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Abstract Quantifying spatial genetic structure is key to inform forest management and

restoration strategies. Reliable evaluations of genetic structure require sound sampling

schemes because inappropriate sampling may over- and under-estimate spatial patterns of

genetic structure. Sampling bias has been investigated through computer simulations

mostly for animal species with continuous distributions. For tree species that have different

life history traits, results from such studies may not apply. Here, I used spatially explicit

landscape genetic simulations to assess the effects of spatial sampling scheme (random,

systematic, and cluster), sampling intensity (35, 50, 65, and 80%), and the number of

microsatellite loci (8, 14, and 20) on inferences of genetic structure under isolation by

distance (IBD) in two forest tree species with varying dispersal distances and patchy

distributions. Results showed that random sampling with 20 loci was the best performing

sampling scheme, irrespective of sampling intensity and the strength of IBD. In contrast,

the cluster and systematic sampling were sensitive to sample size. For the three sampling

schemes, the number of loci had a large effect because with 8 loci there was an increasing

chance of underestimating IBD. Increasing the number of samples over the number of loci,

did not improve the performance of sampling schemes. Hence, researchers should put more

effort on increasing the number of loci over increasing sample size. Results also showed

that sampling error rates varied between species, and sampling bias appeared stronger for

the species with a more aggregated spatial distribution.
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Introduction

Forest management strategies accounting for spatial patterns of genetic structure are

critical for delimiting conservation management units, germ plasm collection, sources and

target sites for reforestation, and assisted migrations (Broadhurst et al. 2008; Frankham

2010). Moreover, spatial genetic structure provides insights for understanding relevant

ecological and evolutionary processes, such as demography, progeny fitness, colonization

history (Kalisz et al. 2001; Zhao et al. 2009), as well as potential for local adaptation in the

light of environmental change (Alberto et al. 2013; Savolainen et al. 2013). Efforts to

protect biodiversity thus should include the quantification of spatial patterns of genetic

structure across species’ ranges.

Reliable evaluations of genetic structure require sound sampling schemes that involve

matching the scale of the spatial process driving genetic structure, which is determined by

the life history traits of the study species (Anderson et al. 2010; Keller et al. 2013).

Although conducting an extensive sampling is recommended to avoid biased results from

genetic analyses, in real situations this condition is often difficult to achieve (Hall and

Beissinger 2014). Sampling can be constrained by varying factors, such as limited eco-

nomic resources for processing a small number of individuals for genetic analysis, per-

mitted only in few sites or within geographically accessible areas.

Plants due to their sessile life form are expected to develop strong genetic structure over

distance (mostly due to seed dispersal), where neighboring individuals are more closely

related than distant individuals, resulting in a genetic pattern of isolation by geographical

distance (IBD) (Ennos 2001; Hampe and Petit 2005; Epperson 2007). IBD is a prevalent

driver of genetic structure in tree populations (Vekemans and Hardy 2004), and is likely

the most common spatial process investigated in landscape genetic studies (Jenkins et al.

2010). Inappropriate sampling is recognized to mislead inferences of genetic structure

(Latch and Rhodes 2006; Koen et al. 2013; Naujokaitis-Lewis et al. 2013; Prunier et al.

2013; Hoban and Schlarbaum 2014; Tucker et al. 2014). For instance, typical analyses in

population genetics, such as estimates of genetic differentiation FST (Schwartz and

McKelvey 2009; Landguth and Schwartz 2014), genetic clustering algorithms (Schwartz

and McKelvey 2009), and correlative distance methods (Landguth and Schwartz 2014;

Oyler-McCance et al. 2013) are sensitive to sampling bias under IBD, which may over-

and under-estimate genetic structure (Meirmans 2012).

Sampling effects on inferences of spatial genetic structure have been explored using

computer simulations (e.g., Schwartz and McKelvey 2009; Landguth et al. 2012; Oyler-

McCance et al. 2013; Landguth and Schwartz 2014). From simulation studies, it has been

suggested that random or systematic sampling (e.g., uniform sampling within transects)

perform well for identifying the underlying spatial process (Schwartz and McKelvey 2009;

Oyler-McCance et al. 2013). Other factors, such as the number of loci and alleles per locus

are also important (Landguth et al. 2012). Sampling issues in simulation studies have been

developed on scenarios that emulate animals with high dispersal abilities and mainly with

continuous distributions (but see Prunier et al. 2013). For plants that have different life

history traits, results from such studies may not apply. Moreover, recent evidence from

landscape genetic simulations suggest that IBD is not only determined by dispersal dis-

tances per se, but also by habitat configuration and the spatial locations of populations (van

Strien et al. 2014). This implies that sampling bias on inferences of spatial genetic structure

under IBD, may be far more complex than anticipated for species with non-continuous

distributions, such as in many tree species.
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The aim of this study was to assess the effects of sampling design on inferences of

spatial genetic structure in forest tree species with non-continuous distributions. I used

spatially explicit, individual-based computer simulations to evaluate the sensitivity of

sampling design through varying three factors: the spatial sampling scheme (i.e. spatial

arrangement of samples), the sampling intensity (i.e. number of sites), and the number of

microsatellite loci. I compared the performance of each sampling design combination to

quantify spatial genetic differentiation under varying degrees of isolation by distance.

