Schelhaas et al. 2003). The number and intensity of storms affecting European for-
ests increased during the past half century (Gregow et al. 2017) and wind disturbance has 
a synergistic effect on other disturbance agents, such as fire and insects (Seidl et al. 2017). 
Moreover, a tree’s susceptibility to windthrow increases with the steepness of the slope 
(Kenderes et al. 2007). Therefore, traits affecting tree stability are now under considera-
tion in breeding programs (Telewski and Moore 2016) and adaptive silvicultural treatments 
(Cameron 2002). Recent literature has focused on understanding the contributions of fine 
and coarse roots, both independently and as part of the overall root system architecture, to 
stability in response to mechanical force associated with wind and slope conditions (e.g., 
Lombardi et al. 2017; Dumroese et al. 2019; Deljouei et al. 2020; Montagnoli et al. 2020). 
Furthermore, various authors have highlighted the importance of focusing on the coarse 
roots within the cylindrical zone surrounding the taproot (defined as the “cage”) because 
they provide important contributions to tree anchorage (Danjon et  al. 2005; Yang et  al. 
2014, 2017; Montagnoli et al. 2020;). In particular, the taproot can provide up to 60% of 
the anchorage strength (Yang et al. 2017). A better understanding of the long-term mechan-
ical stability of planted trees can be discerned by observing impacts of nursery treatments 
(Khuder et al. 2007).

Nursery production of reforestation seedlings may increase dramatically during the next 
decade. Many national, multi-national, and global forest restoration initiatives are in pro-
gress (Haase and Davis 2017) that often include a reforestation component with a stated 
goal of sequestering carbon to help mitigate changes to climate. Even modest assumptions 
of the number of nursery-produced seedlings necessary to meet these initiatives are stag-
gering (Haase and Davis 2017). Seedling quality is paramount in achieving reforestation 
objectives, and roots have been an attribute of concern for more than 350 years. In the sev-
enteenth century, Evelyn (1664) recommended protection of fine roots during outplanting 
because of their role in water and nutrient absorption and noted that coarse roots “signify 
little but to establish the stem.” During the past century, discussions have focused on nurs-
ery cultural practices that influence the abundance and distribution of fine and coarse roots 
and subsequent impacts on seedling survival, growth, and stem stability. Although wind 
is often a major contributor to the occurrence of stem instability (Chavasse 1978; Burdett 
et  al. 1986), recently outplanted seedlings can present stem instability (i.e., topple; have 
stems leaning more than 15 degrees from vertical) for a variety of reasons, including char-
acteristics seedlings develop during nursery production (Moore et al. 2008).

Toppling can occur with seedlings produced bareroot or in containers (Chavasse 1978; 
Watson and Tombleson 2002). In bareroot nurseries, various forms of root pruning and other 
cultural practices (e.g., seedbed density and fumigation) reduce taproot length and increase 
root fibrosity (i.e., more secondary and tertiary lateral roots). Toppling remains a concern 
(Moore et al. 2008) despite these seedlings often being considered “natural” in appearance 
because of their well-distributed (from a topological perspective) lateral roots, similar to those 
in naturally regenerated seedlings (Stein 1978; Mexal and South 1991). Container seedlings 
have also received attention concerning toppling. Widespread production of container seed-
lings for reforestation in the United States and Canada began in the 1970s. At the onset of this 
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technology, root system development during nursery production sometimes translated to prob-
lems on the outplanting site. In particular, widespread toppling and reductions of growth of 
outplanted Pinus seedlings was attributed to container-induced spiraling of lateral roots (Bur-
dett et al. 1986; Halter et al. 1993; Balisky et al. 1995; Lindström and Rune 1999). In the early 
1980s, the addition of vertical ridges to the interior walls of containers reduced spiraling by 
deflecting lateral roots downward rather than allowing them to circle. These lateral roots grew, 
however, along the container wall‒medium interface, producing a cage, which also remained 
a concern for stem instability (Burdett 1978; Chavasse 1978; Balisky et al. 1995; Sayer et al. 
2009). To address these observed unnatural root modifications, copper (Cu) compounds have 
been investigated for a variety of coniferous and broad-leaved tree species (e.g., Burdett and 
Martin 1982; Arnold and Struve 1989; Svenson et al. 1995; Tsakaldimi and Ganatsas 2006; 
Dumroese et al. 2013; Marler and Musser 2016). Lateral root growth is arrested when roots 
encounter container walls coated with copper. The result is seedlings producing more roots 
of higher root order (Burdett 1978). Copper root pruning is effective in reducing spiraling and 
the cage effect (Burdett 1978; Ruehle 1985; Wenny and Woollen 1989) and thereby generates 
a fibrous system; treated seedlings develop more lateral roots in the upper root plug profile 
(Wenny et al. 1988; Dumroese 2000; Sayer et al. 2009) with a lower incidence of juvenile 
stem instability (Krasowski 2003).

