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This study addressed the synergistic effects apparent at the cortical and muscular levels during locomotor 
activity performed under conditions in which the lower limbs are supported horizontally. The spatiotemporal 
structure of synergies was studied using data matrix factorization methods. Control of movement structure is 
shown to be realized primarily through three muscle synergies. Synchronization of the activity of the motor, 
associative, visual, and sensorimotor areas of the cortex on both sides is due to the specifi c characteristics 
of locomotion in conditions of gravitational unloading and the associated features of receptor signaling. The 
components identifi ed, evidencing synchronization of different areas of the cortex on the right and left sides, 
may refl ect control processes associated with the control of alternating activation of the fl exor and extensor 
muscles of the contralateral limb in the process of locomotion. Data on the spatiotemporal structuring of 
cortical activity indicate separate control of muscle synergies via synchronization of cortical commands and 
the temporal organization of muscle synergies in the frequency range 0.30–8.00 Hz. These patterns may 
refl ect operation of a rhythm-generating mechanism involved in controlling cyclic activity.
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Physiology of Higher Nervous (Cognitive) Activity in Humans

 Introduction. One concept in motor control is that the 
human motor system is organized in such a way that its el-
ements combine to form modules of lower dimensionality, 
i.e., synergy [Bernstein, 1990; Latash, 2010]. Such an or-
ganization is designed to exert more effective control over 
the multiple elements of the system being controlled and 
to ensure stability of the discrete or cyclic motor actions 
being performed. Patterns of interaction between the ele-
ments of the controlled systems characteristic of synergy 
are found at different levels of examination of synergistic 
effects, though the fi eld addressing interactions between the 
cortical and muscular levels remains less studied.
 An effective approach to studying the role of central 
nervous system structures in generating synergies consists of 
stimulating brain structures and recording measures of motor 
output at the muscle level. For example, spatial patterns of 
muscle synergies could be correlated with stimulating elec-
trode locations [Amundsen et al., 2017]. Responses from arm 

muscles evoked by transcranial magnetic stimulation (TMS) 
have been shown to have a similar modular structure to vol-
untary movements [Yarossi et al., 2022]. In addition, TMS-
based evidence has shown that the hand movements induced 
by this stimulation are formed on the basis of natural (fun-
damental) synergistic muscle modules, with the motor cor-
tex being the main area for controlling the structure of fi nger 
movements [Pei et al., 2022]. In addition to TMS, electrical 
stimulation of the spinal cord is used to study synergistic ef-
fects [Gerasimenko et al., 2015; Moiseev, 2022]. Applied at 
the levels of the T11–T12 and L1–L2 vertebrae, TMS helps 
maintain a vertical posture and can initiate involuntary step-
ping movements, similar in kinematic structure and the na-
ture of intermuscular interaction to voluntary locomotion. It 
is probable that cortical commands infl uence spinal stepping 
movement generator, thereby generating modulated signals 
determining the spatiotemporal structuring of intermuscular 
interactions. However, there is a view that cortical activity is 
a “binding” signal, not a modulatory one, and such binding 
does not contribute to individual control, but exclusively to 
synergistic control [Reyes et al., 2017; Frère et al., 2017].

Velikie Luki State Academy for Physical Culture and Sport, 
Velikie Luki, Russia; e-mail: sergey_moiseev@vlgafc.ru.