Specifically, I asked: (1) which is the best performing spatial sampling scheme? (2) Does

performance of spatial sampling largely depend on the number of sites sampled and the

number of loci? (3) How does performance of sampling design vary with the strength of

spatial genetic structure (i.e., IBD)? Through simulating and contrasting two species with

different characteristics, this study also illustrates how bias in sampling design may depend

on the study species.

Methods

Model system

To illustrate the effects of sampling design on inferences of spatial genetic structure under

approximate real-like scenarios, I selected two tropical dry forest trees varying in spatial

distributions, individual abundances, and mating systems. The selected species are char-

acteristic of the tropical dry forest of the Bajı́o region in Central Mexico, utilized for timber

and valuable for reforestation: Cedrela dugesii and Bursera palmeri.

Cedrela dugesii is a monoicous deciduous tree endemic to the Bajı́o region, where the

species is commonly associated and abundant on rocky outcrops (Calderón de Rzedowski

and Germán 1993). It has seeds adapted to dispersal by wind and is pollinated by insects

(Calderón de Rzedowski and Germán 1993). B. palmeri is a dioicous deciduous tree

(sometimes shrub) of the tropical dry forest and scrublands of the Mexican Plateau. It has a

larger distribution in the Bajı́o region relative to C. dugesii (Fig. 1). B. palmeri has seeds

dispersed by animals and is pollinated by insects (Rzedowski and Guevara-Féfer 1992).

Fig. 1 Sample design under isolation by distance in two simulated forest tree species with non-continuous
distributions: a Cedrela dugesii and b Bursera palmeri. The circles denote the 10 km2 radius sampling
locations for the systematic sampling. The stars denote the sampling sites included for the cluster sampling
scheme. For the random sampling, individuals were collected randomly across the landscape
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The tropical dry forest in the Bajı́o region covered large areas, but currently it is decreasing

due to the intensification of agriculture, extensive livestock, and urbanization (Encino-Ruiz

et al. 2014; Rzedowski et al. 2014). Both tree species are in decline and increasingly

fragmented due to logging for timber and wood products (Rzedowski and Guevara-Féfer

1992; Calderón de Rzedowski and Germán 1993).

Landscape genetic simulations

Simulations were implemented in CDPOP v1.2.31 (Landguth and Cushman 2010), which

is an individual-based landscape genetics program. CDPOP simulates gene flow under

Mendelian inheritance among spatially referenced genotypes based on probabilistic

functions of individual movement and mating across multiple generations (for more

information on the software see Landguth and Cushman 2010 and the github site https://

github.com/ComputationalEcologyLab/CDPOP). To map the spatial distribution for each

tree species in the Bajı́o region, I accessed all collection records from specialized flora

web-databases congregated by the National Commission for Knowledge and Use of

Biodiversity of Mexico (REMIB-CONABIO 2016; http://www.conabio.gob.mx/remib/cgi-

bin/). Records were also obtained from the herbarium IEB (Instituto de Ecologı́a, A. C.,

Centro Regional del Bajı́o), which is specialized in the flora of the Bajı́o region.

Within an area of approximately 3.5 9 2.9 km that corresponded to the main area of

species distribution in the Bajı́o region, 5000 individuals of C. dugesii (Fig. 1a) and 3000

individuals of B. palmeri (Fig. 1b) were randomly positioned within a 10 km2 radius of

each recorded location. Estimates of population size do not exist, but population sizes were

established according to field observations. Although floristic surveys have been carried in

the Bajı́o region in the last decades to record all flora species (which is the main objective

of the herbarium IEB, https://plants.jstor.org/partner/IEB), there is still a possibility that

some sites of species occurrence are unknown. To include the effect of missing sites on

sampling schemes (see sampling design), I assigned individuals within few random

locations across the landscape. The distribution of C. dugesii was more spatially aggre-

gated relative to the more scattered distribution of B. palmeri. Mating parameters were set

in CDPOP to represent a dioicous (equal number of females and males in B. palmeri) and a

monoicous (C. dugesii) species. Pollen and seed dispersal were modeled from a proba-

bilistic distribution proportional to an inverse linear function, which is determined by the

maximal dispersal distance travelled by seeds (female-Dmax) and pollen (male-Dmax)