The topic of using copper during container production continues to receive attention in 
the literature, particularly on a species-by-species basis. Nearly all the literature is, however, 
focused on short term effects (1 to 3 years) related to survival, growth, and root system archi-
tecture whereas the few longer-term studies (5 to 8 years: Haywood et al. 2012; Regan et al. 
2015; Sung et al. 2019) focus solely on survival and aboveground characteristics despite litera-
ture showing that the container imprint on root systems can be visible for decades (Halter et al. 
1993).

Thus, to expand our knowledge on the potential long-term effects of pruning container 
seedling roots with copper, particularly whether the treatment establishes a trajectory of root 
system architecture development that may confer stem stability against mechanical forces ren-
dered by wind and slope, we revisited a container root-pruning study outplanted in 1985 in the 
northern Rocky Mountains of the United States (USA). We first examined non-treated trees, 
analyzing the deployment of the coarse roots and found that prevailing wind and slope sig-
nificantly affected root architecture; we observed substantial amounts of roots windward and 
downslope (Dumroese et al. 2019). We also found that trees were generating a range of cage 
shapes characterized by an inverse relationship between volume of first and second order roots 
with the volume of the taproot (Dumroese et al. 2019). Second, using a dendrochronological 
approach we noted that new lateral roots arose anywhere and at any time on the existing sys-
tem in apparent response to mechanical forces (Montagnoli et al. 2019). Thus, our previous 
efforts based on the control trees showed a continual adjustment of their root spatial deploy-
ment in apparent response to environmental factors. In this study we further explore the root 
system architecture of seedlings produced in a container nursery with copper root pruning. 
Our null hypothesis was that copper treatment during nursery production would not influence 
root architecture three decades after outplanting.
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Materials and methods

Background and site description

During 1985, an experiment to examine the effects of using copper to modify the root sys-
tems of container-grown seedlings was initiated at the University of Idaho nursery in Mos-
cow, Idaho, USA (lat 46.725315, long -116.955836). The study evaluated combinations of 
three conifer species (using locally collected seeds of Pinus monticola, Pinus ponderosa, 
and Pseudotsuga menziesii var. glauca), two container types (Styroblock and Ray Leach 
Pine Cell containers), and five combinations of cupric carbonate (0 to 300 g L−1) delivered 
in a latex paint carrier to the interior surfaces of the containers. Seedlings were grown 
and overwintered in refrigerated storage following species-specific regimes (e.g., Wenny 
and Dumroese 1987). The nursery results were reported by Wenny and Woollen (1989). 
In March 1986, on a site that was clearcut harvested and broadcast burned the previous 
year, 10 seedlings of each species × container type × copper level were hand-planted in two 
replications. At about 1000 m elevation, the outplanting site is in the University of Idaho 
Experimental Forest in northern Idaho (lat 46.842240, long -116.871035) and is classi-
fied as a Clintonia uniflora phase within the Thuja plicata/Clintonia uniflora habitat type 
(Cooper et al. 1991) that supports mixed conifer forests. With a northeast aspect, slopes of 
30 to 50%, and a deep (~ 1.5 m) Vassar series soil (Typic Udivitrands; Andisol) that formed 
in volcanic ash above weathered granite; see Dumroese et  al. 2019, for full soil profile 
description), this site experiences an annual, average air temperature of 7.2 °C, about 100 
frost-free days, and approximately 965 mm of annual precipitation with a seasonal sum-
mer (July through September) drought (Soil Survey Staff 2013). In 1986, the average bulk 
density, organic matter content, and pH in the top 25 cm of mineral soil was 0.94 g cm−3, 
4.7%, and 5.9, respectively (Wenny et al. 1988). Winds during the growing season prevail 
from the west southwest (Western Regional Climate Center 2019).

