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Abstract Native tree seedlings (nursery produced) were planted under control and her-

bicide treatments in the understory of a mature hybrid poplar plantation, naturally invaded

by glossy buckthorn, a major invasive exotic shrub of Eastern North America. The

objectives were to (1) test the negative effect of the invasive buckthorn on seedling growth,

(2) determine if this effect differed for two tree species with different shade tolerances and

edaphic requirements (sugar maple, red oak), and (3) determine if the type of canopy

influenced this effect (5 clones). Confounding factors were reduced in this design (canopy

composition and structure, age/size of seedlings), and several factors were controlled

(transplantation date, deer exclusion). Several factors were measured (canopy openness,

soil nutrients, canopy biomass, understory vegetation biomass, buckthorn density and

biomass). After two growing seasons, seedlings of both species had reduced diameter and

height increments under buckthorn. This difference was statistically significant for diam-

eter increment. Canopy type did not have any effect on environmental variables or seedling

growth. Buckthorn reduced light availability, but had no effect on soil moisture or soil

nutrient availability. Consistent with sugar maple’s ecological requirements, its diameter

growth was explained (multiple regression) firstly by edaphic variables (positive effect:

soil humidity and K), and secondly by buckthorn biomass (negative effect). Red oak

growth was explained firstly by buckthorn biomass, and secondly by understory vegetation

biomass, both negative effects. Seedlings of species with higher light requirements (red
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oak) may have large growth reductions under buckthorn cover and have difficulty over-

topping it. These results indicate that under-planting (plantations, forests) or afforestation

should occur rapidly after buckthorn removal, otherwise this introduced invasive shrub

may greatly reduce survival and growth of planted trees. Restoration of red oak to areas of

former abundance will likely be more difficult because of the competition from glossy

buckthorn.

Keywords Frangula alnus � Exotic shrub species � Introduced species � Acer saccharum �
Quercus rubra � Early successional stands

Introduction

Forest managers and conservationists are very concerned by glossy buckthorn (Frangula

alnus Mill.) (Fagan and Peart 2004; Webster et al. 2007), an exotic invasive shrub that is

now dominant in several ecosystems in Eastern North America. Its spread is facilitated by

openings in the forest canopy, even partial ones, resulting from cutting and thinning

operations (Burnham and Lee 2009). It is a somewhat shade-tolerant species that out

competes native species in the colonization of canopy gaps, where it tends to form a very

dense mono-specific stand (Frappier et al. 2004; Nagel et al. 2008) limiting light avail-

ability for native tree seedlings. Additionally, when it becomes dominant, glossy buckthorn

may possibly modify forest soil conditions through its uptake of resources (nutrients and

water) and the addition of its litter to the forest floor (Fagan and Peart 2004). By limiting

resources for tree seedlings, the regeneration of the canopy tree species can be delayed or

arrested, reducing the diversity and productivity of the forest stand. Potential changes in

forest species composition may also result in a lower value for the future forest (Fagan and

Peart 2004).

A few authors have investigated the effect of buckthorn on forest understory tree

seedlings. In forest environments and plantations, a higher basal area of glossy buckthorn

has been associated with lower species richness and shifts in dominant vegetation towards

shade-tolerant species (Frappier et al. 2003; Fagan and Peart 2004). Buckthorn presence or

high basal area have also been associated with lower tree seedling survival, density and

growth (Frappier et al. 2003; Fagan and Peart 2004). In an experimental field manipulation

in New Hampshire, 2 years after removing buckthorn, Frappier et al. (2004) observed an

increase in tree seedling density.

In contrast with these results, other authors did not observe any relationship when

studying similar variables, although some of them studied the effect of buckthorn over a

15-year period (Houlahan and Findlay 2004; Mills et al. 2009; Owen Koning and Singleton

2013). This discrepancy perhaps indicates that the response to buckthorn invasion varies

depending on the geographical location (Frappier et al. 2004; Ricciardi and Cohen 2007;

Nagel et al. 2008) and on the type of ecosystem (Frappier et al. 2003).

Several authors have emphasized the importance of doing regional studies to evaluate

the effects of invasive species (Frappier et al. 2004; Ricciardi and Cohen 2007; Nagel et al.

