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Abstract Under climate change, the adoption of historical reference as the objective of

forest restoration is being questioned. In this study, the spatially explicit forest landscape

model LANDIS was utilized to analyze how the forest landscape in the upper Hun River

area of Liaoning province in northeast China would be affected under current climate

trends and future climate change; and to explore whether the historical reference should be

the objective of restoration efforts. The results showed that (1) the area percentage (AP) of

Quercusmongolica under climate change is always higher than that under the current

climate regime, while the AP of Pinuskoraiensis is lower than that under current climate;

and (2) the competitive ability of Q. mongolica and Populus davidiana increases, while

that of other species decreases under climate change. As interspecies competition shifts

under climate change, the historical reference appears in appropriate to serve as the

objective of forest restoration. In addition, although Q. mongolica would likely benefit

from a warmer and drier climate, use of this species for forest restoration under climate

change still requires further research.

Keywords Forest restoration � Climate change � LANDIS � Forest succession �
Species competition

Introduction

During the last decades, the rapidly growing population and socio-economic development

have contributed to the over-exploitation and subsequent degradation of forests in many
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parts of the world. As a consequence, forest restoration has become one of the important

foci of restoration ecology (Griscom and Ashton 2011; Holl 2011). While forests resto-

ration is itself a complex and challenging issue (Dobson et al. 1997; Shinneman et al. 2010;

Griscom and Ashton 2011; Rodrigues et al. 2011), it becomes even more complicated

under climate change (Parmesan and Yohe 2003; Hulme 2005; Harris et al. 2006).

The science of restoration ecology and the practice of ecological restoration have

developed rapidly over the past several decades (Harris et al. 2006). At the same time, a

cohesive body of restoration theory is emerging, which is linked to increasingly sophis-

ticated restoration practices (Falk et al. 2006; Van Andel and Aronson 2006). Historical

conditions have always served as the basis of explicit objectives for restoration in many of

these theories and practices, and degraded forests are always promoted toward pre-dis-

turbance conditions (Yu et al. 2011; Shinneman et al. 2012). However, considering the

trajectory of contemporary climate change, it remains unclear if and where the shifts in

climate will affect forest restoration efforts (Parmesan and Yohe 2003), given the pro-

nounced changes that are being observed beyond historical ranges of variability. Harris

et al. (2006) pointed out that as the biological envelope has been altered geographically,

habitats have no longer been able to support a vast amount of historical species. Studies on

plant species distribution have found that some species moved out of their previous hab-

itats and migrated toward more northern areas due to global warming in the Northern

Hemisphere (He et al. 1999; Leng et al. 2008). In effect, under rapid climate change new

quasi-stable states may be achieved although the original states disappeared (Harris et al.

2006). Accordingly, traditional conservation management that excludes all non-native

species could conceivably lead to a catastrophic failure (Yao et al. 2012), because the

historical systems will not be able to respond to the changed environment. In addition, the

random use of non-native species would lead to a failure of restoration efforts if such

species are not well adapted to the entire combination of environmental factors. In contrast,

if the historical species that are conserved can adapt to the rapidly changing selective

pressures (Rice and Emery 2003), their conservation should be sustaintable. Therefore, it is

necessary to demonstrate the better over-all adaptive potential of non-native species versus

native species before replacing the latter.

The choice of restoration objectives is essential but is not an easy decision. It is

expected that restoration will eventually result in forests with their community composition

broadly reflecting the potential natural composition for the region and environment type

(Mason et al. 2012). Unfortunately, under climate change scenarios, the potential natural

composition for a particular region is unclear due to possible species gains and losses. As a

result, understanding the responses of individual species and forest composition to climate

change is the key to determining restoration objectives. Such responses are complicated at

the individual species level and can be further confounded when driven by intra- and inter-

species competition (Shao 2003; Heikkila et al. 2009). Modelssuch as LANDIS (He and

Mladenoff 1999b) and LANDCLIM (Schumacher et al. 2004) incorporate parameters of

life history, intra- and inter-specific competition, climate variability, and other environ-

mental variables, and thus can predict the responses of species under global climate change

and help improve our understanding of how species respond to environmental change (Rice

and Emery 2003; Schumacher et al. 2006).

