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This review addresses the problem of moderate hypoxic exposure as a natural, non-drug stimulus which 
activates the mechanisms forming hypoxic tolerance in the brain. The history and current level of research 
into this phenomenon are highlighted, and the conditions in which hypoxic conditioning has neuropro-
tective effi cacy as preventive (preconditioning) and corrective (postconditioning) effects are considered. 
Physiological and molecular-cellular mechanisms of pre- and post-conditioning are discussed. Particular 
attention is paid to our own research on cerebral conditioning using mild hypobaric hypoxia.
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Abbreviations: PreC – preconditioning; PostC – postconditioning; 
AMPK – 5’-AMP-activated protein kinase; ROS – reactive ox-
ygen species; HIF-1α – hypoxia-induced factor 1α; RI – remote 
ischemia; PHB – prohibitin; NMDA – N-methyl-D-aspartate; 
NMDAR – N-methyl-D-aspartate receptors; AMPA – α-ami-
no-3-hydroxy-5-methyl-4-isoxazolepropionic acid; DHPG – 
(S)-3,5-dihydroxy-phenylglycine; OGD – oxygen-glucose depri-
vation; BDNF – brain-derived trophic factor; CREB – cAMP-re-
sponsive element binding protein; BBB – blood–brain barrier; 
MHH – moderate hypobaric hypoxia; SHH – severe hypobaric 
hypoxia; PTSD – post-traumatic stress disorder; HPAS – hypotha-
lamic-pituitary-adrenal system.

 Introduction. Hypoxia is a potentially pathogenic 
state of the body leading to cardiovascular and neurologi-
cal disorders which consistently occupy fi rst place in prev-
alence among the factors causing disability and mortality. 
Regardless of the reasons for the occurrence of hypoxic 
conditions in the body, cerebral neurons have extreme vul-
nerability to their harmful effects. Major tasks in clinical 
physiology include identifi cation of the mechanisms of 
damage to the central nervous system occurring during or 
after hypoxia/ischemia and the search for new ways to in-
crease the hypoxic tolerance of the brain.

 The conventional approach to countering hypoxic 
brain damage consists of developing and employing medi-
cations (nootropics, neuroprotectors, antihypoxants, neuro-
trophins, etc.). However, it is important to recognize that the 
molecular mechanisms of action of many existing drugs are 
still insuffi ciently understood, the effi cacy of their actions 
is not always high, and side effects can initiate additional 
pathological processes.
 Another approach is provided by use of non-drug stim-
ulation of endogenous, evolutionarily acquired, and geneti-
cally fi xed intracellular defense mechanisms. Since the end 
of the last century, the effi cacy of such stimulation and its 
molecular mechanisms have been intensively studied in 
many scientifi c centers. Most studies address the task of de-
ciphering the phenomenon of moderate sublethal hypoxic or 
ischemic effects as a “natural” trigger of the mechanisms of 
cerebral tolerance to the pathogenic consequences of severe 
episodes of ischemia. The experimental studies and reviews 
cited here address the mechanisms and optimal parameters 
of adaptive hypoxic or ischemic stimuli (nature, dose, time 
window, multiplicity, etc.). Variants of both their preven-
tive application (preconditioning) and corrective (postcon-
ditioning) are considered, the latter preventing the further 
development of already ongoing pathogenetic processes.
 Cerebral Tolerance to Hypoxia/Ischemia. At the 
beginning of the century, the work of Ulrich Dirnagl and 
colleagues formulated an important hypothesis – that vir-
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 Hypoxic or ischemic PreC increases the resistance of 
nerve cells not only to subsequent severe hypoxia, but also 
to harmful effects of different nature, particularly oxidative 
stress [72], the actions of excitotoxins [47], and pathogen-
ic psychoemotional stress [16]. Furthermore, our studies 
showed that single sublethal episodes of anoxia [8] and 
repeated moderate hypobaric hypoxia [3] have geroprotec-
tive effects, stimulating weakened cognitive functions in 
elderly monkeys.