2008). Also, some types of forest have been shown to be more susceptible than others to

invasion by buckthorn (Owen Koning and Singleton 2013) and the composition of a forest

in terms of canopy trees may influence the effect of buckthorn on the forest understory.

Research on the effects of buckthorn has been conducted mostly in the United States, in
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New England pine-mixed forests, and little information is available on buckthorn effects in

other ecosystems. Southern Québec is a region of Canada that is most vulnerable to

invasive species, because of its southern location (relatively warm climate and gateway for

new invasive species) and the high fertility of its soils. In southern Québec, early suc-

cessional, partially open hardwood forests and tree plantations appear to be particularly

likely to be invaded by buckthorn. The afforestation of abandoned farmland (Cogliastro

et al. 1990) and the restoration of valuable hardwood species to poorly regenerated second

growth forests (Johnson 1975; Truax et al. 2000; Cogliastro and Paquette 2012; Dey et al.

2012) are becoming more widespread forest management practices. Whether or not the

presence of glossy buckthorn has a negative effect on their success is a question that needs

answering.

Studying invasive species is also important because there is evidence that rapidly

spreading and abundant exotic species are not necessarily noxious for native ecosystems

(Ricciardi and Cohen 2007). In some cases, an exotic species may be only taking

advantage of the current conditions that are disadvantaging native plants, as opposed to

driving changes in the ecosystem (Macdougall and Turkington 2005). Several authors have

concluded that in many cases control actions were initiated against exotic species without

solid evidence of their negative effect (Houlahan and Findlay 2004; Owen Koning and

Singleton 2013; Lavoie et al. 2014).

To test the potentially negative effect of buckthorn on tree seedlings, we planted tree

seedlings in the understory of a mature hybrid poplar plantation naturally invaded by

buckthorn. Sugar maple (Acer saccharum Marsh.) and red oak (Quercus rubra L.) are the

two native tree species we selected for this experiment. Sugar maple is one of the dominant

hardwood species in the Northern Hardwoods forest region and red oak is one of its

associated species (Godman 1992), and both species occur in the forests surrounding the

study site. Both species are known for high quality timber production.

These two species differ in their tolerance to shade and in their edaphic requirements.

Sugar maple is shade tolerant (Humbert et al. 2007) and has relatively high edaphic

requirements (St. Clair and Lynch 2005), while red oak is a species of intermediate shade

tolerance (Bazzaz and Carlson 1982; Gottschalk 1985; Humbert et al. 2007; Kolb et al. 1990;

Phares 1971; Walters et al. 1993) with low to moderate edaphic requirements (Truax et al.

1994; Canham et al. 1996). The differences in shade tolerance and in edaphic requirements

between the two species will allow us to assess if the effect of glossy buckthorn varies

depending on the shade tolerance level and edaphic requirements of tree species seedlings.

The objectives of this study are: (1) to test the effect of glossy buckthorn on the growth of

tree seedlings planted in the understory of amature hybrid poplar plantation naturally invaded

by buckthorn, (2) to determine if there are differences in this effect in two tree species that

differ in their tolerance to shade and in their edaphic requirements (sugar maple and red oak),

and (3) to determine if the type of hybrid poplar clone forming the canopy (5 clones tested)

influences the effect of buckthorn on the growth of the tree seedlings.

Materials and methods

Study site

The study site is a 15-year old hybrid poplar plantation located at Sainte-Catherine-de-

Hatley, in southeastern Québec (Lat. 45.27 N, Long. 72.05 W). Following site preparation

(ploughing, disking and vegetation removal) in fall 1999, 2 m-long rooted hybrid poplar
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cuttings were planted in spring 2000. Glyphosate herbicide was applied over the entire

plantation area in June 2000, and between the rows in June 2001 (Truax et al. 2012). Since

the plantation’s establishment, buckthorn has naturally invaded the plantation understory.

The open abandoned field immediately adjacent to the plantation contains large clusters of

buckthorn shrubs that were likely the seed source of individuals growing in the plantation.