Particularly over the past decade, forest degradation in China has been receiving more

and more attention (Zhang et al. 2010; Liu et al. 2011; Meng et al. 2011; Yu et al. 2011;

Huang et al. 2012). In Northeastern China, one of the three major forest regions in the

country, most of the original forests have been degraded due to anthropogenic disturbance.

The problem is particularly severe in Eastern Liaoning province (Fu 2009), where forests

672 New Forests (2014) 45:671–686

123



have been degraded from the mixed broad-leaved P. koraiensis forest (He et al. 2002) to

secondary forests dominated by Q. mongolica, Betulaspp., Populusspp. and other early or

mid-successional species. To resolve the problem of forest degradation, a number of

research efforts has emerged to explore methods of forest restoration, and most such efforts

have taken the historical forest as the reference for restoration. Objectives have usually

been to restore the degraded forest to the climax forest—i.e., the mixed broad-leaved P.

koraiensis forest (Chen et al. 2003; Bu et al. 2008). It is reasonable to question whether

such direction of forest restoration is conducive to the sustainability of the forest ecosystem

in the face of global change (Yao et al. 2012).

In this study, LANDIS 6.0 was utilized to examine shifts in community composition of

forests in Liaoning province under different climate scenarios. Three specific questions are

addressed: (1) How would community composition of forests in the upper Hun River

region change under different climate scenarios?; (2) How does the competitiveness of the

climax species, P. koraiensis, and other species respond to different climate scenarios?;

and (3) Should historical forest composition be used as the objective of restoration?

Methods

Study area

The Hun River is one of the main tributaries of the Liao River, the latter being the most

important river in the southern part of Northeastern China. The Hun flows though the

Dahuofang Reservoir and the central city of the region, Shenyang (Fig. 1). The upper Hun

River area (41�4705200–42�2802500N, 124�2000600–125�2805800E) in Qingyuan county of

eastern Liaoning Province encompasses 2.5 9 105ha (Fig. 1). The forests dominated by P.

koraiensis in Upper Hun River area belong to the Changbai Mountain flora and are

important for the ecological integrity and water security of the downstream area. Unfor-

tunately, the these forests have become degraded to secondary mixed forests of lower

productivity, which include Pinuskoraiensis, Quercus spp., Larix spp., Pinus tabulaefor-

mis, Pinusdensiflora, Fraxinus rhynchophylla, Fraxinus chinensis, Juglans mandshurica,

Betula spp. and Populus spp.

Description of LANDIS 6.0

LANDIS is a spatially explicit, cell-based and stochastic landscape model. Since actual

species-level ecological processes are too complex to be simulated with current compu-

tational capabilities, ecological processes across different spatial and temporal scales are

integrated through choosing and simplifying fine-scale mechanistic components (He and

Mladenoff 1999b). LANDIS can simulate species-level forest succession dynamics and

different kinds of disturbance, such as wind, fire, insect disease, harvesting and fuelwood

cutting, and the interaction between them in large areas over long time spans.

In LANDIS, the heterogeneous landscape is composed of various homogeneous forest

land types for which environmental conditions such as soils, slope, aspect, climate and so

on are assumed to be same. The species establishment coefficients, which quantify how

different land types favor or inhibit the establishment of a particular species, are same for a

single land type. Each cell of a land type map contains a matrix that consists of a species

list and 10-year age cohorts. At the cell scale, LANDIS simulates species birth, growth,

mortality, and vegetative reproduction based on species vital attributes and species
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establishment coefficients for each cell on the grid. At the landscape scale, spatial pro-

cesses such as seed dispersal are simulated (He and Mladenoff 1999b).

The capability of LANDIS 6.0 has been revolutionized to conduct simulationusing the

hash-table-based approach. The variable time steps in LANDIS 6.0 range from 1 to

10 years as defined by the user. The model can also operate on very large maps (e.g.

20,000 9 20,000 pixels).