(Landguth and Cushman 2010). Pollen distances were specified three times larger than

seed dispersal as pollen is assumed to travel longer distances relative to the distances

travelled by seeds (McCauley 1997; Petit et al. 2005). For C. dugesii, pollen flow was set to

reach Dmax = 25% (60, 952.8 m) of the maximal Euclidean distance between individuals

(243,811.3 m), while seed dispersal distance was set to Dmax = 5% (36, 571.6 m). For B.

palmeri, pollen flow was set to Dmax = 15% (51, 816.9 m) and seed dispersal distances

were set to Dmax = 3% (10, 363.4 m) of the maximal Euclidean pairwise individual dis-

tance (345, 445.8 m). For both species, there is no knowledge of pollen and seed dispersal,

but the parameterized seed dispersal distance corresponded to dispersal distances in related

Bursera species reported in the literature (Cantarello et al. 2011). For C. dugesii, there is no

dispersal distances information in related species, but dispersal parameters selected allow

building a genetic pattern of isolation by distance without crashing the population to

extinction as IBD become stronger over generations.

Population growth followed a logistic function with a maximum size of 5000 (C.

dugesii) or 3000 (B. palmeri) individuals (population size was constant at every
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generation), while allowing seeds fecund from multiple fathers. Based on information from

the literature (Bonfil-Sanders et al. 2008; Sánchez-Martı́nez et al. 2011), age structure and

percentage of mortality per class were defined as: (1) seeds (40% mortality), (2) seedlings

(80% mortality), (3) juveniles (50% mortality), (4) reproductive individuals (20% mor-

tality), and (5) mature individuals (100% mortality for non-overlapping generations).

Simulations were set from generation 1 to 300, which generated genotypes of 20

microsatellites and ten alleles per loci. Because CDPOP simulates stochastic processes, I

ran 25 replicates to account for the mean and variability of the spatial genetic structure for

each species.

Sampling design combinations

I was interested to analyze the effects of sampling given three common factors: (1) spatial

sampling scheme, (2) sampling intensity (number of sites), and (3) number of

microsatellite loci. I applied three common types of spatial sampling schemes (random,

geographically clustered, and systematic sampling within documented localities). For the

random sampling, I randomly collected individuals across the whole landscape, without

distinguishing sampling sites. For the geographically clustered sampling, I sampled indi-

viduals from small portions of the landscape within a 10 km2 radius. This type of sampling

is common when logistic and economic resources are limited to collect few samples, but

the researcher categorize sampling sites based on their geographic or environmental dif-

ferences (e.g., Abeysinghe et al. 2000; Rico et al. 2008; Carrillo-Ángeles and Mandujano

2011). For the systematic sampling, I sampled individuals within a 10 km2 radius of

documented locations. This sampling type is more extensive than the cluster sampling

since a larger spatial representation of the species distribution is achieved, but some areas

are missed because of their geographically inaccessibility or because the researcher have

incomplete knowledge of species occurrence (e.g., He et al. 2009; Dubreuil et al. 2010).

For each sampling strategy, four sampling intensities were applied: 80, 65, 50 and 35%.

For the cluster and systematic sampling, sampling intensity was the number of documented

sites of occurrence, while for the random sampling was the number of individuals across

the whole landscape. The number of individuals collected within each of the four intensity

levels in the random sampling, was set equal to the number of individuals sampled in each

level of the systematic sampling. I implemented three sets of microsatellites: 20, 14, and 8

microsatellite loci, which reflect similar numbers of markers commonly employed in

genetic studies for trees (e.g., Astronium urundeuva n = 7 loci, Caetano et al. 2005;

Dipteryix alata n = 8 loci, de Campos Telles et al. 2014; Cedrela odorata n = 9 loci,

Hernández et al. 2008; Tetragastris panamensis n = 15 loci, Kenfack and Dick 2009;

Protorhus deflexa n = 19 loci, Sato et al. 2014; Laurus n = 20 loci, Arroyo et al. 2010).

Table 1 Simulated sampling factors and associated levels of analysis investigated in two forest tree species

Factor Levels Number of levels

Sampling strategy Random, cluster, systematic 3

Sampling intensity 35%, 50%, 60%, 80% 4

Number of microsatellite loci 8, 14, 20 3
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Levels within the three main sampling factors resulted in 36 sampling design combinations

(Table 1).