Initially outplanted with 1-m spacing between seedlings within the row (a single copper 
treatment‒container combination) and 2-m spacing between rows, 5 seedlings from each 
species × container type × copper × replication combination were systematically excavated 
6 months after outplanting (September 1986) to observe first-season shoot and root growth 
(Wenny et al. 1988), leaving residual trees on 2-m × 2-m spacing, the typical, initial plant-
ing density for northern Idaho at that time. Each seedling was marked with a metal stake. 
No irrigation, fertilization, weeding, or thinning was done after outplanting.

Excavation and architecture measurements

In July 2017, we revisited the experiment. Of the three species, we chose to sample Pinus 
ponderosa trees grown in the Styroblock 4A (313A) containers (60  ml volume, 14  cm 
depth, 936 cavities m−2; Beaver Plastics Ltd., Acheson, Alberta, Canada) because pines 
have had the most research work on copper root pruning, sufficient trees were available 
for sampling, and the Styroblock system of growing seedlings is still widely used in North 
America for production of reforestation stock.

An exhaustive description of our methods for assessing the site, felling the trees, exca-
vating the roots, discretizing the root system, and analyzing the root data can be found 
in Dumroese et al. (2019). In summary, we revisited eight control trees (no copper) and 
seven treated (100 g L−1 cupric carbonate) trees located across the original two replications 
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(Fig.  1). We sampled this treatment rate because it was closest to the concentrations 
reported by McDonald et al. (1981) and Wenny and Woollen (1989) to provide the maxi-
mum rooting response. Trees were measured for diameter at breast height (DBH; 137 cm 
above groundline; cross slope), height (after felling), and their position relative to neigh-
bors (> 5 cm DBH) within a 5 m radius. The DBH of neighboring trees was measured to 
determine basal area.

We then randomly selected ten trees (five from the control and five from the treat-
ment) for excavation. After trees were felled, root systems were excavated to bedrock 
(approximately 1 to 1.5 m in depth) and to distances of approximately 1.5 m from the 
trunk using a high-pressure air lance and nozzle. After cutting roots that remained 
attached to soil, the root systems were carefully lifted and transported to the U.S. 
Department of Agriculture Forest Service, Rocky Mountain Research Station, For-
estry Sciences Laboratory (Moscow, Idaho). We used a low magnetic field digitizer and 
AMAPmod software to discretize each root system (Godin and Caraglio 1998). Root 

Fig. 1   Locations of the 15 (n = 8 control [C]; n = 7 treated [T]) 32-year-old Pinus ponderosa trees measured 
for height and DBH. The basal area of their neighbors was also determined. Of these, 10 trees (n = 5 con-
trol; n = 5 treated) were then randomly selected for root system excavation, digitization, and reconstruction 
using AMAPmod software
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topology was recorded using the “acropetal-development approach” (Danjon et al. 2005; 
Dumroese et  al. 2019) with lateral roots emerging from the taproot designated first-
order roots, with second-order roots originating from these first-order laterals, and so 
on (Zobel and Waisel 2010). Digitization allowed us to reconstruct each root system in 
three-dimensions using the AMAPmod and determine root order, length, and volume by 
depth and quadrant (Fig. 2).

Length and volume data were analyzed using AMAPmod software (Godin et al. 1997). 
As part of the analysis, we examined the entire root system as well as the cage. The cage 
included all roots in a cylindrical region centered at the taproot (i.e., the largest vertical 
root originating directly from the stump) that were in the zone of rapid taper (i.e., charac-
terized by an axis where the portion of the root proximate the taproot shows a very rapid 
taper) and to a depth corresponding to taproot length (Danjon et al. 2005; Montagnoli et al. 
2020). Specifically, the cage zone was defined as all roots originating within a radial dis-
tance of 2.2 × DBH. We subsequently refined the AMAPmod data to identify three “types” 
of lateral roots: (1) entirely within the upper soil depth (< 30 cm); (2) sinker roots, which 
we classified as those initiated in the upper soil depth and subsequently growing downward 
into the lower soil depth (> 30 cm); and (3) entirely within the lower soil depth. For each 
root order and root type we measured root number and length, and estimated volume as a 
truncated cone (Montagnoli et al. 2019). Taproot taper (T) was calculated (Eq. 1) as the 
average taper for a series of frusta (n) moving from the soil surface (origin) downward, 
where for each frustrum, Dp is the proximal diameter, Dd is the distal diameter, and H is 
the distance between the two diameters (~ 15 cm; Dumroese et al. 2019).