The plantation covers approximately 0.5 ha and is entirely surrounded by a buffer row of

hybrid poplars. It follows a randomized block design with 3 blocks, each including nine

12 m 9 12 m main plots, randomly attributed to 9 different hybrid poplar clones. Five

clones, selected for their greatest differences in parentage, were used for this experiment.

Each main plot has 12 planted hybrid poplars, for an initial density of 833 stems ha-1 (Truax

et al. 2012). Previous hybrid poplar biomass measurements required the harvesting of two

trees per main plot (Fig. 1), which created light conditions comparable to that of woodlots

where the forest has been thinned or where a small-scale disturbance has occurred.

The mature hybrid poplar plantation (15th growing season starting in spring 2014),

offers a very uniform environment in terms of tree stem size and systematic horizontal

spacing (structure). Structural uniformity is also due to the trees being hybrid poplar clones

(genetically identical), which makes the canopy very homogenous. The understory envi-

ronment (light, leaf litter, soil humidity, soil nutrients) of this plantation is comparable to

that of natural early-successional or partially open forests common within the region.

Eachmain plot selected for the experiment (5 hybrid poplar clones 9 3 blocks = 15main

plots)were split in two (1st split-plot level) and a herbicide treatmentwas randomly attributed

Fig. 1 Individual hybrid poplar clone plot (12 m 9 12 m, including 10 remaining hybrid poplars and 2
stumps) showing 2 treatment subplots (herbicide and control, randomly assigned left or right) and 4 planted
tree sub-subplots (2 sugar maple subplots and 2 red oak subplots, randomly assigned location in each
treatment) for a total of 4 experimental units per plot, and a total of 60 experimental units for the entire
experimental design (4 exp. units/plot 9 5 hybrid poplar clones 9 3 blocks = 60)
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to one half, while the other half remained untreated (control) for a total of 30 subplots (Fig. 1).

In October 2013, double the minimal dose (7.52 kg a.i. ha-1) of glyphosate (‘‘Round-up’’)

was applied to the subplots identified for the herbicide treatment. In late April 2014, the

remaining dead glossy buckthorn stems were cut and removed from subplots. No soil dis-

turbances, weeding or additional herbicide treatments were done afterwards during thewhole

duration of the experiment. For the control treatment halves of the split design, the natural

density of glossy buckthorn was preserved. A natural gradient in glossy buckthorn density

from block 3 (glossy buckthorn at higher density, most likely first invaded through this block)

to block 1 is associated to an opposite gradient of hybrid poplar biomass (resulting in greater

canopy closure). In late April 2014, a 2.4 m-high (8 feet) plastic mesh fence was installed to

protect the experimental design from deer browsing.

Planted tree seedlings

In conducting this experiment we used small gauge transplanted trees (nursery produced)

to simulate large seedlings, which no previous field study of glossy buckthorn has done.

Using transplants meant that all tree seedlings had the same age and cultivation history at

the time of plantation, removing the heterogeneity in age and development that exists in

natural forest understory seedlings. Moreover, using transplants more accurately represents

an under-planting reality.

The tree seedlings were 1 year-old (1–0) container-grown seedlings. Average initial

height was 62 cm for sugar maple and 35 cm for red oak. They were planted on May 6

and 7, 2014, in two rows of four trees, spaced 1 m between trees on the row, and 1 m

between rows (Fig. 1). Eight tree seedlings of each species (2nd split-plot level) were

planted in each sub-subplot (2 species 9 2 treatments 9 5 hybrid poplar clones 9 3

blocks = 60 experimental units) for a total of 480 planted tree seedlings (240 per species)

(Fig. 1). This experiment follows a split–split-plot design, as recommended by Petersen

(1985), because the treatment (herbicide and control) and species (red oak or sugar maple)

factors are added to an existing factorial design. The height and basal diameter of each

planted tree seedling were measured initially on May 12 and 13, 2014 and at the end of

each of the two first growing seasons (October 2, 2014 and September 22–23, 2015). The 8

tree seedling measurements of a sub-subplot were used to calculate a mean and are con-

sidered as a single ‘‘individual’’ to account for variability and mortality.

Measurement of environmental and vegetation variables

Light availability

Canopy openness, a proxy for light availability, was determined by the analysis of

hemispherical photographs of the canopy, using the Gap Light Analyzer software v. 2.0.