Parameterization of LANDIS 6.0

Species attributesand species composition maps

Vital attributes of sixteen common tree species in the upper Hun River area (Table 1) were

estimated based primarily on literature on species characteristics in this region (Li et al.

2005; Zhang et al. 2007; Zhu et al. 2008). Information about species characteristics was

also obtained through consultations with local experts. In addition, the parameterization of

species characteristics from other research in northeastern China was also referred to in

completing the species attribute table (He et al. 2005; Chang et al. 2007; Bu et al. 2008).

Forest inventory data always included a stand map and its corresponding stand attribute

database. Inventory data used in this study was gathered in 2006 and provided by the

Qingyuan County Forestry Bureau. Distribution of species was obtained from stand maps

Fig. 1 Location of the study area
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of forest inventory data, and information on dominant species and age groups for each

species was acquired from stand attribute data bases corresponding to stand maps. Finally,

the forest composition map was produced in ARCGIS and resampled at a resolution of

60 m 9 60 m, yielding 1,320 rows 9 836 columns.

Land type map

A land type in LANDIS is a set of relatively homogeneous units in the heterogeneous

landscape. The chances for species establishment (species establishment coefficients)

within each land typewere assumed to be similar (He and Mladenoff 1999b). The land type

map for the study area was dervied based on terrain attributes given in forest inventory data

taken in 2006 and the Digital Elevation Model (DEM) of Qingyuan County taken in 1992

(http://www1.csdb.cn/). Non-active areas such as water bodies and cities were excluded in

advance. The land type map included seven land types: North Ridge (NR), South Ridge

(SR), North Slope (NL), South Slope (SL), North Slope of valley (NV), South Slope of

valley (SV) and terrace (T) (Fig. 2).

Species establishment coefficients and simulation scenarios

The species establishment coefficients in LANDIS estimate the probability of a species

becoming successfully established in a land type under different environmental condi-

tions—i.e., land type and climate. The status of the forests in the study area in 2006 was

represented as the initial forest composition including species/age classes. Two simulated

climate scenarios were employed in this study –current climate and climate change. The

Table 1 Species’ vital attributes derived for forests in the upper Hun River area of Northeastern China

Species LONG MTR ED MD ST FT VP MVP

Quercusmongolica 350 40 20 200 3 5 0.9 60

Populusdavidiana 100 8 -1 -1 1 2 1 10

Betulaplatyphylla 150 15 20 400 1 1 0.8 50

Ulmuspumila 250 10 30 100 2 4 0.3 60

Acer pictum subsp. mono 250 10 12 350 4 2 0.3 50

Juglansmandshurica 250 15 50 150 3 4 0.9 60

Fraxinuschinensis 250 30 50 150 3 3 0.3 80

Fraxinus rhynchophylla 250 30 50 150 3 3 0.3 80

Tiliaamuresis 300 30 50 100 4 4 0.9 30

Pinuskoraiensis 400 40 50 200 5 1 0 0

Larixolgensis 300 30 10 400 1 5 0 0

Pinustabulaeformis 200 30 10 500 2 1 0 0

Pinusdensiflora 200 30 10 500 2 1 0 0

Piceaasperata 300 30 80 150 5 3 0 0

Abiesnephrolepis 250 40 80 150 5 3 0 0

Pinussylvestris var. mongolica 250 40 30 100 2 2 0 0

Long-longevity (years); MTR age of maturity (years); ED effective seeding distance (m); MD maximum
seeding distance (m); ST shade tolerance class (1–5: 1 = least shade tolerant; 5 = most shade tolerant); FT
fire tolerance class (1–5: 1 = least tolerant; 5 = most tolerant); VP vegetative reproduction probability;
MVP minimum age of vegetative reproduction (years)
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species establishment coefficients that represent the responses of individual species to

climate in the two scenarios were derived from LINKAGES by He et al. (2005).

LINKAGES is a derivative of the JABOWA/FORET class of gap models, which can

simulate the physiological response of individual species to current and warming climate

conditions (Bugmann et al. 1996). The climate variables acquired in it are 12-month

mean temperatrue and precipitation. The study by He et al. (2005) was conducted in the

Changbaishan Nature Reserve, which is also characterized by Changbai Mountain flora.