122

DOI 10.1007/s11055-024-01574-1



metatarsal anthropometric point of the right leg in the sag-
ittal plane. A Qualisys 3D video capture system [Qualisys, 
Sweden] with a sampling frequency of 500 Hz was used.
 Electromyogram (EMG) recordings were made from 
the muscles of the lower limbs on both sides: the tibialis an-
terior (TA), medial head of the gastrocnemius (GM), vastus 
lateralis (VL), biceps femoris (BF), and rectus femoris (RF) 
muscles. EMG recordings were made using an ME6000 
wireless 16-channel biomonitor (Megawin, Finland), with 
a sampling frequency of 2000 Hz. Disposable cutaneous 
self-adhesive electrodes with conductive gel and an ac-
tive contact area of 2.5 cm2, size 36 × 45 mm (Swaromed, 
Austria) were used. Electrodes were bipolar. Active elec-
trodes were located in the projections of the motor points 
of the muscles under study, and reference electrodes were 
attached along their fi bers with an interelectrode distance 
of 2 cm. EMG recordings were initially fi ltered with a band-
pass fi lter with a passband of 30–450 Hz and a suppression 
level of 60 dB with zero delay, and were then averaged over 
0.004-sec intervals and re-applied to a 15 Hz low-pass fi lter 
using MegaWin software (Megawin, Finland). Figure 1, a 
shows interference EMG samples before and after the pre-
processing procedure.
 Electroencephalogram (EEG) recordings were made 
synchronously with EMG recordings, using 11 leads with 
electrodes located according to the international “10–20” 
system – O1, O2, P3, P4, C3, C4, F3, F4, T3, T4, and Cz – 
using an Encephalan-EEGR-19/26 encephalograph record-
er (Medicom MTD, Russia). Leads A1 and A2 were used as 
reference. A helmet of the appropriate size bearing the elec-
trode system was placed on the subject’s head. The patient’s 
autonomous unit and most of the cable of the electrode sys-
tem were placed on the couch next to the subject. Electrode 
mounting quality was monitored in terms of subelectrode 
impedance, which was no greater than 10 kΩ. Sampling fre-
quency was 250 Hz and bandwidth was 0.3–70 Hz.
 Oculogram and electrocardiogram recordings were 
made synchronously with the EEG. Additionally, record-
ing electrodes were placed on the vastus lateralis muscle 
of the right leg and the gastrocnemius muscle to use these 
signals to suppress artifacts on the EEG. The recorded EEG 
fi ltration procedure included an automated method for 
compensating for artifacts, which consisted of determin-
ing the degree of similarity of EEG signals with physio-
logical signals and subtracting them from the EEG with a 
weighting coeffi cient. Encephalan-EEG software was used. 
The Encephalan-EEGR-19/26 was synchronized with other 
equipment by automatic submission of markers via one of 
the channels provided in the “Encephalan-EEG” program. 
Recorded EEG signals with synchronization markers were 
exported to the Statistica and MATLAB system for further 
analysis. Figure 1, b shows a sample of a native EEG re-
cording and the product of the fi ltration procedure.
 EMG and EEG recordings and anthropometric point 
coordinates in the 3D system were exported to Statistica 