 These and many other data allow us to regard ischemic 
or hypoxic PreC as a universal stimulus for adapting ner-
vous tissue to adverse factors of various types. In addition, 
the fact that cerebral tolerance can be induced, as noted 
above, by factors other than hypoxic PreC, forms views re-
garding the molecular basis of this so-called cross-tolerance 
of nervous tissue [102].
 On the other hand, a number of in vivo and in vitro 
studies have shown that a variety of (not only hypoxic) ef-
fects producing metabolic stress can have a neuroprotective 
modality. Cerebral tolerance to severe ischemia and other 
physical and chemical pathogenic factors can be initiated, in 
particular, by lipopolysaccharides [114], hyperoxia [117], hy-
pothermia [122], hyperthermia [37], epidural electrical stim-
ulation [62], inhalation anesthetics [68], application of weak 
doses of kainic acid, glutamate, or NMDA [109, 73], etc.
 Neuroprotective Effects of Hypoxic or Ischemic Pre-
conditioning. Hypoxic PreC can induce the neuroprotective 
effect by triggering a number of stepwise or parallel protec-
tive mechanisms in different tissues and cell types. These 
include increased vascular regulation, suppression of glu-
tamate-mediated excitotoxicity, activation of anti-apoptotic 
and antioxidant signaling pathways, stimulation of cell pro-
liferation, and many others [48].
 Studies reported in the 1990s by Japanese authors 
demonstrated the fi rst use of a combination of transient 
(2 min) and longer-lasting harmful (5 min) ischemia in 
Mongolian gerbils. The latter caused delayed neuronal 
death in hippocampal fi eld CA1, this being the most vulner-
able area of the brain. However, when preceded by a brief 
PreC ischemia, a distinct protective effect was observed – 
the number of surviving neurons increased signifi cantly. 
A single episode of ischemic PreC only partially reduced 
structural damage to cells in the hippocampus, neocortex, 
and striatum caused by severe ischemia, while two episodes 
of PreC provided neurons with a much higher level of pro-
tection [67, 81]. Ischemic PreC effects were then found in 
a number of experimental models in vivo and in vitro and 
in all vulnerable areas of the brain. For example, ischemia 
for 3 min reduced the extent of infarct damage due to subse-
quent 60-min focal ischemia of the rat cerebral cortex [88]; 
6-min preventive ischemia signifi cantly reduced the num-
ber of mouse forebrain cells dying after 20 min of severe 
ischemia [119]. Our experiments on cats in vivo [21, 31] 
and rat piriform cortex slices in vitro [22] showed that a 
rapid neuroprotective effect of anoxic PreC required a cer-

tually any potentially harmful, stressful action on the body, 
if it does not reach the threshold of damage in its intensity, 
can activate endogenous defense mechanisms in the organ 
and individual tissues and reduce the pathogenicity of sub-
sequent, stronger harmful effects [46]. This hypothesis was 
soon supplemented by the assertion that adaptation to such 
“threatening attacks” is apparent not only at the organ or tis-
sue levels, but also at the cellular, subcellular, and possibly 
gene levels [54].
 The concept of the potential tolerance of excitable tis-
sues to harmful effects, the mechanisms of which can be 
“switched on” by stressful stimuli of moderate strength, was 
formed on the basis of pioneering studies in the late 20th 
century, which demonstrated the phenomenon of ischemic 
tolerance initiated by an ischemic stimulus, fi rst in relation 
to the heart [82] and, soon after, the brain [50, 65, 67, 81]. 
Our in vivo and in vitro studies revealed the phenomenon of 
cerebral tolerance to harmful long-term anoxia induced by a 
preventive short-term anoxic stimulus [20].
 The ability to express hypoxic or ischemic tolerance as 
a result of moderate (sublethal) effects of the same nature 
has now been found in various tissues in a variety of ver-
tebrate species, including humans. This ability is based on 
a set of adaptive “antihypoxic” genes formed by evolution, 
which in some species have constitutive activity associat-
ed with seasonality or habitat change [86], while in others 
they are expressed under the stressful conditions of meta-
bolic disorders. It should be emphasized that the impacts of 
“awakening” hypoxic tolerance of the brain are particularly 
effective when presented in the form of more or less long 
series, alternating with periods of normoxia or hyperoxia. 