Two photographs were taken in each sub-subplot between July 7 and August 15, 2014: one

at 1 m above the forest floor, below most of the buckthorn cover and above planted

seedling height, and one at 3 m, above most of the glossy buckthorn cover.

Soil nutrients and humidity

Plant Root Simulator (PRSTM–Probes) technology was used to determine soil nutrient

availability, taking into account temporal variability (Western Ag Innovations Inc.). The

PRS-Probes are pairs of ion-charged membranes (one for anions and one for cations) that
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are inserted in the soil at shallow depth for an extended period of time (40 days for this

experiment) during which they exchange ions with those in the soil water. Three pairs of

probes were inserted at 5 cm depth (from top of probe to soil surface) in each of the 60 sub-

subplots from June 2 to July 11, 2014, corresponding to the peak of the growing season.

Soil humidity was measured in each sub-subplot in July during a dry period (no rain 48 h

prior to sampling) by conventional metal container samples for gravimetric measurements.

Vegetation

The diameter at breast height (DBH) of all hybrid poplars was measured on August 15,

2014, to calculate the poplar basal area, volume and biomass per main plot, using pre-

dictive equations (stem volume, aboveground woody biomass) developed for the 13-year

old trees in the experimental hybrid poplar plantation network of Truax et al. (2014). In

each sub-subplot, four 50 cm 9 50 cm microplots were used to estimate the biomass of

the understory vegetation. All aboveground parts of plants within these microplots were

harvested and dried in ovens to produce dry biomass data.

Buckthorn

To determine glossy buckthorn biomass in each sub-subplot, we used a predictive equation

of aboveground biomass (Y), using basal diameter as the predictor variable (x) (allometric

relationship). The predictive equation includes all aboveground biomass, including leaves,

twigs and stems. Detailed methods to arrive at this predictive equation are presented in a

previous publication (Hamelin et al. 2015). To calculate buckthorn biomass, we measured

the basal diameter of all buckthorn stems taller than 50 cm in each sub-subplot. The

diameter for each stem was transformed to biomass using the predictive equation and

summed for each subplot. Buckthorn seedlings under 50 cm in height were counted in four

50 cm 9 50 cm microplots per sub-subplot to determine their density, and were then

harvested to determine total buckthorn seedling dry biomass. Total buckthorn aboveground

biomass in each sub-subplot was calculated by adding total seedling dry biomass (trans-

formed to total sub-subplot area) and buckthorn (over 50 cm in height) aboveground dry

biomass. To evaluate the efficacy of the herbicide treatment for controlling buckthorn over

time, all buckthorn seedlings were counted after the second growing season (September 23

and 24, 2015) in one 1 m 9 1 m microplot established in each herbicide treatment sub-

subplot and their mean height was measured.

Statistical analyses

Tree seedling basal diameter and total height increments over two growing seasons (2014

and 2015) were used as response variables for the analyses of variance (ANOVA). The

model for the ANOVA includes species (2), treatments (2), hybrid poplar clone types (5),

blocks (3) and their interactions. Using this same model, we tested differences in envi-

ronmental and vegetation variables between species, treatments, canopy hybrid poplar

clones and between blocks. We used stepwise multiple regression procedures using the R

program package (R Core Team 2014) to determine which environmental and vegetation

variables explained the most variation in planted seedling growth of both tree species in all

plots (response variables: increment in height and diameter over two growing seasons).

Prior to the analyses, a correlation matrix was done to determine if some correlation
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coefficients (r) between any two factors were over 0.5 (threshold for high colinearity).

When this was the case, the factor less correlated with the response variable was removed.

We executed ‘‘forward’’ selections, using the change in the model’s R2 as the criterion to

select which predictor variables to enter in the model. We evaluated the contribution of

each predictor by the change in R2 and by the significance level of the ANOVA testing for

the addition of the predictor.