 In addition, studies have shown that muscle activity 
can be controlled via two independent mechanisms, includ-
ing, in the fi rst case, control of individual muscles through 
direct corticospinal projections, and in the second, by infl u-
encing muscle groups that function in synergy. Evidence for 
these comes from investigation of intermuscular and cor-
tical interactions in the frequency domain [DeVries et al., 
2016; Zandvoort et al., 2019; Yokoyama et al., 2019].
 The intramuscular and intra-articular receptor systems 
play an important role in maintaining vertical posture and 
locomotion; a special role belongs to afferentation from 
the supporting surfaces of the foot [Grigoriev et al., 2004]. 
These signals modulate locomotor synergy patterns generat-
ed by spinal neural structures, which can lead to the emer-
gence of “combined” temporal profi les of muscle activation 
with multiple peaks in different phases of the locomotor cy-
cle [Hug et al., 2011]. However, despite a signifi cant num-
ber of studies, the role of cortical structures in the formation 
of synergistic interlimb patterns remains largely unclear. 
Performance of step-like movements while lying on the side 
with the lower limbs hanging creates the need to control 
movement structure consciously, such that the roles of corti-
cal and supraspinal infl uences on the structure of locomotion 
may increase. The involvement of the spinal stepping move-
ments generator in forming locomotor patterns will probably 
be reduced, because of the specifi city of afferent information 
in such conditions. It seems appropriate to use such a motor 
model to identify cortical commands infl uencing the orga-
nization of muscle synergies. The aim of the present work 
was to study the synergistic effects which become apparent 
at the cortical and muscular levels during locomotor activ-
ity performed with the lower limbs supported horizontally. 
Synergistic effects were understood as combined changes 
in movement characteristics as identifi ed by data factoriza-
tion methods. The study proceeded from the supposition 
that muscle synergies are controlled by descending cortical 
signals which modulate the main characteristics of the spa-
tiotemporal interaction of the skeletal muscles involved in 
implementation of the bilateral stepping cycle.
 Methods. A total of eight healthy male subjects aged 
21–26 years took part in the studies. Experiments were 
carried out at the Velikie Luki State Academy for Physical 
Culture and Sport. All studies were conducted in compli-
ance with the requirements and principles of biomedical 
ethics formulated in the 1964 Declaration of Helsinki and 
were approved by the local Bioethics Committee. Each par-
ticipant provided voluntary written informed consent to par-
ticipate in the research.
 Subjects were placed in a lower limb horizontal support 
device [Gurfi nkel et al., 1998; Gorodnichev et al., 2012]. 
The research protocol included performing voluntary loco-
motion at a free pace. A minimum of eight complete stride 
cycles were included in the analysis. In conditions of hori-
zontal elevation of the lower limbs, the boundary points of 
the stepping cycle were taken as the extreme positions of the 
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 Matrix decomposition was run in the Statistica environ-
ment using the standard modules “Advanced/Multivariate – 
PCA” and “Mult/Exploratory – Factor.” Components with ei-
genvalues greater than one and accounting for at least 10% of 
the total variance were considered. The following parameters 
were analyzed: the number of components extracted (syner-
gies), the percentage of total variance accounted for by each 
factor in the total dataset (VAF), weighting coeffi cients, and 
activation coeffi cients. At the fi rst stage, synergistic effects at 
the muscular and cortical levels were extracted and analyzed. 
The next stage involved multi-level discrete wavelet trans-
formation of EEG signals for each lead, run in the MATLAB 
system using the “Signal Multiresolution Analyzer” module 
(MathWorks, USA). As a result, the original signal was rep-
resented as eight independent, spatially oriented frequency 
channels, calculated iteratively [Mallat, 1989]. At each it-
eration level, signals were thinned after high- and low-pass 
fi ltration. The resulting signals were presented in the follow-
ing frequency ranges [Hz]: 62.5 → 62.5; 30–64.5; 15.5–32; 
7.5–16; 3.7–8; 1.8–4; 0.94–2; and 0.1–1 (Fig. 2). The result-
ing EEG frequency channels for each lead, together with the 
activation coeffi cients of three muscle synergies, formed a 
data matrix in Statistica. Components were extracted from 
the matrix by PCA. Components including high weighting 
coeffi cients of variable muscle synergies (greater than 0.7) 
were analyzed and compared with wavelet coeffi cients. This 
analysis established the degree of synchronization of EEG 
signals in different frequency ranges with the activation of 
muscle synergies.

(StatSoft, Inc., version 10), where initial data matrixes (X) 
of dimension (I × J), where I is the number of points (mea-
surements at a time), and J is the number of independent 
variables (EMG, EEG, etc.), were formed. Additionally, 
variables were created in the matrixes to identify periods 
of the stepping cycle and the assignment of data to specif-
ic subjects and steps [Moiseev et al., 2022]. All variation 
series were interpolated relative to a single reference point 
and standardized to one standard deviation.
 Components (synergies) were extracted from matrixes 
using factor analysis (FA) and principal component analy-
sis (PCA). The original matrix X was decomposed into the 
product of two matrixes: X = T × P + E, where T is the ma-
trix of counts, P is the matrix of loads, and E is the matrix 
of residuals. The matrix of loads carries information about 
relationships between or independence of variables with 
respect to new formal variables obtained by matrix decom-
position, i.e., weighting coeffi cients; the greater the coeffi -
cient, the stronger the connection with the new component. 
In fact, the value of the coeffi cient indicates the degree of 
linearity in changes in the signal, i.e., is a measure of their 
synchronicity, which is a characteristic feature of synergy. 
The matrix of counts determines the temporal organization 
of the identifi ed synergies and represents the projection of 
the initial data onto the subspace of the main components 
i.e., activation coeffi cients. Changes in activation coeffi -
cients on the time scale indicate increases or decreases in 
the activity of the synergy due to synchronous activation of 
its components.