The current climate data were derived from four weather stations distributed across

Changbai Moutain, and the future climate predictions were generated via use of the

second version of the Canadian Global Coupled Model (CGCM2, IPCC B2) for the

Changbai Mountain area (4.6 �C average annual temperature increase and little precip-

itation change) (He et al. 2005). The predicted temperature and precipitation changes

between 1990 and 2090 is linear and indicates that warming will occur gradually over

the next 100 years. The resulting warmed conditions will persist for the simulation years

after 2090.

Analysis methods

The cell numbers of each species for each 0-year step were obtained from the output map

in the LANDIS output statistical program for the two scenarios. The 300-year period was

initially divided into three shorter periods—short-term (year 1–year 50); middle-term (year

51–year 100); and long-term (year 101–year 300). For each scenario, the area percentage

(AP) of each species in the last year of each period was calculated. Then, for both

Fig. 2 Landtype map of the Upper Hun River area (NR north ridge, SR south ridge, NL north slope; SL
south slope, NV north slope of valley, SV south slope of valley, T terrace)
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scenarios, the AP of each species for every year over the 300 simulated years was cal-

culated and AP trends for all species were depicted in SigmaPlot.

Results

Species dynamics in different simulation periods

Under both scenarios, Q. mongolica was the most dominant species, with the AP being

close to 50 % in the short- and middle-term periods (Fig. 3, ‘‘Appendix’’). Although Q.

mongolica was still the most dominant species in the long-term period, its AP was much

lower than in the two other periods (Fig. 3, ‘‘Appendix’’). At year 300, P. koraiensis would

be one of the two most dominant species, displaying a much higher AP than in the other

two periods (Fig. 3, ‘‘Appendix’’). The forest in the upper Hun River area appears to be

slowly moving toward a climax forest. However, regardless of length of simulation per-

iod—i.e., short-, middle-, or long-term, the AP of Q. mongolicaunder climate change is

higher than under the current climate scenario; while that of P. koraiensisis lower than

under the current scenario. Thus the increase of AP for Q. mongolica would be promoted

by climate change, whereas AP for P. koraiensis would be depressed.

The variation of area percentage trend of species

With the exception of Q. mongolica, the AP of every species in the upper Hun River area

showed similar trends under the two different scenarios (Fig. 4). The APs of late suc-

cession species (P. koraiensis, P. asperata, A. nephrolepi, U. pumila, A. pictum subsp.

mono and T. amuresis) increased; that of mid-succession species (P. tabulaeformis, P.

densiflora, F. chinensis, F. rhynchophylla and J. mandshurica) first increased and then

decreased; while AP for early succession species (Betula platyphylla, Pinus sylvestris var.

mongolica) decreased under both climate scenarios. P. davidiana is an early succession

species, but its AP remained stable until dramatically increasing around year 250. The AP

of Q. mongolicaunder the two scenarios displayed opposite trends, decreasing under the

current climate scenario while increasing under climate change (Fig. 4).

Although most species displayed similar trends under both scenarios, it was still evident

that the trends of some species were enhanced or weakened by climate change. The

increase in AP for P. davidiana and U. pumila was enhanced, as was the decrease in AP for

Betula platyphylla, Pinus sylvestris var. mongolica, P. tabulaeformis, P. densiflora, F.

chinensis, F. rhynchophylla and J. mandshurica. In contrast, AP increases were weakened

for P. koraiensis, P. asperata, A. nephrolepi, A. pictum subsp. mono, T. amuresis and mid-

succession species.