Results

Environmental and vegetation variations between clone type canopies
and between treatments

Table 1 shows the significance level (F and p-values) of the differences for all measured

variables. No significant differences were found for any of the soil nutrients between

Table 1 Results from ANOVAs (F and p values) on environmental and vegetation variables of three
experimental blocks, five canopy hybrid poplar clone types, two treatments (control and herbicide) and two
species (sugar maple and red oak) of planted tree seedlings in the understory of a mature hybrid poplar
plantation

Variable Blocks Poplar clone
types

Treatments Species

F p value F p value F p value F p value

Buckthorn

Stem density 3.08 0.102 0.93 0.493 29.31 \0.001*** 0.04 0.844

Seedling density 7.42 0.015* 2.82 0.098 12.28 0.006** 0.24 0.630

Total aboveground biomass 7.58 0.014* 2.29 0.141 19.30 0.001*** 0.48 0.496

Soil nutrients

NO3 3.00 0.107 0.99 0.465 0.76 0.404 1.32 0.264

P 2.77 0.122 1.33 0.338 4.10 0.070 0.17 0.684

K 1.28 0.329 2.11 0.171 1.59 0.236 0.85 0.368

Ca 2.00 0.198 0.86 0.527 0.11 0.747 0.09 0.767

Mg 0.51 0.619 0.65 0.643 2.00 0.188 0.00 1.000

Soil humidity 5.68 0.029* 2.93 0.091 1.11 0.317 1.16 0.294

Canopy openness

1 m 0.11 0.897 0.26 0.896 17.99 0.002** 0.04 0.844

3 m 1.76 0.233 0.38 0.817 10.79 0.008** 0.01 0.914

Understory vegetation biomass
(without buckthorn)

1.71 0.241 0.45 0.770 29.16 \0.001*** 0.51 0.483

Hybrid poplar

Basal area 11.44 0.005** 3.33 0.069

Volume 12.97 0.003** 2.95 0.090

Woody biomass 13.06 0.003** 5.45 0.020*

* Significant at 0.01\ p B 0.05

** Significant at 0.001\ p B 0.01

*** Significant at p B 0.001
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blocks, treatments or species. Hybrid poplar clone type canopy did not have any significant

effect on any environmental or vegetation variable, or on tree seedling growth variables.

Detecting no differences in environmental variables among hybrid poplar clone type

canopies is good evidence that it is highly unlikely that hybrid poplar clone type would

have any effect on buckthorn. There also was no statistically significant hybrid poplar

clone type effect on any buckthorn variables and on any tree seedling growth variables, nor

was there a significant interaction between clone type and treatment. Our third hypothesis,

about the potential of hybrid poplar clone canopy influencing buckthorn or its effect on tree

seedlings, is therefore rejected. Boothroyd-Roberts et al. (2013) also did not observe any

significant difference in environmental variables between 10 year-old hybrid poplar clone

type canopies.

Table 2 shows the results of the ANOVAs comparing environmental and vegetation

variables between treatments. Buckthorn was significantly more abundant in terms of stem

density ([50 cm in height), seedling density (\50 cm in height) and total biomass in

control treatment plots than in herbicide plots. In control plots, mean buckthorn density

was of 5 stems m-2 and of 171 seedlings m-2. In herbicide plots, buckthorns had been

eliminated (0 stems m-2), but seedling density (seedlings germinated in spring 2014)

reached an average of 101 seedlings m-2 during the first growing season, and an average

of 114 seedlings m-2 during the second growing season. Buckthorn seedlings in the

herbicide treatment plots (germinated in spring 2014) had an average height of 25 cm after

two growing seasons (September 2015). Buckthorns harvested for the development of the

allometric relationship were up to 14 years old. This indicates that some of them invaded

the plantation in 2001, 1 year after the site was prepared and the poplars were planted, and

the same year that herbicide was applied between the poplar rows.