Fig. 2   Four different three-dimensional views of a digitized root system from a 32-year-old Pinus pon-
derosa tree reconstructed using AMAPmod software. Root hierarchy was obtained using the “acropetal-
development approach.” Different colors indicate differences in branching order: taproot, pink; first-order 
roots, green; second-order roots, blue; third-order roots, light blue; and fourth-order roots, yellow. The pink-
shaded rectangles indicate the cage delimitation defined as all roots originating within a radial distance of 
2.2 × DBH. The X+ axis is oriented downslope parallel to the slope direction
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Statistical analyses

Recognizing that we had a small sample size restricted by the number of original seedlings 
planted, compounded by the limited resources to excavate and analyze large trees, and that 
no other long-term studies of this type provide inference, we chose an alpha = 0.1 for all 
analyses. We employed Generalized Linear Mixed Models (GLMM) using PROC GLIM-
MIX (SAS Institute, Inc., Cary, NC, USA) for a complete randomized design with each of 
the five trees within a treatment serving as a replicate. To ensure the appropriateness of this 
approach given the 1986 experimental design (Fig. 1), we validated that replicates were not 
clustered within treatment as an artifact of the original design (i.e., no pseudoreplication; 
Hurlbert 1984). First, we used a “test of random labelling” (Baddeley et al. 2015) based 
on locations of the trees. Results of the test support the hypothesis that treatment levels 
assigned to each tree are random and independent of other trees, with fixed probability. 
Second, we computed stem-to-stem distances within three sets (control-to-control trees; 
treated-to-treated trees; control-to-treated trees) and tested for differences between the 
three sets of distances using a Kruskal–Wallis rank sum test (one-way rank-based ANOVA; 
Hollander and Wolfe 1973). We observed no significant difference (p = 0.4545) indicating 
that no subsampling occurred within clusters or groups of treatment levels. In our mod-
els described below, we further removed any potential influence of correlated observations 
because of spatial proximity and measures on the same tree by incorporating dependent 
residual error covariances in the models. This method ensured that standard errors of the 
treatment parameter estimates were unbiased and that appropriate error degrees of free-
dom were used to assess effects (Zuur et  al. 2009, Sect. 5.4). The final error covariance 
used in each model was one of unstructured, Toeplitz or compound symmetry, depending 
upon the structure that provided a best fit while accounting for any residual correlation 
(Stroup 2016). For our test of random labelling, we used the R platform (R Core Team 
2021) and library spatstat (Baddeley et al. 2015) with functions Jdot, Jest, and envelope. 
The Kruskal–Wallis rank sum test was performed using library stats (R Core Team 2021) 
with function kruskal.test.

The independent variables tree height, DBH, basal area of competitor trees, and taproot 
length and volume were modeled on treatment. Root length and volume for the entire root 
system and the cage were modeled on treatment and order. The number, length, volume, 
and initial and average diameter of cage roots were modeled on treatment, root order, and 
root type. We also modeled cage root length and volume on treatment, root order, quadrant, 
and depth. Although Dumroese et  al. (2019) reported the data for the control trees with 
depths analyzed independently, here our goal was to investigate potential interactions of 
all independent variables. All models were a priori formulated and reported as factorial 
designs that include all second-order interaction terms.

Gamma distributions, appropriate for continuous, positive skewed distributions (Bolker 
2008) as is characteristic of our data, were assumed in all models except for root number. 
We modeled root number using a negative binomial distribution because it is appropri-
ate for discrete count data and has ability to model overdispersion, which is a feature of 
our data (White and Bennetts 1996; Bolker 2008; Lindén and Mäntyniemi 2011). As the 
gamma distribution is restricted to the open interval (0, ∞), we adjusted zero responses 
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according to the method described in Stahel (2002). Our gamma and negative binomial 
models produced dispersion measures of one indicating adequate specification. Error 
degrees of freedom were properly calculated by assigning within-subject (tree) degrees of 
freedom to the treatment effect if treatment changes within a subject, and between-subject 
degrees of freedom otherwise (Schluchter and Elashoff 1990). For all least squares means 
generated by the above models, we calculated the lower and upper means (i.e., 90% con-
fidence interval). Box plot visualizations were made using SigmaPlot 14 (Systat Software 
Inc., San Jose, CA, USA).