Fig. 1. Samples of skeletal muscle electromyogram (a) and electroencephalogram (b) recorded during locomotion in conditions of horizontal suspension of 
the lower limbs. Muscles: 1) TAR, 2) GMR, 3) BFR, 4) RFR, 5) VLR, 6) TAL, 7) GML, 8) BFL, 9) RFL, 10) VLL, where R is the right side and L is the left 
side. Native recordings are shown at left and traces after processing are shown at right.
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tiple implementations of stepping cycles was assessed as 
high – 0.73 ± 0.03. The second factor included the highest 
weighting coeffi cients for the BF of both legs, as well as the 
GM of the right leg. In the third factor, the GM of the left 
leg and the RF of the right leg had relatively large weight-
ing coeffi cients – 0.54 ± 0.04 and 0.51 ± 0.03, respective-
ly. Predominant activation of these muscles, which had the 
largest weighting coeffi cients in the structure of the second 
factor, determined the increase and decrease in the activity 
of the synergy occurring in the middle and at the end of the 
stepping cycle. The temporal structure of the third syner-
gy was characterized by periodic bursts of activation at the 
beginning and end of the stepping cycle, as well as in the 
second quarter (Fig. 3, b).
 Decomposition of the matrix with data on the dynam-
ics of electrical activity yielded three components, which 
together described 81.90 ± 1.88% of the total variance; low 
within-group variability in the extraction of components was 
noted (CV = 7.2%). In this case, the principal components 
method gave a better result than factor analysis, which ac-
counted for no more than 75% of the total variance in the 
data. The fi rst identifi ed component was characterized by 
marked cortical activity in the frontal, central, and parietal 
leads on the right side. For example, the weighting coeffi -
cients in area F4 were 0.84 ± 0.02 and between-individual 
variability was assessed as low (Fig. 4, a). The highest coef-
fi cients were found in area Cz – 0.92 ± 0.01. In the left-sided 

 Mathematical and statistical data processing was run 
in Statistica 10.0 and included calculation of the arithmetic 
mean (M), the error of the arithmetic mean (SE), the stan-
dard deviation (SD), and the coeffi cient of variation (CV). 
The activation coeffi cients of synergies were compared by 
analysis of the maximum values of cross-correlation func-
tions taking account of offsets relative to zero, where 1 is 
complete correspondence and 0 is the absence of a relation-
ship. Simple exponential smoothing (α = 0.01) was applied 
to variation series containing synergy activation coeffi cients 
before calculating cross-correlation functions.
 Results. Decomposition of the matrix with EMG data 
identifi ed fi ve factors, or synergies, though the last two com-
bined accounted for less than 10% of the explained variance 
and therefore were not analyzed. It should be noted that use 
of factor analysis provided a better quality of reconstruction 
of the original data than the principal components method. 
The percentage of variance accounted for in the former was 
74.00 ± 0.70%, CV = 2.1%, compared with 68.13 ± 0.69%, 
CV = 12.6% in the latter. The structure of the fi rst motor 
synergy (MS) was found to include to a greater extent the 
RF and VL of the right leg; these had the largest weighting 
coeffi cients in the fi rst of the factors selected (Fig. 3, a). 
The activation ratios of this synergy showed a temporal 
pattern with a distinct peak of activity in the second and 
fourth quarters of the bilateral stepping cycle. The group 
mean degree of correspondence of the coeffi cients on mul-