Understory vegetation biomass was also significantly higher in control plots than in

herbicide plots. Nonetheless, in all control plots, where buckthorn and understory vege-

tation are both present, buckthorn biomass was much higher than that of the understory

vegetation (mean per block). The biomass of the other understory vegetation (without

Table 2 Results from ANOVAs (p values) comparing environmental and vegetation variables between
herbicide and control treatments in the understory of a mature hybrid poplar plantation

Variable Unit Herbicide Control Standard
error

p value

Buckthorn

Stem density Stems m-2 0 5 1 \0.001***

Seedling density Seedlings m-2 101 171 14 0.006**

Total aboveground biomass g m-2 5 554 88 0.001***

Soil humidity % 20 19 0 0.317

Canopy openness

1 m % 33 30 1 0.002**

3 m % 35 33 0 0.008**

(Significant Poplar clone type 9 treatment interaction for canopy openness at 3 m, p = 0.017*)

Understory vegetation biomass (without
buckthorn)

g m-2 8 46 5 \0.001***

* Significant at 0.01\ p B 0.05

** Significant at 0.001\ p B 0.01

*** Significant at p B 0.001
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buckthorn) represented 31 % of the total biomass of understory vegetation (understory

vegetation ? buckthorn) in block 1, 12 % in block 2 and 6 % in block 3. Overall, buck-

thorn biomass was higher than that of the other understory vegetation by a ratio of 12 to 1

(554 vs. 46 g m-2).

At 1 m above ground level, under buckthorn cover and above planted seedling height,

canopy openness was significantly lower in control plots than in herbicide plots. There was

already a significant difference between treatments above most of the buckthorn cover

(photographs at 3 m above ground level), but this difference is greater and more significant

under the cover of buckthorn (photographs at 1 m above ground level). The significant

interaction between poplar Clone type and Treatment for canopy openness at 3 m above

ground (over most of buckthorn cover) appears to be a spurious effect, because treatment

cannot have had any effect on the canopy above it, and it is unlikely that poplar clone type

had an effect on treatment.

Results of the tree seedlings experiment

Effect of buckthorn on tree seedling growth

Over the two first growing seasons, mean diameter and mean height increments of the tree

seedlings of both species were higher in the herbicide plots than in the control plots. These

results support our first hypothesis about the negative effect of buckthorn on the growth of

tree seedlings. Seedling diameter increment after two growing seasons was significantly

higher in the herbicide treatment (Table 3). This difference increased from the first to the

Table 3 Results from ANOVAs (F and p values) of diameter and height growth increment over two
growing seasons of red oak and sugar maple seedlings planted in herbicide and control treatments in the
understory of a mature hybrid poplar plantation

Variable Red oak Sugar
maple

Treatment
mean

Treatment standard
error

F p value

Basal diameter increment (mm)

Herbicide 2.85 3.58 3.21 0.17 18.96 0.01**

Control 1.99 2.38 2.18

Species mean 2.42 2.98

Species standard
error

0.12

F 10.51

p value 0.004**

Height increment (cm)

Herbicide 27.86 12.16 20.01 0.93 2.94 0.12

Control 25.19 10.35 17.77

Species mean 26.52 11.25

Species standard
error

1.30

F 68.98

p value \0.001***

** Significant at 0.001\ p B 0.01

*** Significant at p B 0.001
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second growing season (data not shown). The difference between treatments in height

increment over the two growing seasons was not significant (p = 0.12). Nonetheless,

treatment means started to differentiate within a 3 cm range after two growing seasons,

with the herbicide treatment showing a better mean height growth. The diameter difference

may be small, but it is only one of two growth dimensions, which together produce a

volume (3-dimensional). By using average height and basal diameter data, at planting and

after 2 growing seasons, and making a basic volume calculation (using the cone volume

formula) for both dates, we find that volume increment differences between treatments are

26 % for red oak and 11 % for sugar maple.

The effect of buckthorn did not differ significantly between species of tree seedlings

(Treatment 9 Species interaction was not significant), therefore our second hypothesis is

not supported.

Environmental variables explaining tree seedling growth

A stepwise multiple regression analysis indicates that the environmental and vegetation

variables that explain a significant amount of variation in red oak basal diameter increment

over two growing seasons are the amount of buckthorn biomass (negatively correlated),

with a R2 of 0.32, and the amount of understory vegetation biomass (negatively correlated),

which adds 0.14 to the R2, for a total R2 of 0.46 for the explained variation of the response

variable (Table 4). For sugar maple, the environmental and vegetation variables that

explain a significant amount of the variation in its basal diameter increment are soil

humidity (positively correlated), with a R2 of 0.32, followed by the amount of buckthorn

biomass (negatively correlated), with an additional contribution of 0.16 to the R2, and

finally by soil K flux (positively correlated), with an additional contribution of 0.10 to the

R2, for a total R2 of 0.58 for the explained variation of the response variable (Table 4).