Results

For tree growth parameters and competition expressed as basal area, we observed that the 
most treatment variability was associated with basal area of neighboring (i.e., within 5 m) 
trees > 5 cm DBH followed by DBH and height (Table 1). Treated trees were about 1 m 
taller than their control cohorts but DBH was similar.

For length and volume of the entire root system and the cage, treatment was not sig-
nificant (F1,8 < 1.14, p > 0.3161) but root order was (F2,8 > 31, p < 0.0002) (Table 2). Mean 
root length of second-order roots for the entire root system of control trees was about 50% 
greater than that of treated trees, contributing to a treatment × order interaction (Table 2). 
Root volume decreased as root order increased (Table 2). Taproot length and volume were 
unaffected by treatment (Table 2), but the taper of control tree taproots (23.2%, 90% con-
fidence interval: 20.6–26.1) was greater (F1,8 = 3.62, p = 0.0935) than that of treated trees 
(19.6%, 90% confidence interval: 17.4–22.0).

Within the cage, lateral root number, length, volume, and diameter were affected by 
order, type, and the order × type interaction (Table  3). For root order and regardless of 
treatment, trees had fewer third order roots, which were shorter and thinner, and there-
fore had less volume, than their first and second order cohorts. Root volume decreased as 
root order increased. For root type and regardless of treatment, trees initiated more roots 
at soil depth > 30  cm and although their diameters were similar to roots initiated at soil 
depth < 30 cm, their high abundance translated into more length, and in the case of control 
trees, more volume, than roots that initiated and remained within the shallow soil profile or 
became sinker roots (Table 3).

Within the cage, when the model included treatment, root order, quadrant, and depth, 
we found that the role of treatment as an independent variable for length and volume was 
less pronounced (F1,8 < 0.46, p > 0.2642) when compared with the roles of the other inde-
pendent variables: root order (F2,16 > 53, p < 0.0001), quadrant (F3,24 > 7.63, p < 0.0009), 

Table 1   Least squares means (90% confidence interval) for individual tree and stand characteristics for 
32-year-old Pinus ponderosa trees with (treated; n = 7) or without (control; n = 8) copper root pruning dur-
ing nursery production, and associated statistics (α = 0.1)

a Basal area of neighboring (i.e., within 5 m) trees > 5 cm diameter breast height

Diameter breast height (cm) Height (m) Basal areaa (cm2)

Control 26.6 (24.2–29.3) 16.7 (15.9–17.5) 255 (205–317)
Treatment 23.8 (21.6–26.4) 18.0 (17.1–19.0) 280 (230–366)
Statistics F1,13 = 1.98, p = 0.1832 F1,13 = 3.38, p = 0.0890 F1,13 = 0.51, p = 0.4873
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and depth (F1,8 > 11.28, p < 0.0100). The two-way interaction of depth × root order for root 
length (F2,18 = 3.79, p = 0.0423) showed that for all root orders, root length increased at the 
lower depth with second-order roots showing the highest values and the largest increase 
(Fig.  3a). The same interaction for root volume (F2,18 = 12.77, p = 0.0004) revealed that 
within each depth, volume decreased with increasing root order and generally decreased 
from the upper to the lower depth, with exception of the second-order root volume that 
instead slightly increased (Fig.  3b). Depth and quadrant interacted to affect root length 
(F3,27 = 35.83, p < 0.0001) and root volume (F3,27 = 28.72, p < 0.0001) and the interac-
tions showed that in the shallow depth, most length and volume was associated with the 
downslope and windward quadrants. But in the lower depth, the upslope quadrant had the 
most length and volume with the other three quadrants having fairly similar values (Fig. 3c 
and d). Although the two-way interaction of root order × quadrant for root length was absent 
(F6,54 = 1.71, p = 0.1356) (Fig. 3e), it was present for volume (F6,54 = 3.21, p = 0.0091). Vol-
ume always decreased by order regardless of quadrant, but the magnitude of that decrease 
among orders within quadrants differed (Fig. 3f).