Fig. 2. Discrete wavelet decomposition of a fragment of the EEG signal (lead P4) corresponding to the period of a complete stepping cycle in “horizontal” 
walking. a) Signal decomposition levels (levels 1–8); b) original (a) and transformed (b), including decomposition levels 7 and 8, corresponding to the 
frequency range 0.1–1 Hz.
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central regions – 0.62 ± 0.04 and 0.63 ± 0.04, respective-
ly. In the right-side leads, coeffi cients were no greater than 
0.40 ± 0.03. Activation coeffi cients in this component 
showed a decrease in activity at the beginning and an in-
crease at the end of the stepping cycle. Bursts of activity 
were observed at the transition boundary between the fi rst 
and second quarters, as well as in the middle of the step-
ping cycle (Fig. 4, b). The coeffi cients of cross-correlation 
functions on comparison of between-individual patterns of 
temporal activation in this component indicated a low cor-
respondence of signals – no more than 0.20 ± 0.03. In the 
third component, weighting coeffi cients were predominant-
ly low, not exceeding 0.3. Intermediate coeffi cients were 

leads, average coeffi cients not exceeding 0.63 ± 0.06 were 
noted. The activation coeffi cients of the fi rst component 
showed three marked peaks – in the fi rst quarter of the lo-
comotor cycle, at the beginning of the second quarter, and 
in the last quarter. It should be noted that there was high 
variability in between-individual profi les; the coeffi cients of 
cross-correlation functions when comparing these were no 
greater than 0.27, indicating low correspondence of signals.
 The second of the components isolated was character-
ized by a predominance of activity in the area of the EEG 
leads on the left side. Thus, the weight coeffi cients of the 
leads in the frontal area averaged 0.56 ± 0.04 for the group. 
The greatest coeffi cients were obtained in the parietal and 

Fig. 3. Weighting coeffi cients  (a) and activation coeffi cients (b) of muscle synergies during locomotor activity. In (b) the x axis shows the stepping cycle and 
the y axis shows values (units). The thick line is the mean within-group pattern; the shading and thin lines show some within-individual patterns. C1, C2, and 
C3 are extracted components (muscle synergies) 1, 2, and 3, respectively.

Fig. 4. Weighting coeffi cients (a) and activation coeffi cients (b) of components extracted from EEG activity data on locomotion. C1, C2, and C3 are compo-
nent numbers. In (b) the x axis shows the stepping cycle and the y axis shows values (units). The thick line is the mean within-group pattern; the shading and 
thin lines show some within-individual patterns.
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Frequency ranges in which weight coeffi cients were less 
than 0.30 were not considered here or further.
 A high degree of synchrony was established for the sec-
ond muscle synergy, mainly in the central and frontal regions. 
For example, in the frequency range 0.30–1.01 Hz, coeffi -
cients in the central areas were 0.92 ± 0.14 and 0.92 ± 0.09, 
respectively. In the range 0.94–2.00 Hz, synchronization of 
EEG activity was noted in the central, frontal, and mid-tem-
poral areas (Fig. 5, b). In the other frequency ranges consid-
ered here, coeffi cients were no greater than 0.54. Assessment 
of synchronization of cortical activity with the third muscle 
synergy revealed high weighting coeffi cients in the frontal, 
central, and mid-temporal regions, reaching 0.98 (Fig. 5, c).
 The second of the components isolated demonstrated 
high synchronization of cortical activity with muscle syner-
gies, mostly in the range 1.80–4.00 Hz (Fig. 6). In the case 
of the fi rst muscle synergy, high weighting coeffi cients were 
found in the frontal leads – 0.82 ± 0.14 and 0.78 ± 0.09, re-
spectively, as well as the central leads – 0.94 ± 0.04 and 
0.96 ± 0.05. The midtemporal cortical areas also demon-
strated a high degree of synchrony with muscle synergies – 
greater than 0.82. High weighting coeffi cients were also 
noted in the right parietal (0.96 ± 0.04) and occipital leads 
(0.94 ± 0.06). In the case of the second muscle synergy, an 
intermediate degree of synchrony was demonstrated by 
EEG activity in almost all leads, though this was more 
marked in the frontal leads – 0.81 ± 0.11 and 0.89 ± 0.09, as 
well as in the central area on the right side – 0.89 ± 0.04 