Individual-based sampling

The objective of this study was not to assess the performance of individual-based and

population-based analysis, but to examine how sampling scheme and effort can bias

genetic differentiation estimates. Population-based analysis assumes that each sampling

site constitute a distinct population, which in many tree species that are recently frag-

mented such assumption is likely inadequate. Empirical evidence suggests that individual-

based analysis is adequate for quantifying spatial genetic structure in species with con-

tinuous and non-continuous distributions (Bankenhol and Fortin 2016). Prunier et al.

(2013) and Luximon et al. (2014) using spatially-explicit computer simulations showed

that individual-based analysis provides more statistical power for detecting isolation by

distance relative to population-based analysis. Specifically, Prunier et al. (2013) for species

with patchy distributions showed that as few as three to four sampling individuals per

aggregate was sufficient for estimating spatial genetic structure using individual-based

analysis. To avoid artificial delimitations of putative populations and to make analyses

comparable among sampling schemes, I performed individual-based analysis.

Effects of sampling design on estimates of IBD

I used Mantel test (Mantel 1967) to evaluate the correlation of genetic and geographical

distances for each of the 36 scenarios using the library ecodist (Goslee and Urban 2007) in

the R statistical software (R Development Core Team 2016). Inter-individual genetic

distances were calculated using the proportion of shared alleles (DPS, Bowcock et al.

1994), and Euclidean distances were calculated from the X and Y coordinates between all

pairs of individuals. This was applied for each of the 25 replicate runs and for seven

generation periods: 25, 50, 100, 150, 200, 250, and 300. To facilitate comparisons among

sampling combinations and their deviation from the true r coefficient, I calculated a

standardized measure of relative error (RE; Kossinets 2006): RE = (r coefficient True-value–

r coefficient Replicate-value/r coefficient True-value) 9 100%. The relative error represents the

proportional difference between the mean true r coefficient and the estimated mean r co-

efficient among all simulated runs and for each sampling combination, which means that

higher absolute values represent a greater divergence between the true and estimated value.

Significant deviations of IBD r coefficients from the true values and effect size

Three-way ANOVAs were applied to identify main factors and their interactions using as

response variable the r coefficients. A logarithmic transformation to the response variable

was applied to meet ANOVA assumptions. For all ANOVAs, I calculated the effect size of

each resultant significant factor and their interactions to determine their relative strength on

the response variable. The effect size (g2) was calculated as the ratio of the effect variance

(sum of squares SS) to the total variance (total SS; Tabachnick and Fidell 2007). To assess

whether the 25 replicate Mantel r coefficients significantly deviated from the observed

distribution of ‘‘true’’ r coefficients (using the total genotype dataset for each of the 25

runs), I applied a Kolmogorov-Smirnoff test (KS) for each of the 36 sampling

combinations.
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Results

Effects of sampling design on estimates of IBD

For both tree species, the strength of the association between genetic and Euclidean dis-

tances increased with the number of generations, but B. palmeri resulted in a stronger IBD

pattern (generation 25: r = 0.09 and generation 300: r = 0.35, p\ 0.05) relative to the

strength of IBD shown by C. dugesii (generation 25: r = 0.05 and generation 300:

r = 0.29, p\ 0.05). Figure 2 shows an example of the variation of RE values within

sampling combinations and from generation 25 to 300. To facilitate visualization, Fig. 2

shows only comparisons of the three sampling strategies at sampling intensities of 80 and

35%, and for 20 and 8 loci, which were the scenarios with marked differences. For both

species, RE values were larger when the r coefficient was low (generation 25) and tended

to decrease as the number of generations progressed and the strength of the correlation
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Fig. 2 Relative error plots of the three spatial sampling schemes at 80 and 35% of sampling intensity, and
20 and 8 microsatellite loci combinations for a Cedrela dugesii and b Bursera palmeri. RE values were
calculated every 25 generations from generation 25 to generation 300. Sampling abbreviations: Syst
Systematic, Clus Cluster and Rand Random
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coefficient increased. This trend was more evident in C. dugesii (Fig. 2a). An exception to

this pattern was for the random sampling with 20 loci, which regardless of sampling

intensity and generation time, was the sampling combination that produced the lowest error

(\10%). Instead, the number of loci was more important in the random sampling, with an

increase of[30% in RE values over scenarios with 8 loci.

For both species, the cluster sampling with 20 loci and 35% of sampling intensity was

the sampling combination that had the largest RE values independently of generation time.

Overall, the cluster and systematic sampling were more sensitive to sampling intensity and

number of loci, but for B. palmeri RE values within each sampling combination varied

more and trends were less predictable (Fig. 2b). Moreover, the cluster and systematic

sampling at 35% of sampling intensity resulted in higher RE variation, which changed

from negative (above the true mean r coefficient) to positive (below the true mean r co-

efficient) as IBD become stronger over generations. Cluster sampling with 8 loci resulted

in lower RE values relative to 20 loci regardless of sampling intensity, which was more

evident in C. dugesii (Fig. 2a).