Many variants of this kind of “intermittent” stimulation of 
endogenous neuroprotective mechanisms have been widely 
developed in modern medicine within the framework of the 
technology of intermittent hypoxia training [97].
 Most experimental models (mainly in rodents) initial-
ly generate tolerance using anticipatory stimuli. This led 
to introduction of the term preconditioning (PreC). Highly 
detailed in vivo and ex vivo experimental models have 
been developed, demonstrating the induction of hypoxic/
ischemic tolerance of the brain as a whole or its individual 
parts by short-term global or focal ischemia, anoxia, nor-
mo- and hypobaric hypoxia, and intermittent hypoxia/reox-
ygenation. As the clinical use of PreC is not appropriate in 
cases of sudden (“unplanned”) ischemic attack or brain in-
jury, experimental protocols have been developed in which 
hypoxic or ischemic tolerance stimuli are used after a se-
vere ischemic incident in order to reduce its pathological 
consequences. These models use the term postconditioning 
(PostC). In clinical practice, hypoxic/ischemic tolerance of 
the heart or brain can also be achieved either in a planned 
manner as PreC, for example, before surgical intervention 
accompanied by temporary ischemia, or as PostC on the 
background of the developing adverse consequences of 
such an intervention [45].
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individual neuronal populations. These systems activate 
subsequent links in the chain, which include early (trigger-
ing) and late stages of the formation of cerebral tolerance to 
more severe hypoxic/ischemic episodes which might occur.
 Hypoxic sensors and trigger processes of hypoxic 
PreC. Mitochondria. The primary sensor of any form of hy-
poxia at the subcellular level is mitochondria [41]. During 
the fi rst tens of seconds of systemic hypoxia or ischemia, 
the limited oxygen supply to the mitochondrial oxidative 
phosphorylation system leads to a reduction in ATP produc-
tion, which reduces the energy supplies to a number of en-
dergonic processes which control cellular homeostasis and 
activate the corresponding compensatory reactions.
 When the balance is shifted from ATP to AMP, the 
sensitivity of 5’-adenosine monophosphate-activated pro-
tein kinase (AMPK) to phosphorylation increases, AMPK 
being the main metabolic sensor within cells. In particular, 
activated AMPK stimulates phosphofructokinase, increas-
ing glycolytic ATP production; it activates the transcription 
factor FOXO3, which can stimulate the expression of anti-
oxidant genes, and it indirectly activates energy-producing 
autophagy. These and many other effects of AMPK suggest 
that this kinase is an important trigger in PreC-mediated 
neuroprotection [59].
 A moderate increase in the production of reactive ox-
ygen species (ROS) is seen as a signifi cant element of the 
mitochondrial response to hypoxia [90]. This process has 
several implications. In vitro experiments have established 
that ATP-dependent potassium channels in the inner mi-
tochondrial membrane are activated in PreC on the back-
ground of moderate accumulation of ROS and that the use 
of appropriate blockers suppresses the neuroprotective effi -
cacy of PreC [52]. Opening of these channels presumably 
accelerates electron transport in the respiratory chain, thus 
increasing ATP production [74, 76]. In addition, increases 
in ROS levels have been shown to suppress prolyl hydrox-
ylase activity, which stabilizes hypoxia-induced factor 1-al-
pha (HIF-1α) [42] and ensures the expression of neuropro-
tective products, particularly erythropoietin [75].
 Relatively recent studies have identifi ed and investigat-
ed NO-dependent mechanisms initiating cerebral hypoxic 
tolerance. Previous studies have shown that NO produced 
by inducible NO synthase, despite its known detrimental ef-
fect in the late stages of ischemic brain damage, can, under 
moderate hypoxic exposure, promote the development of 
tolerance to ischemia by protecting mitochondrial functions, 
though the mechanism of this effect remained unknown 
[40]. Studies using an in vivo model with PreC by 2 min of 
cerebral ischemia in the Mongolian gerbil showed that toler-
ance to subsequent 10-min ischemia develops in conditions 
of the expression of endothelial NO synthase mediated by 
the PI3K/Akt signaling pathway [55]. Later research found 
that prohibitin (PHB), a protein of the chaperone family, has 
a neuroprotective role; this substance is located on the in-
ner mitochondrial membrane and exhibits an activity criti-

tain duration of exposure (1.5–2 min) and a particular time 
between the PreC stimulus and the severe harmful anoxia 
(60–90 min). Neuroprotection did not develop when these 
time periods were reduced.