identifi ed in the occipital leads and left frontal lead. The ac-
tivation coeffi cients of the third component showed a peak 
of activity at the beginning of the stepping cycle and two in 
its last quarter (Fig. 4, b).
 In accordance with the study objectives, synchroniza-
tion of cortical signals in different frequency ranges with 
the activity of muscle synergies was analyzed. This analy-
sis involved isolating the principal components from a data 
matrix containing the activation coeffi cients of the previ-
ously identifi ed three muscle synergies and EEG signals in 
different frequency ranges for each of the leads recorded. 
Matrix decomposition yielded two components including 
medium or high weighting coeffi cients for variables, i.e., 
EEG leads in different frequency ranges and activation co-
effi cients of muscle synergies, such that the degree of their 
synchronization could be established. Thus, a high degree 
of synchronization of EEG activity with the fi rst muscle 
synergy was found in two frequency ranges (Fig. 5). The 
highest coeffi cients in the range of 0.30–1.01 Hz were ob-
tained in the central and parietal, as well as the frontal and 
mid-temporal regions of the left side. Weighting coeffi -
cients here were greater than 0.9. In the range 0.94–2.00 Hz, 
the highest coeffi cients were recorded in the frontal region 
on the left (0.84 ± 0.04) and right (0.93 ± 0.03) sides. 
Coeffi cients were large in the central area of both sides, as 
well as in the left occipital and mid-temporal areas – greater 
than 0.78. Weighting coeffi cients in the frequency ranges 
1.80–4.00 Hz and 3.70–8.00 Hz were no greater than 0.34. 

Fig. 5. Weighting coeffi cients of the fi rst component obtained by decomposition of the matrix including activation coeffi cients of muscle synergies and 
wavelets by EEG leads. a, b, c) – muscle synergies 1, 2, and 3.
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the initial set of muscles and the features of the algorithm 
used to extract components.
 The temporal structure of locomotion represented by 
the activation profi les of the muscles involved in the step-
ping cycle typically demonstrates fundamental activation 
profi les determined by the biomechanical structure of lo-
comotion. Such profi les generally have one or two marked 
peaks occurring during those periods of the stepping cycle 
in which greater muscle effort is required, such as when 
movements change direction [DeMarchis et al., 2015]. In 
this regard, our results are consistent with published data. 
We note that the peaks of MS activity occurred during peri-
ods in which lower limb movements change direction, i.e., 
in the extreme positions of the metatarsal anthropometric 
points with maximum separation of the feet. Predominant 
activation of muscles that form the stereotypical locomotor 
pattern was also noted. For example, the BF and VL of the 
right lower limb had high weighting coeffi cients in the fi rst 
MS, and their activation was comparable in time to hip fl ex-
ion occurring in the fi rst and second quarter of the stepping 
cycle. The activation coeffi cients of the fi rst synergy in this 
same time period indicated an increase in the activity of the 
synergy (a peak of activation was noted).
 Assessment of the contributions of skeletal muscle ac-
tivity to a synergy generally reveals some differences on ex-
ecution of similar motor tasks in different conditions, such as 
walking on a treadmill and on the fl oor, walking in non-stan-
dard conditions, while immersed in water, etc. [Santuz et al., 