Significant deviations of IBD r coefficients from the true values

Figures 3 and 4 show boxplots of the distribution of estimated r coefficients around the

‘‘true’’ mean r coefficient (dashed line) for the 36 sampling combinations and for three
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generations (50, 150, and 300). For C. dugesii, random sampling with 20 loci resulted in

estimated r coefficients closest to the true mean r, irrespective of sampling intensity and

the strength of IBD. Results from the KS test indicated non-significant differences between

distributions of the true r and estimated r coefficients for this sampling combination

(Fig. 3). Cluster and systematic sampling at 20 loci across the three generations, showed

significant differences from the true correlation for all sampling intensities. For both

sampling strategies, estimated r coefficients were above the true mean r, and hence

associations of IBD were overestimated. In scenarios with 14 and 8 loci, random sampling

across all levels of sampling intensity resulted in estimated r coefficients below (under-

estimating) the true mean r, and with marked differences at 8 loci. This trend was observed

across the three generations, and these deviations from the true r value were statistically

significant. For the cluster and systematic sampling, estimated r coefficients were higher at

loci 20, which monotonically decreased as the number of loci went from 14 to 8, which

was more evident at generation 25 relative to generation 300.

Similarly in B. palmeri, the random sampling resulted in estimated r coefficients that

were not significantly different from the true r across the three generations analyzed.

Although estimated r values for the systematic sampling were overall higher relative to the

mean true r in scenarios with 20 loci, those differences were not statistically significant.

Moreover, estimated r values for the systematic sampling were closer to the true r value

with increasing the number of sites sampled, which was more evident as the strength of
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IBD increased. This trend was similar for the cluster sampling with 85% intensity at

generation 150 and 300 (Fig. 4). Unlike C. dugesii, sampling intensity produced a lower

variation within the three sampling strategies and irrespective of the number of loci

(Fig. 4). Moreover, all sampling combinations with 8 loci (except cluster sampling at 35%

intensity) had similar distributions of estimated r coefficients at all sampling intensity

levels, which distributions were significantly lower than the true r coefficient.

Effect size of sampling factors

Results from ANOVA showed that effects of sampling strategy, sampling intensity, number

of loci, and the interaction between sampling strategy and number of loci were statistically

significant across the seven analyzed generations in both species (Tables 2 and 3). However,

there were important differences in the relative effect sizes among factors, which values

varied in relation to generation time and thus the strength of the r coefficient. Specifically,

for C. dugesii, sampling strategy had the largest effect size, which comprised 74% of the

variation at generation 25 (r = 0.05), but that decreased to 50% at generation 150 (r = 0.2).

After generation 200 (r = 0.23), the number of loci reversed the trend and had a largest

importance ([50% of the variation). Sampling intensity followed by the interaction between

sampling strategy and number of loci accounted for less than 10% of the total variation

(Table 2). For B. palmeri, sampling strategy had the largest effect size only at generation 25

(r = 0.1), which comprised 56% of the variation, while number of loci was the most

important factor after generation 50 (r = 0.15), explaining 54%. Effect size values for the

number of loci continued to increase as associations of IBD become stronger, and for a

maximum effect size of 86% at generation 300 (r = 0.35). Also, sampling intensity fol-

lowed by the interaction between sampling strategy and number of loci accounted for less

than 15% of the variation (Table 3).

Discussion

Performance of sampling design on the correct quantification of IBD

As expected, the dioicous species with shorter dispersal range (B. palmeri) developed

stronger genetic differentiation over distance across all generations relative to the mono-

icous species with larger dispersal (C. dugesii). Results showed that the spatial sampling

scheme and the number of loci were important factors influencing the correct estimation of

IBD. Specifically, the random sampling with 20 microsatellite loci was the sampling

combination that performed best across generations and for both species, and thus per-

formance was independent of the strength of IBD (generation time) and the spatial dis-

tribution of individuals.

The good performance of the random sampling has been observed in previous computer

simulation studies, which also found that increasing sample size increased the accuracy for

identifying the underlying spatial process (Landguth et al. 2012; Oyler-McCance et al.

2013). I found that the random sampling with 20 loci was equally sufficient for quantifying

the ‘‘true’’ strength of IBD at the lowest and highest proportions of sampled individuals.