Table 4 Results of the stepwise regression analyses between environmental variables (predictor variables)
and the total diameter increment over the two first growing seasons (response variable) for red oak and sugar
maple seedlings for the control treatment plots in the understory of a mature hybrid poplar plantation

Species Environmental
variables

Parameter
estimate

Parameter
significance
(p value)

R2 DR2 Anova
between
models

p value

Red
oak

1. Buckthorn
biomass

-0.001 0.001*** 0.32 0.32 Model 1–
model 0

0.001***

2. Understory
vegetation
biomass

-0.009 0.01** 0.46 0.14 Model 2–
model 1

0.01**

Sugar
maple

1. Soil humidity 0.197 \0.001*** 0.32 0.32 Model 1–
model 0

0.001***

2. Buckthorn
biomass

-0.001 0.006** 0.49 0.16 Model 2–
model 1

0.007**

3. K 0.006 0.02* 0.58 0.10 Model 3–
model 2

0.02*

* Significant at 0.01\ p B 0.05

** Significant at 0.001\ p B 0.01

*** Significant at p B 0.001
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The results of multiple regression analysis for both species include buckthorn biomass,

indicating that buckthorn presence influences the growth of both tree species. However,

buckthorn biomass is included in the responses of the two species to a different degree,

supporting our second hypothesis about the possibility of buckthorn having a different

effect on seedling species differing in shade tolerance and edaphic requirements.

Similar stepwise multiple regression analyses were done on total height increment over

two growing seasons for each species. No environmental or vegetation variables explained

a significant amount of variation in this response variable for red oak, and only soil

humidity (positively correlated) could explain a significant amount of variation in total

height increment for sugar maple, with a R2 of 0.26 (not shown).

Discussion

Buckthorn did reduce light availability for seedlings growing under its cover, but it did not

have an effect on soil water content or soil nutrient availability. No significant differences

in edaphic conditions were observed between treatments, although the herbicide treatment

resulted in the removal of an average 500 g of buckthorn dry biomass per m2. This is likely

because the poplar overstory has a much greater effect on resources than the midstory

buckthorn cover, as observed for other species by Brown et al. (2014). This result is also

consistent with the description of glossy buckthorn as a species with low edaphic

requirements, which does not require large amounts of water or soil nutrients, and which

can therefore prosper in a very wide range of conditions and ecosystems (Mills et al. 2012).

Light availability is the only environmental variable for which a significant difference was

observed between control and herbicide treatments. A reduction in light availability by

buckthorn had already been suggested before as buckthorn’s main negative effect on native

plant environment (Frappier et al. 2003). To our knowledge, it is the first time that it is

experimentally measured and detected as statistically significant. This result suggests that

seedlings of tree species with different light requirements could be affected to a different

degree by buckthorn.

In our experiment, the ANOVA did not detect a significant Treatment x Species

interaction. However, the planted seedlings were still relatively small after two growing

seasons (average height 73 cm for sugar maple and 62 cm for red oak), and this interaction

may eventually appear as significant after several more years of growth. Nonetheless, some

support for a different reaction to buckthorn by the seedlings of tree species with different

edaphic and light requirements comes from the results of the multiple regression analyses.

Different environmental and vegetation variables explain the variation in diameter growth

of each of the two species tested, but both species have one variable in common, and that is

the total aboveground biomass of buckthorn (R2 = 0.32 for red oak; additional contribu-

tion to R2 of 0.16 for sugar maple). Aboveground biomass of buckthorn and other

understory vegetation were the only two significant variables explaining variations in

diameter growth for red oak. This result is consistent with the intermediate tolerance to

shade of this species, which would make it more sensitive to shading by buckthorn. In

contrast, two out of three significant variables explaining sugar maple diameter growth

were edaphic variables (soil humidity and soil K). This is consistent with the high edaphic

requirements of this species. These results suggest a differential effect of buckthorn on the

diameter growth of seedlings of tree species based on their tolerance to shade, which is

consistent with the observations of some authors of shifts in composition towards shade-
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tolerant species under buckthorn cover (Frappier et al. 2003; Fagan and Peart 2004). This

species-specific effect on the seedlings could be compared to a ‘‘filter’’ through which not

all tree species will equally grow and survive. George and Bazzaz (1999) described a

‘‘filter’’ effect produced by the fern understory stratum in New England deciduous forests,

and they explained how it could lead to an altered canopy tree composition and to mod-

ifications in species distribution. Buckthorn could be creating a similar effect when it is

abundant in the forest understory.