(Fig. 6, b). In the case of the third muscle synergy, high 
synchrony of EEG signals was noted in the frequency range 
0.94–2.00 Hz in the right central and midtemporal leads – 
greater than 0.92. High weighting coeffi cients, ranging from 
0.72 to 0.84, were also recorded in the frontal lead on the 
right side, the central, parietal, and occipital leads, and the 
right midtemporal lead (Fig. 6, c).
 Discussion. Establishing muscle synergies using data 
factorization methods is common practice, and three to fi ve 
are generally identifi ed for locomotion. This number is ex-
tracted from almost any set of initial EMG recordings, bi-
lateral or unilateral [Ivanenko et al., 2006; Hug et al., 2010; 
Santuz et al., 2018]. The time profi le of such formations 
generally has a clear structure which describes most of the 
variance in EMG data, and has low variability, even when 
considered on a between-individual basis. The weighting 
coeffi cients and vectors of muscle synergies (the compo-
sition and ratio of muscle activations within each synergy) 
turn out to be more variable and depend to a greater extent 
on the data factorization method used. Our study established 
fi ve muscle modules using factor analysis. The principal 
component method was found to be less effective in anal-
ysis of MS. The activation coeffi cients of the fi rst muscle 
synergy had high reproducibility and clearly distinguishable 
activation peaks in the second and fourth quarters of the 
stepping cycle. In most cases, the number of muscles with 
high weighting coeffi cients within the modules identifi ed 
here was no more than two, which is probably explained by 

Fig. 6. Weighting coeffi cients of the second component obtained by decomposition of the matrix including activation coeffi cients of muscle synergies and 
wavelets by EEG leads. a, b, c) – muscle synergies 1, 2, and 3.
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loading and the associated features of receptor signaling. 
Thus, there is virtually no afferentation from the supporting 
zones of the foot in horizontal suspension. Perception of 
body movement in space based on signals from the recep-
tors of the vestibular apparatus and the visual and auditory 
analyzers is absent or distorted. This creates a specifi c set 
of afferent signals from different receptors which is differ-
ent from the set occurring in natural walking in an upright 
position. Thus, not only the motor part of the cortex, but 
also the associative, visual, and sensorimotor areas, may be 
involved in the processing of such information.
 Coherence analysis is a widely used method for as-
sessing cortico-muscular interaction and refl ects the 
phenomenon of synchronicity in the frequency domain 
[Kulaichev, 2009]. Our work did not use coherence anal-
ysis as such. We addressed the relationship between wave-
let-transformed EEG signals (wavelets) and parameters of 
the temporal structure (activation coeffi cients) of muscle 
synergies. In essence, this is a comparison and search for 
synchronicity in the time domain rather than the frequen-
cy domain, even taking account of the fact that the initial 
signals were EEG time series presented in different fre-
quency ranges. Results assessed in the coherence paradigm 
may therefore differ from those obtained by other methods 
(or a combination of methods), as they represent different 
processes implemented in the frequency and time domains. 
In addition, some hold the view that analysis of signal co-
herence does not support direct identifi cation of the central 
control signal to the muscles or, conversely, the sensorim-
otor signal from the periphery to the brain, but is only a 
measure of synchrony [Kurganskaya et al., 2020; Yang et 
al., 2018]. Studies using spectral analysis of EMG signals 
demonstrated high levels of between-muscle coherence in 
the low-frequency ranges (0–5 Hz, 5–20 Hz) during postur-
al tasks [Danna-Dos-Santos et al., 2015]. The fi nding of sig-
nifi cant between-muscle coherence in the α, β, and γ bands 
during walking led to the conclusion that coordination of 
the upper and lower limbs shares common cortical mecha-
nisms [Weersink et al., 2021]. The high level of coherence 
of EMG signals detected in the same main cortical activity 
frequency ranges during locomotion and on execution of 
postural tasks can be seen as evidence of the central control 
of muscle activity via synchronization of cortical signals 
and the activity of spinal motoneurons [Mima et al., 1999]. 
Coherence analysis results identifi ed slow cortical cyclic ac-
tivity, similar to that generated by spinal generators during 
locomotion [Hall et al., 2014].
 Our studies demonstrated synchronization of the activ-
ity of several cortical areas and identifi ed muscle synergies, 
mainly in three frequency ranges: 0.30–1.01, 0.94–2.00, 
and 1.80–4.00 Hz. As noted earlier, the components isolat-
ed by factorization methods refl ect independently occurring 
processes, so our data showing spatiotemporal structuring 
of cortical activity may indicate cortical control of muscle 
synergies in two ways. The fi rst involves the control of two 