Indeed, the random sampling scheme was unaffected by sampling intensity across all

scenarios. The random sampling in this study, was a good unbiased distribution of samples

across all sites of species occurrence, which allowed to capture the existing pattern of
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Table 2 Summary statistics of three-way ANOVAs to test differences among sampling factors and their
interactions on mantel correlation coefficients generated for simulated data of seven generations in Cedrela
dugesii

Generation Factor d.f. F Prob. Effect size rtrue

25 ST 2 1541.09 *** 0.738 0.05

SI 3 90.60 *** 0.065

Loc 2 314.62 *** 0.151

ST:SI 6 29.18 *** 0.042

ST:Loc 4 2.64 * 0.003

SI:Loc 6 0.43 NS –

ST:SI:Loc 12 0.45 NS –

50 ST 2 1673.34 *** 0.683 0.01

SI 3 100.06 *** 0.061

Loc 2 536.97 *** 0.219

ST:SI 6 28.28 *** 0.035

ST:Loc 4 1.95 NS –

SI:Loc 6 0.046 NS –

ST:SI:Loc 12 0.37 NS –

100 ST 2 884.87 *** 0.558 0.15

SI 3 53.63 *** 0.051

Loc 2 575.20 *** 0.362

ST:SI 6 13.12 *** 0.025

ST:Loc 4 0.58 NS –

SI:Loc 6 0.33 NS –

ST:SI:Loc 12 0.81 NS –

150 ST 2 528.90 *** 0.496 0.2

SI 3 36.65 *** 0.052

Loc 2 446.23 *** 0.418

ST:SI 6 9.894 *** 0.028

ST:Loc 4 0.63 NS –

SI:Loc 6 0.31 NS –

ST:SI:Loc 12 0.72 NS –

200 ST 2 288.42 *** 0.415 0.23

SI 3 24.27 *** 0.052

Loc 2 348.44 *** 0.501

ST:SI 6 6.48 *** 0.028

ST:Loc 4 0.33 NS –

SI:Loc 6 0.205 NS –

ST:SI:Loc 12 0.266 NS –

250 ST 2 343.37 *** 0.408 0.26

SI 3 21.201 *** 0.038

Loc 2 439.13 *** 0.521

ST:SI 6 6.97 *** 0.025

ST:Loc 4 0.13 NS –

SI:Loc 6 1.45 NS –

ST:SI:Loc 12 0.45 NS –
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genetic differentiation with acceptable degree on the condition that the number of loci was

high (20 loci).

Simulation studies have found that the systematic sampling, where the sampling is

distributed at regular intervals across the landscape, perform with similar acceptable rates

to the random sampling (Naujokaitis-Lewis et al. 2013; Oyler-McCance et al. 2013). In

contrast to previous studies, the systematic sampling did not show similar trends to the

random sampling. Unlike the random sampling, performance of the systematic sampling

was related to sampling intensity and the strength of IBD. Specifically, in B. palmeri, the

effectiveness of the systematic sampling for successfully describing the ‘‘true’’ pattern of

IBD, increased with the proportion of sampled sites and the number of loci. For C. dugesii,

the above was observed only for the combination with 14 loci and when the pattern of IBD

was moderate. The difference observed on the performance of the random versus the

systematic sampling scheme is related to the influence of missing sites and the spatial

configuration of the species distribution. In simulation studies for species with continuous

distributions, the systematic sampling spaced at regular intervals and covering all areas of

the species occurrence is more likely to capture the prevailing pattern of genetic structure,

thus performing equally well to the random sampling. For the systematic sampling in this

study, samples were collected only in recorded locations, while missing ‘‘undocumented’’

sites. Hence, as fewer sites were sampled, there was a larger chance of not accurately

capturing the genetic variation found across the landscape (e.g., Koen et al. 2013; Nau-

jokaitis-Lewis et al. 2013). The random and systematic sampling differ only in the spatial

allocation of samples because the number of individuals within each intensity level were

set equal, and hence differences are not due to sample size. The simulation study of van

Strien et al. (2014), showed that habitat configuration has a large influence on spatial

patterns of genetic differentiation under IBD, where the highest differentiation between

pairs of demes (as measure with genetic distance metrics) may not necessarily corresponds

to the largest pair-wise Euclidean distance. This implies that the strength of IBD may not

appear as a uniform spatial gradient of genetic differentiation across the landscape. The

different performance of sampling schemes in the two simulated species is likely related to

the spatial configuration of individuals as suggested from the work of van Strien et al.

(2014).