 There has been a recent increase in interest in a con-
venient and effective model of PreC using in vivo remote 
ischemia (RI), for example, by transient periodic applica-
tion of a tourniquet to a patient’s arm [103]. Many clinical 
variants of RI have been developed, with different durations 
and frequencies of ischemia of remote organs. There is also 
a distinction between immediate and delayed precondition-
ing RI, i.e., 1–2 hours or 1–2 days before cerebral ischemia 
respectively. Finally, RI can be created in the form of post-
conditioning (immediate or delayed) or even during severe 
cerebral ischemia, in this case as periconditioning [123].
 The amount of evidence for the neuroprotective poten-
tial of moderate doses of hypoxia (ischemia) is constantly 
growing and leads to the conclusion that at least two condi-
tions are required for the formation of hypoxic or ischemic 
cerebral tolerance using hypoxic or ischemic PreC: an op-
timal intensity of the PreC stimulus and a particular time 
window within which it is effective. It was initially believed 
that the PreC stimulus in model experiments should be suf-
fi ciently strong, reaching a “sublethal” intensity. However, 
this approach seems risky in medicine and translational 
studies were aimed at the possibility of achieving the op-
timal intensity of hypoxic PreC not with a single “subleth-
al” dose of hypoxia, but with a series of moderate hypoxic 
episodes. Use of this method of intermittent – or interval 
– hypoxia, as already noted above, revealed additional con-
ditions for the development of the neuroprotective effi cacy 
of PreC, namely, the duration and intensity of each hypoxic 
PreC session, their number, the frequency of repetition, etc.
 This led to the development of effective approaches 
to stimulating hypoxic tolerance in humans by repeated 
moderate hypoxia. One protocol consisted of normobar-
ic interval hypoxia, based on the studies of Kolchinskaya 
et al., as well as the Russian classic studies reported by 
Chizhov and Strelkov [33], who developed the world’s fi rst 
hypoxicators for breathing with hypoxic gas mixtures (the 
Mountain Air system) or by rebreathing (Strelkov’s hypox-
icator, Vershina). In the early 2000s, guidelines for doctors 
were written and a series of hypoxicators for medical use 
was developed [15, 32].
 Sequence of Phenomena in the Formation of Brain 
Tolerance due to Ischemic or Hypoxic Preconditioning. 
Despite more than 20 years of research on the mechanisms 
of formation of hypoxic/ischemic tolerance of the brain us-
ing hypoxic or ischemic conditioning, there is still a lack 
of clarity regarding its earliest triggering mechanisms. The 
subcellular and molecular systems that directly respond to 
a decrease in oxygen tension, i.e., “hypoxic sensors,” must 
clearly be in fi rst place in the chain of events initiated by 
hypoxic conditioning and leading to the development of 
hypoxic (ischemic) tolerance of the brain as a whole or its 
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crease in the calcium concentration directly below it occur 
within seconds of the onset of hypoxic incubation. An in-
crease in the EPSP frequency and depletion of presynaptic 
glutamate pools are also seen. Interestingly, these events 
develop long before the drop in total membrane potential 
on neurons. The authors took the view that the earliest re-
sponse of cortical neurons to acute hypoxia consists of the 
opening of calcium channels of ionotropic glutamate recep-
tors [91], which is likely to trigger further rapid intracellular 
events in the early phase of PreC.