2018; Mileti et al., 2020; Mehryar et al., 2020; Yokoyama et 
al., 2021; Saito et al., 2021]. These differences are partly due 
to the use of different methods for extracting synergies, as 
well as the particular set of source EMG recordings used in 
the analysis. Pre-processing of the electromyogram is also of 
great importance, as different fi ltration parameters affect the 
quality of data reconstruction. In addition to computational 
aspects, the different compositions of muscle synergies, as 
determined by the weighting coeffi cients in the structure of 
the extracted components, may be due to the use of different 
tactics for constructing movements in the central nervous 
system [Gelfand et al., 1962].
 The concept of synergy suggests that the number of 
control modules should, on a priori grounds, be smaller than 
the number of controlled modules, and their total number 
may refl ect the complexity of the control system. The ap-
proach based on isolating components using data factoriza-
tion methods to study cortical activity is not new. Attempts 
have been made to assess synchronization of neuron activity 
in remote parts of the cerebral cortex [Overduin et al., 2015; 
Yoshimura et al., 2017]. Independent component analysis 
was used to separate EEG signals into independent sources 
demonstrating synchronization of activity in different areas 
of the brain during walking on level and inclined surfaces 
[Bradford et al., 2016]. It should be noted that, regardless 
of the number of leads used, decomposition of EEG signals 
into components identifi es no more than three components, 
and this is true for both discrete and cyclic movements.
 We identifi ed two components, the fi rst of which pre-
dominantly included activity in the frontal, central, and 
parietal areas of the cortex on the right side, the second 
being characterized by synchronization of cortical activity 
in leads on the left side, where the largest weighting coeffi -
cients were obtained. One of the properties of the principal 
components method is orthogonality, i.e., independence of 
the principal components, such that the component struc-
ture may point to different and independent processes. In 
our case, synchronization of activity in different areas of the 
cortex on the left (component 1) and right (component 2) 
sides is probably associated with alternating activation of 
the fl exor and extensor muscles of the contralateral limb 
during locomotion. This can easily be observed on the 
EMG by analyzing the burst activity of, for example, the 
biceps femoris muscle of the right leg and the rectus femoris 
muscle of the left leg. Similar results were described using 
analysis of coherence between the motor cortex and muscle 
groups of the contralateral limb [Zandvoort et al., 2019]. 
A rhythmic increase in EEG spectral power in the left and 
right hemispheres associated with alternating activation of 
locomotor muscles has also been demonstrated [Roeder et 
al., 2018; Bourguignon et al., 2019].
 We captured data indicating synchronization of ac-
tivity in various areas of the cortex on both sides. These 
patterns are probably due to the specifi c characteristics of 
performing locomotion in conditions of gravitational un-
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features of receptor signaling. The components identifi ed, 
which point to synchronization of different areas of the cor-
tex on the right and left sides, may refl ect control processes 
associated with driving alternating activation of the fl exor 
and extensor muscles of the contralateral limb in the process 
of locomotion.
 Data on the spatiotemporal structuring of cortical 
activity indicate separate control of muscle synergies via 
synchronization of cortical commands and the temporal 
organization of muscle synergies in frequency ranges from 
0.30 Hz to 8.00 Hz. Such patterns may refl ect the operation 
of a rhythm-generating mechanism involved in controlling 
cyclic activity.
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