Table 2 continued

Generation Factor d.f. F Prob. Effect size rtrue

300 ST 2 203.65 *** 0.363 0.29

SI 3 13.81 *** 0.037

Loc 2 315.24 *** 0.562

ST:SI 6 4.49 *** 0.024

ST:Loc 4 0.74 NS –

SI:Loc 6 0.44 NS –

ST:SI:Loc 12 0.85 NS –

Largest effect size denoted in bold. Mantel r is the mean true value of the complete data at each simulated
run

ST Sampling type, SI Sampling intensity, Loc Number of loci, d.f. Degree of freedom, NS non-significant
values, ST:SI Interaction

P values are indicated as follow: p\ 0.0001***; p\ 0.001**; p\ 0.01*
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Table 3 Summary statistics of three-way ANOVAs to test differences among sampling factors and their
interactions on mantel correlation coefficients generated for simulated data of seven generations in Bursera
palmeri

Generation Factor d.f. F Prob. Effect size rtrue

25 ST 2 233.78 *** 0.561 0.09

SI 3 23.37 *** 0.084

Loc 2 122.95 *** 0.295

ST:SI 6 7.58 *** 0.055

ST:Loc 4 0.37 NS –

SI:Loc 6 0.08 NS –

ST:SI:Loc 12 0.22 NS –

50 ST 2 94.44 *** 0.332 0.15

SI 3 13.79 *** 0.073

Loc 2 153.54 *** 0.541

ST:SI 6 4.79 *** 0.051

ST:Loc 4 0.039 NS –

SI:Loc 6 0.14 NS –

ST:SI:Loc 12 0.09 NS –

100 ST 2 60.09 *** 0.214 0.23

SI 3 10.45 *** 0.056

Loc 2 192.52 *** 0.685

ST:SI 6 3.78 ** 0.04

ST:Loc 4 0.29 NS –

SI:Loc 6 0.06 NS –

ST:SI:Loc 12 0.08 NS –

150 ST 2 18.10 *** 0.078 0.28

SI 3 7.34 *** 0.048

Loc 2 191.79 *** 0.831

ST:SI 6 2.76 * 0.036

ST:Loc 4 0.15 NS –

SI:Loc 6 0.12 NS –

ST:SI:Loc 12 0.18 NS –

200 ST 2 20.28 *** 0.075 0.31

SI 3 7.21 *** 0.038

Loc 2 229.24 *** 0.845

ST:SI 6 3.023 ** 0.033

ST:Loc 4 0.35 NS –

SI:Loc 6 0.23 NS –

ST:SI:Loc 12 0.18 NS –

250 ST 2 10.89 *** 0.034 0.33

SI 3 7.45 *** 0.035

Loc 2 286.47 *** 0.898

ST:SI 6 2.54 * 0.024

ST:Loc 4 0.24 NS –

SI:Loc 6 0.11 NS –

ST:SI:Loc 12 0.35 NS –
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Oyler-McCance et al. (2013) through an individual-based simulation study for an ani-

mal species with continuous distributions found that the cluster sampling had a low

probability of identifying the underlying spatial process irrespective of sample size.

Overall, the results here also suggest that the cluster sampling does not perform well for

species with non-continuous distributions. Remarkably, at the lowest proportion of sam-

pled sites and combined with 20 loci, the cluster sampling performed the worst, overes-

timating the strength of IBD. This sampling scheme, was more sensitive to sample size and

the number of loci, resulting in large variance of estimated r values across all scenarios.

This pattern was more evident in C. dugesii, which spatial distribution was more

aggregated.

Sampling in few locations of the whole species distribution, is common in population

genetic studies due to logistics or financial constraints (e.g., Tucker et al. 2014; Dubreuil

et al. 2010; Rico et al. 2008). The cluster sampling captures only a portion of the genetic

variation found across the landscape, if by chance areas of high genetic differentiation are

included, the strength of the association between genetic distances and Euclidean distances

would appear stronger, thus overestimating IBD (Landguth and Schwartz 2014). On the

other hand, if areas of the landscape with low genetic differentiation are included, IBD

would be underestimated. This would explain the patterns shown for the systematic and the

cluster sampling, but more marked in the cluster sampling at low levels of sampling

intensity where the range of the r coefficient values was larger (i.e., interquartile size and

whiskers of boxplots Figs. 3 and 4) relative to the variation in the other sampling schemes.

Relative importance of sampling factors

Although the three analyzed sampling factors had significant effects on the quantification

of spatial genetic structure, the relative importance of each factor varied between species

and across generations. For C. dugesii, the spatial sampling scheme was the most important

from generation 25 to 150, which then was reversed for the number of loci, while for B.

palmeri the number of loci was by far the most important factor from generation 50. In all

cases, sampling intensity had a small effect size. Differences between species in the

relative importance of sampling factors may be related to the strength of IBD. Specifically

as IBD become stronger, the relative effect size values for the number of loci increased,

Table 3 continued

Generation Factor d.f. F Prob. Effect size rtrue

300 ST 2 15.94 *** 0.057 0.35

SI 3 7.24 *** 0.041

Loc 2 240.45 *** 0.860

ST:SI 6 3.09 ** 0.033

ST:Loc 4 0.25 NS –

SI:Loc 6 0.29 NS –

ST:SI:Loc 12 0.19 NS –

Largest effect size denoted in bold. Mantel r is the mean true value of the complete data at each simulated
run