 Ionotropic glutamate receptors, primarily N-methyl-
D-aspartate (NMDA)-excited receptors, have traditionally 
received extensive attention in studies of both pro-adaptive 
and pathogenic glutamate-mediated mechanisms of neuro-
nal hypoxic reactions. In vitro experiments with application 
of different doses of glutamate or NMDA have shown that 
low agonist concentrations stimulate predominantly those 
types of NMDA receptors (NMDAR) whose tetraheteromer-
ic structure includes one or two NR2A subunits in place of 
NR2B [71, 77]. The C-terminal region of the NR2A subunit 
supports activation of the key signaling pathway PI3K/Akt, 
which mobilizes a number of intracellular survival mecha-
nisms through CREB-mediated gene expression. High glu-
tamate doses produce arousal of NMDA receptors including 
two NR2B subunits, thus triggering classical excitotoxicity 
mechanisms, initiating a chain of events leading to neuron 
death [77, 105, 118]. Our previous studies using rat cerebral 
cortex slices showed that application of the agonists of dif-
ferent glutamate receptors – L-glutamate, NMDA, α-ami-
no-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), 
and (S)-3,5-dihydroxyphenyl glycine (DHPG) – causes sig-
nifi cant increases in intracellular Ca2+, though the use of 
PreC in these animals, with three episodes of moderate hy-
pobaric hypoxia, signifi cantly reduced the calcium response 
to the same doses of agonists and completely eliminated the 
glutamate-dependent calcium overload caused by applica-
tion of anoxia to the slices [100]. Recent studies in hippo-
campal slices showed that excitotoxic doses of AMPAR and 
NMDAR agonists mimicking calcium overload in an oxy-
gen-glucose deprivation (OGD) model lost their pathogenic 
effect when NMDAR or metabotropic glutamate receptors 
mGluRI were preemptively stimulated by low concentra-
tions of their agonists [109]. Moreover, application of these 
previously known in vitro chemical PreC methods to neu-
rons has been demonstrated to suppress AMPA-mediated 
excitotoxicity by various mechanisms. While stimulation 
of NMDAR causes internalization of AMPAR, activation of 
mGluRI suppresses glutamate transmission via activation of 
the endocannabinoid system [53].
 Studies of the involvement of NMDAR in neuropro-
tective processes found that moderate activation of these re-
ceptors leads to a rapid release of brain-derived neurotrophic 
factor (BDNF), activation of its receptor TrkB, and triggering 
of the corresponding signaling [60]. Both NMDAR and TrkB 
receptors activate expression of the nuclear transcription fac-

cal for maintaining oxidative phosphorylation in conditions 
of cellular stress [35]. The recent hypothesis that there is a 
mechanical link between NO and PHB in neuroprotection 
has received support. Experiments using hypoxic PreC in 
neuron cultures showed that moderate NO accumulation ac-
tivates PHB via S-nitrosylation, which creates a neuropro-
tective effect against ischemic brain damage [89].
 The hypoxic signal is perceived not only by neuro-
nal mitochondria, but also by mitochondria in astrocytes. 
There are more astrocytes than neurons in the brain, and 
they are regarded as specialized sensors of hypoxia. Even 
in conditions of a physiological decrease in pO2, astrocytes 
release vasoactive substances which control local cerebral 
microcirculation [38]. In vivo and in vitro experiments have 
convincingly demonstrated the mechanism of the rapid re-
sponse of astroglia to the slightest decreases in pO2 in the 
cerebral parenchyma [79]. This mechanism is triggered 
by depolarization of astrocyte mitochondria and increased 
production of free radicals, which leads to the activation of 
phospholipase C and IP3-mediated release of Ca2+ from in-
tracellular depots. One of the many consequences of moder-
ate accumulation of intracellular Ca2+ is activation of vesic-
ular release of ATP into the extracellular medium and blood. 
In this situation, the systemic reaction is apparent as stimu-
lation of external respiration. It has been suggested that this 
independent mechanism of increased external respiration 
is more sensitive to hypoxia than the mechanisms of ac-
tivation of chemoreceptor cells in the carotid bodies [36]. 
Recent work found that moderate ATP release from cerebral 
neurons in ischemic PreC in vitro was accompanied by ac-
tivation of astrocytic, but not microglial, purinergic P2X7 
receptors. The molecular mechanism of their selective sen-
sitization to low extracellular ATP levels in conditions of 
PreC was identifi ed [57]. Activation of these receptors initi-
ates signaling pathways leading to a stable up-regulation of 
HIF-1, accompanied by known gene-dependent proadaptive 
processes [58].