Discussion

One of the important issues of forest restoration is the choice of the objective of restoration

(Brown and Johnson 1998; Norton 2009; Mason et al. 2012; Critchley et al. 2013);or more

specifically, the choice of species for restoration, since planting is thought to bethe most

effective method to promote forest succession (Lamb 1998; Brancalion et al. 2012;

Johnston and Zedler 2012; Munro et al. 2012; Bannister et al. 2013). Species are always
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selected in order to promote the degraded forest toward the historical climax forest (Lamb

1998; Wang et al. 2006; Meng et al. 2011). However, because of a changed environment

with respect to temperature, precipitation, soil, fire return cycle and so on, forests do not

necessarily follow their historical trajectory (Godefroid et al. 2007; Liu et al. 2011; Singh

et al. 2012). It has been noted that forests can achieve a new stable state other than their

historical composition under a new environment (Stromayer and Warren 1997; Jasinski

and Payette 2005; DeLonge et al. 2008). This casts doubt on the necessity of promoting

degraded forests to historical climax forests under a changed environment. Moreover, some

Fig. 3 Distribution of tree species in forests of the upper Hun River area (a, b, c Distribution of tree species
under the current climate scenario at year 50, 100, 300 respectively; and d, e, f Distribution of tree species
under the climate change scenario at year 50, 100, 300 respectively)
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dominant species of climax forests are deemed to be less adaptive than other species under

an environment altered by climate change or other factors (Chrysopolitou et al. 2013;

Katona et al. 2013; Ponce-Reyes et al. 2013).

This study found that although the upper Hun River forests in both scenarios slowly

moved toward the historical climax forest dominated by P. koraiensis, the variation in AP

Fig. 4 Trajectory of area percentage (AP) of different species under two climate scenarios
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trends of Q. mongolica and P. koraiensis (Fig. 4) indicate that climate warming promotes

the increase of AP for Q. mongolica, while depressing that of P. koraiensis. This suggests

that the relative increase in competitive ability of Q. mongolica is likely more pronounced

in response to climate warming. Oaks are commonly considered to be drought- and heat-

tolerant trees not only in the Changbai Mountain region (He et al. 2005), but also in other

forest ecosystems (Wyckoff and Bowers 2010; Michelot et al. 2012). Rigling et al. (2013)

found that in the Swiss Rhone valley the contemporary trend from Scots pine to oak forests

is obvious at lower altitudes and drier sites despite the dominance of Scots pine. In

contrast, the dominant species, P. koraiensis is reported to be more suitable to remain

established in the high elevation areas (Aizawa et al. 2012; Wang et al. 2013), suggesting

that P. koraiensis may favor a cool and moist climate (Zhang et al. 2012; Zhou et al. 2012).

Moreover, in studying the physiological responses of P. koraiensis, Yan et al. (2013) found

that the nitrogen and carbon levels of P. koraiensis decreases under increased air tem-

perature and decreased relative humidity, which implies that the competitive ability,

species productivity and functioning of P. koraiensis is affected by global warming, with

or without concurrent increasing precipitation. With this in mind areas that supported P.

koraiensis in the past under conditions similar to those projected for the future might be

considered as restoration sites for ‘‘neo-native’’ stands of Q. mongolica (Millar et al. 2007).

The forest dominated by Q. mongolica is probably the ‘‘neo-native’’ forest in the future of

the study area, so planting P. koraiensis as the primary restoration measure should be

reconsidered cautiously and the spread of Q. mongolica should not be suppressed (Millar

1998).

Some researchers admit that forest succession would probably deviate from its historical

trajectory; but they still insist that there should be a reference for restoration and that the

historical reference could serve as a basis for such an objective of restoration (Hohensinner

et al. 2005; Maloney et al. 2011; Hanberry et al. 2012), because historical reference is

deemed to reflect a perfectly self-sustaining state without anthropogenic disturbance. In

their opinion, although a degraded forest never returns exactly back to its historical con-

dition, it can be improved to close to historical forest composition and maintained in a self-

sustaining state as historical forest (Woelfle-Erskine et al. 2012; Trueman et al. 2013).

However, we assume that choosing a proper species and improving forest successionbased

on species’ adaptation to climate change is a better choice, since planting is a labor-

intensive and expensive activity, and planting improper species would both increase

mortality rates and increase costs by reducing planting efficiency (Gebrekirstos et al. 2011;

Liu and Guo 2012; Craven et al. 2013).