Discussion

At the conclusion of the growth cycle in the nursery, and after one growing season on the 
outplanting site, the root systems of the population of P. ponderosa seedlings that were 
the basis of our current study showed significant treatment effects when grown in Styrob-
lock containers. Specifically, in a root growth potential test performed at the conclusion 
of the nursery cycle, Wenny and Woollen (1989) found that new root growth was about 
6X greater in the upper two-thirds of the root plugs exposed to copper when compared to 
their non-treated controls. This was attributed to a resumption of lateral root growth in the 
upper plug that had been temporarily arrested by the presence of copper on the container 
wall. After one season on the outplanting site, the number of new roots emanating from the 
upper root plug was similar regardless of treatment, but the number of new roots growing 
from the bottom of the plug was reduced by half when copper was present (Wenny et al. 
1988). These findings suggested that the number of lateral roots deflected downward along 
the side of the container wall was reduced by the presence of copper, and concur with 
numerous studies (e.g., Burdett 1978; Ruehle 1985; Svenson et  al. 1995; Dumroese and 
Wenny 1997).

In this study, trees treated with copper as seedlings were taller than their non-treated 
cohorts three decades after outplanting, although no observed treatment effects were 
reported for height after nursery production (Wenny and Woollen 1989) or the first grow-
ing season (Wenny et al. 1988). Other studies with pines have reported that copper pro-
moted taller seedlings during the nursery phase compared with control seedlings, and that 
this height differential persisted at least 6 growing seasons (e.g., Haywood et  al. 2012; 
Regan et  al. 2015). Given that larger seedlings generally remain larger after outplanting 
(e.g., Pinto et al. 2011; Sung et al. 2019), our results were not surprising.

For the entire root system, we observed no copper effects on total root length and vol-
ume. Upon outplanting, new roots emanating from the original root plug were affected by 
the nursery imprint as noted by Wenny et al. (1988), but undoubtedly were also influenced 
by genetics and environmental stimuli perceived by the seedlings (Gardiner et  al. 2016; 
Rellán-Álvarez et  al. 2016). Recently on a subset of these trees, we identified first-order 
lateral roots that originated during the first growing season on the outplanting site. These 
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Fig. 3   Interactions of root depth × root order (a and b), root depth × quadrant (c and d), and root 
order × quadrant (e and f) for root length (a, c, and e) and volume (b, d, and f). Vertical boxes represent 50% 
of the observations (25th to 75th percentiles) and error bars extending from each box are the upper (90th) 
and lower (10th) percentiles. Black circles represent values less than the 10th percentile or greater than the 
90th percentile. The solid horizontal line in the center of each box is the median value and the dotted line is 
the mean



996	 New Forests (2022) 53:983–1001

1 3

roots, along with other first-order lateral roots, have an innate ability, based on similar pat-
terns of ring eccentricity (i.e., occurring in a non-circular pattern with an offset centroid), 
to respond to mechanical forces (Montagnoli et al. 2019). Our current results with copper 
treated trees confirm our earlier observations that slope and prevailing wind were impor-
tant mechanical forces (Dumroese et al. 2019); such forces are common to other studies 
with other species (Chiatante et al. 2003; Danjon et al. 2005; Di Iorio et al. 2005; Lom-
bardi et al. 2017). Toward improving stability, our control and copper-treated trees have, 
similar to the results of others (Chiatante et al. 2003; Scippa et al. 2006; Sun et al. 2008; 
Yang et al. 2014), partitioned more root resources downslope and windward in response 
to these mechanical forces. In addition to this coarse response, we demonstrated earlier 
that lateral roots of P. ponderosa can respond at a finer level, changing growth direction in 
response to mechanical forces as well as producing new lateral roots at any development 
stage and wherever along their axis. These findings suggest a high degree of plasticity in 
the entire root system and that trees respond to changes in environmental conditions by 
making ongoing spatial adjustments in root deployment (Montagnoli et al. 2019). There-
fore, it is not too surprising that, for observations of the root traits length and volume for 
the entire root system after 32-years on the site, few significant copper treatment effects 
were discerned.