ST Sampling type, SI Sampling intensity, Loc Number of loci, d.f. Degree of freedom, NS non-significant
values, ST:SI Interaction

P values are indicated as follow: p\ 0.0001***; p\ 0.001**; p\ 0.01*
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while decreased for the spatial sampling scheme. Landguth et al. (2012), in a simulation

study found that increasing the number of loci (up to 25) was important for the correct

identification of the underlying spatial process. This trend was more evident if IBD was

strong (Mantel r[ 0.7). However, the authors found that increasing the number of samples

(from 100 to 500) if the number of loci was small (n = 15) improved the probability of

correctly identifying the underlying spatial process (Landguth et al. 2012). In this study,

increasing the number of samples (e.g., from 260 individuals at 35% to 700 individuals at

80%) did not improve the performance of the sampling scheme if loci was either 14 or 8.

Specifically, using 8 loci underestimated the ‘‘true’’ pattern of IBD in most sampling

combinations (except in C. dugesii for the cluster sampling at low sample sizes). Notably,

underestimating IBD with 8 loci was marked at generation 300 when IBD was the

strongest.

These results indicate the lower power to detect genetic structure in standard correlative

matrix distance methods if few microsatellite loci are used (Landguth et al. 2012; Peterman

et al. 2016). Mantel and partial Mantel test statistics have been criticized due to its poor

performance for accurately identifying the main spatial process driving genetic structure if

multiple and correlated competing landscape hypotheses occur (Guillot and Rousset 2013;

Zeller et al. 2016). Because in this study isolation by distance is the only spatial process

being modeled, I consider the simple Mantel test sufficient for illustrating the relative

performance that sampling design have on the quantification of IBD. It would be inter-

esting to explore under more complex simulation scenarios, such as landscape resistances

to gene flow (e.g., Zeller et al. 2016) or adaptive genetic differentiation under gene flow

(e.g., Landguth and Balkenhol 2012), the performance of alternative statistical methods,

such as spatial regressions and multiple regression on distance matrices (MRM) (Wagner

and Fortin 2016). Other important aspect to explore using computer simulations, would be

the role of dispersal vectors on patterns of genetic structure. For instance, the influence of

wind speed and turbulence is known to importantly influence the distance and direction of

pollen flow (Wang et al. 2016) and seed deposition (Nathan et al. 2002). Moreover, the

movement of pollinators can also be influenced by the speed and direction of wind (Ahmed

et al. 2009). The effect of sampling schemes under more realistic scenarios beyond the

species spatial configuration and landscape structure would be needed.

Recommendations and Conclusions

Results here highlight that covering the total spatial extent of the species distribution is

critical because missing areas of occurrence is likely to under- or over-estimate patterns of

genetic differentiation. By contrasting two species with varying spatial distributions, it was

observed that a cluster sampling scheme is even more problematic for species with patchy

distributions. Equally important is the number of microsatellite loci because as fewer loci

are included, there is an increasing chance of underestimating IBD due to low power to

detect spatial genetic structure. Increasing the number of samples over the number of loci,

appears not to improve the performance of sampling schemes for correctly identifying the

underlying process even if sampling is randomly distributed across the landscape. This

implies that researchers should give more priority to obtain large number of markers over

the effort of increasing sample size. Obtaining a large number of loci[20 and with good-

level of polymorphism (i.e., 10 alleles) is still difficult for many research studies in non-

model species with poor o non-existing genetic information. Fortunately, advances of next
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generation sequencing technologies allow overcoming the limitation associated with

marker discovery and polymorphism. Specifically, restriction site associated DNA

sequencing and genotyping by sequencing methods that identify thousands of polymorphic

markers across the genome (single nucleotide polymorphisms SNP) are becoming rapidly

accessible to research studies in non-model species (Baird et al. 2008; Elshire et al. 2011).

Despite the increasing development of computer simulation software in ecological and

landscape genetics (e.g., SPOTG of Hoban et al. 2013; SimAdapt of Rebaudo et al. 2013;

CDMetaPOP of Landguth et al. 2016), computer simulations remain poorly used as a tool

for sampling planning in research studies. The routine implementation of computer sim-

ulations with model parameters focused on the biology of the study species, the vectors,

and the landscape structure would support more effective decisions on sampling design in

population genetic studies (Hoban 2014).
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Chávez-Martı́nez R (2011) Consejo de Ciencia y Tecnologı́a del Estado de Querétaro, Querétaro,
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