The results of this study suggest that Q. mongolica is a species which could be chosen

for forest restoration under climate change in the Upper Hun River area of Northeast

China, a conclusion that is also supported by other recent research (He et al. 2005;

Wyckoff and Bowers 2010; Michelot et al. 2012; Rigling et al. 2013). At the same time,

there remain alternative opinions that detrimental effects on oaks can be expected when

elevated temperature occurs simultaneously with drought (Arend et al. 2013). Adapting

silvicultural rules and practices to maintain optimum species-site relationships is one

important restoration strategy (IPCC 2000). Therefore, species suitability tests for the area

are necessary (Bolte et al. 2009). Choice of a proper species for forest restoration is clearly

be one of the basic elements of effective operational management (Ogden and Innes 2007).

In addition to the variation in species adaptation, the variation of relative competi-

tiveness of species is also contributing to changes in forest composition under global

warming (Saxe and Kerstiens 2005; Bolte et al. 2010). In the present study, the adaptation

of species is reflected by establishment coeffecients (not shown in this paper) which are
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summarized from the results of LINKAGES (He et al. 1999, 2005). The establishment

coeffecients of Q. mongolica, P. davidiana, B. platyphylla, F. chinensis, F. rhynchophylla,

J. mandshurica, A. pictum subsp. mono, and U. pumilaare higher under climate change;

however, not all of the AP trends of these species increase (Fig. 4). We infer that the

spread of species is not only determined by the adaptation of species themselves, but also

the competition between them (Reyer et al. 2010; Yu and Gao 2011; Xu et al. 2012). As an

example, consider the AP of early successional species such as P. davidiana (Fig. 4). There

are likely two reasons for the increasing AP of P. davidiana. The first involves charac-

teristics of R strategy species (Gillson and Willis 2004; Milad et al. 2011), including: (1)

strong seed dispersal ability (He and Mladenoff 1999a; Imbert and Lefevre 2003); (2) a

large seed crop every year (Gonzalez et al. 2010; Lee et al. 2011);and (3) strong adaptation

of seeds to various environments (Zhang et al. 2004, 2005; Gonzalez et al. 2010; Li et al.

2010). As a result, P. davidiana would probably occupy the gaps created by mortality of

other species. A second reason is that the relative competitive ability of P. koraiensis, P.

tabulaeformis, P. asperata, A. nephrolepiand A. pictum subsp. monoclearly decrease under

the climate change scenario (Fig. 4). The tree line of P. koraiensis, P. tabulaeformis, P.

asperata, A. nephrolep imigrates toward higher altitudes and latitudes under warmer cli-

mate conditions (Shao 2003; He et al. 2005). The phenomenon that the AP of A. pictum

subsp. Mono displays a weaker increasing trend under the climate change scenario than the

current climate scenario has also been reported by He et al. (2005). Climate change would

favor some species not only because of their species-specific characteristics, but also due to

the delayed immigration of other species (Dukes and Mooney 1999; Kirschbaum 2000).

Some model assumptions of LANDIS may affect the simulation results. For example,

the establishment coefficients which reflect the adaptation of species are constant. How-

ever, the adaptation of species likely changes with time (Rice and Emery 2003). The fossil

record indicates that evolutionary change occurs slowly, and even Darwin (1859) con-

cluded that natural selective pressures are too weak for evolutionary influences in the wild,

so some would think that it is not necessary to consider evolutionary influences in forest

development simulation for time spans that are not excessively long. However, in the past

few decades, some evolutionary biologists have claimed that selection in natural popula-

tions is strong enough to cause evolutionary shifts within a few generations (Rodrigues

et al. 2009; Meli et al. 2013). Therefore, in LANDIS the adaptation of some species could

possibly be underestimated.

Conclusion

The adoption of historical community composition as the objective of forest restoration

should be considered carefully, even though important lessons may be learned from the

past. Because forest succession and its response to climate change are occurring at a slow

pace, and sometimes responses of plant species to climate change may diverge, species

sustainability assessment should be an important focus of research for forest restoration

management, as should the interaction among species change. The latter could also

strongly affect changes in species’ dominance and community composition, and even

possibly alter the pathway of forest succession.
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Appendix

See Table 2.
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