Buckthorn (total aboveground biomass) was the second most important variable

explaining the variation in sugar maple diameter growth, which indicates that even species

that are tolerant to shade can be affected by buckthorn. Our early observations that both a

species tolerant to shade and a species of intermediate tolerance to shade are being affected

in their growth by buckthorn, if maintained or amplified in the future, and if applicable to

other species, could have serious consequences for the success of under-planting or the

transition of seedlings to the canopy in natural forests, which could be reduced. Differences

between treatments are likely to increase over the next years, as trees grow bigger and their

light requirements increase to support growth.

The very high buckthorn seedling densities under the parent stems (171 seedlings m-2

on average in control plots) and in herbicide-treated plots (101 seedlings m-2 on average),

and the rapid growth rate of these seedlings (25 cm-high 2 years after germination),

challenge the idea that native tree seedlings will be able to germinate, establish and be

recruited in the stand if this competitive action of buckthorn is maintained. Planting tree

seedlings to regenerate logged areas (clear cut or shelterwood cut) or understories of low

density forests (ex. early successional intolerant hardwood stands) may be essential to

ensure a well-stocked future stand. Follow-up measurements in our experimental design

will provide information on whether a single herbicide treatment was enough to ensure the

further development of the planted seedlings and their recruitment as saplings.

The results of this study on the effects of buckthorn on tree seedlings are likely to be

generally applicable to early successional, partially open, hardwood forests [dominated

mostly by intolerant hardwoods (poplars, birches, ashes, etc.)] that occur throughout

southeastern Canada and the northeastern United States (Northern Hardwoods forest). This

is because the understory environment of the 15-year old hybrid poplar plantation used for

the experimental design has many environmental factors that are very similar to those of

naturally regenerated forests of several decades in age (Boothroyd-Roberts et al. 2013).

Indeed, Boothroyd-Roberts et al. (2013) found that 10-year old productive hybrid poplar

plantations already had similar basal area, canopy closure and leaf litter accumulation, to

that of nearby young second growth woodlots (ranging from 31 to 58 years in age).

Conclusion

Our short-term results on buckthorn seedling density and growth rate, and on the negative

effect of buckthorn on native tree seedling growth provide support for the rapid refor-

estation or afforestation of sites that have been recently cleared and treated with herbicide,

and more generally of sites that have a partially open canopy and moderately well to

imperfectly drained soils. Relying on natural regeneration in these situations may be ill-

advised, especially in the highly fragmented landscapes typical of southeastern Canada,

where remaining surrounding forested areas, upon which colonization success by native

trees depends for seed sources, are often distant. Reforesting (after clear cutting) and

908 New Forests (2016) 47:897–911
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afforesting (after agricultural abandonment) or under-planting (in appropriate early suc-

cessional stands or mature poplar plantations) may be necessary in order to outpace

buckthorn colonization.

Our conclusion is that shading by buckthorn is what produces the negative effect on tree

seedling growth. Therefore, although shade-tolerant species, such as sugar maple, may be

able to grow in the presence of buckthorn, albeit poorly, other species with higher light

requirements, such as red oak or white ash, may have large growth reductions and have

great difficulty passing through the buckthorn filter. Sugar maple is very rarely planted

because it is abundant in naturally regenerated forests. Red oak, however, is a species of

choice for under-planting and for plantations. Our results therefore have important

implications for the restoration of red oak under partial tree cover if buckthorn has invaded

the understory. Restoration of valuable hardwood species by under-planting in young low-

density early successional forests or plantations on abandoned farmland are currently

promoted by forest managers in Québec. However, under-planting may prove unsuccessful

if no special management practices are developed to control this invasive introduced shrub.
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