Critical to tree anchorage is the root cage. The root cage is described as the zone around 
the stump where the taproot and most of the sinker roots descend into the soil in a paral-
lel pattern, as well as the portion of all the shallow roots that branch off from the taproot 
and undergo the most rapid decrease of diameter (Danjon et al. 2005). As with the entire 
root system, we observed no differences in root traits within the cage between treatments, 
suggesting that the response to external mechanical forces caused by the weight of the tree 
itself (self-loading), the slope, and the dominant wind were similar. Indeed, these forces 
are transmitted from the stem to the roots, which dissipates them into the soil to avoid tree 
uprooting, and this dissipation can be enhanced by shallow root quantity, size, distribu-
tion, and individual root structure (Danjon et al. 2005; Yang et al. 2014, 2017; Montagnoli 
et  al. 2020). Within this zone of rapid taper, roots present high amounts of eccentricity 
and corresponding large cross-sectional areas, likely due to the formation of compression 
wood (Westing 1968; De Zio et al. 2020). The direction of this eccentricity changes from 
the top portion of the lateral root at the branching point with the taproot to the bottom por-
tion at the cage edge (Montagnoli et al. 2019). In this regard, it is important to note that 
the stiffness of a root is proportional to its diameter to the fourth power (Coutts 1983); 
consequently, these roots provide significant mechanical stability. Our hypothesis put forth 
in Montagnoli et al. (2020), supported by a mathematical model, suggests these roots with 
high eccentricity are a response to the self-loading force of the trees’ aboveground bio-
mass in concert with the variation in mechanical forces occurring in the various zones (i.e., 
downslope, upslope, windward, leeward) of the cage. Shallow lateral roots within the cage 
also present specialty root shapes (i.e., I-beam and T-beam; Dumroese et al. 2019) believed 
to increase further the trees’ stability against mechanical forces (Nicoll and Ray 1996; 
Stokes et al. 1996).

Within the cage, lateral roots along with sinker roots play a dominant role in tree anchor-
age, with the taproot being the first mechanical contributor to tree anchorage strength (Yang 
et al. 2014, 2017). After 32 years on the site, our data show that control trees had more 
taproot taper but more root volume in the lower soil profile than copper treated trees. The 
presence of more lateral roots in the lower soil profile of control trees may have offset the 
decreased contribution to stability afforded by their taproots (Di Iorio et al. 2005). Despite 
this difference, the high volume of first-order roots, regardless of nursery treatment, likely 
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led to a smooth and rapid dissipation of force into the ground (Coutts 1983) that circum-
vents the root system being forced out of the soil or breaking (Wu 1976; Ennos 1990).

Finally, our values for root length and volume by quadrant and soil depth were unaf-
fected by copper treatment. Examining potential treatment effects, we found that quadrant, 
root order, and depth were the most pronounced independent variables. As we previously 
concluded (Montagnoli et al. 2019, 2020), P. ponderosa responds to the mechanical forces 
of self-loading, slope, and wind through on-going adaptation of its root system that include 
an increase in root eccentricity and asymmetric root volume distribution.

Research continues to demonstrate that pine seedlings with some form of root pruning 
(either with copper or air pruning) initially have characteristics that promote more horizon-
tal root orientation after outplanting (Chapman and Colombo 2007). This apparent short-
term effect may be offset by site characteristics, especially slope and prevalent wind con-
dition. Therefore, we concur with the conclusion of Jones et al. (2002) that conditions on 
the outplanting site influence seedling performance more than root modification by copper 
because of the rapid dissipation of nursery-induced changes to root systems.

Conclusions

Given that our comprehensive observations on the root traits within the entire root sys-
tem and the cage likely reveal mostly genetic responses to mechanical forces, it is not too 
surprising that after three decades we noted few significant differences due to the original 
nursery treatment involving copper root pruning. We failed to completely reject our null 
hypothesis because we observed that tree height, taproot taper, and a few root character-
istics appear to be related to nursery treatment, but overall long-term (32 years) measures 
of root order, length, and volume indicate little effect on trees that received a nursery treat-
ment of copper that modified their root systems. All trees initiated more roots and accu-
mulated more root volume in apparent response to mechanical stresses invoked by slope 
and wind, with more roots occurring downslope and windward. Given that recent work has 
revealed that P. ponderosa root system architecture is continually adapting in terms of root 
number, placement, volume, and eccentricity in response to apparent changes in mechani-
cal forces, our inability to discern differences in location, length, and volume of roots based 
on original nursery treatments is reasonable. Long-term plasticity of P. ponderosa root sys-
tem architecture off-sets any short-term changes caused by nursery treatments. Despite this 
conclusion, early alterations in the root system because of the copper treatment could have 
been functional (at least during the first few years after outplanting) in regard to tree stabil-
ity (especially on slopes) and resource acquisition.
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