 Prolyl hydroxylase. Simultaneously with the triggering 
of mitochondrial reactions during hypoxia, cytosolic process 
are also triggered; here, enzymes of the prolyl hydroxylase 
family can be regarded as the primary sensor, as their activ-
ity decreases with decreases in pO2. In normoxia, the regu-
latory α subunit of HIF-1α undergoes constant degradation 
via prolyl hydroxylation and a subsequent cascade of bio-
chemical reactions [101]. Prolyl hydroxylase is inactivated 
in conditions of oxygen defi ciency, leading to stabilization 
of HIF-1α, its heterodimerization with the HIF-1β subunit, 
and activation of HIF-1 transcription factor [56]. This mech-
anism is part of the early stage of the hypoxic response, but 
its powerful neuroprotective effect is apparent at the later 
stages of the formation of hypoxic tolerance (see below).
 Glutamatergic transmission. Experiments on living 
slices of the mouse somatosensory cortex using the patch 
clamp technique demonstrated convincingly that local de-
polarization of the postsynaptic membrane and a sharp in-
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mon in type [54]. PreC stimuli naturally require different 
sensors at the tissue, cellular, and subcellular levels, as well 
as specifi c trigger elements for the formation of tolerance. 
Below are some examples.
 Lipopolysaccharides, by binding to plasma membrane 
TLR receptors, have been shown to activate signaling path-
ways for the expression of anti-infl ammatory genes, thus re-
ducing the proinfl ammatory effect of severe ischemia [114].
 Hyperthermia initiates the production of heat shock 
stress protein HSP70 in the bodies and synaptic endings of 
cerebral neurons [37]. In conditions of ischemia/reperfusion, 
these chaperones correct the denaturation of many signaling 
proteins and block the production and spread of proapoptotic 
factors, and they also stimulate the transcription of anti-in-
fl ammatory genes [64].
 The triggering target of the respiratory anesthetic iso-
fl urane is likely to be ATP-dependent mitochondrial potas-
sium channels [68], whose opening prevents ischemic cal-
cium overload of mitochondria and the subsequent chain of 
known destructive consequences leading to apoptosis.
 The anti-ischemic PreC effect is exerted by stimulation 
of NMDAR with low doses of agonists [73, 109]. A pro-
cognitive effect of stimulation of α2A adrenoreceptors has 
also been demonstrated in rats surviving severe hypobaric 
hypoxia [63].
 The neuroprotective potential of opioid receptor ago-
nists, which are widespread in the neocortex and hippocam-
pus, has been demonstrated in in vivo and in vitro models of 
ischemia. In particular, morphine has been shown to activate 
PKC-mediated anti-apoptotic signaling [128]. Stimulation 
of δ-opioid receptors by enkephalin leads to activation of 
AMPK, a neuroprotective signaling pathway that enhances 
autophagy [69].
 An important effect of neuroprotective PreC stim-
ulation is that of countering the increase in BBB perme-
ability occurring in severe forms of hypoxia or ischemia/
reperfusion [84]. Among the effects able to reduce BBB 
permeability are certain modes of hypercapnic ventilation 
(permissive hypercapnia) used in medicine for traumatic 
brain injury [121]. Neurosurgical statistics on hemorrhagic 
stroke show that patients with obstructive sleep apnea have 
signifi cantly greater resistance to the adverse consequences 
of subarachnoid hemorrhage than patients without sleep ap-
nea. This phenomenon is explained by the neuroprotective 
PreC action of hypercapnia and acidosis [61]. Russian in 
vitro and in vivo studies have demonstrated the benefi cial 
PreC effect of permissive hypercapnia (especially in com-
bination with intermittent normobaric hypoxia) on the sys-
tems controlling BBB functions, acting by increasing the 
expression of A1-adenosine receptors and mitochondrial K+ 
(ATP) channels in astrocytes [110, 111].
 Despite the different natures of these non-hypoxic 
PreC stimuli, the mechanisms by which they form delayed 
persistent hypoxic brain tolerance are, in all likelihood, sim-
ilar; they include a limited number of intracellular survival 

tor kappaB (NF-κB) in neurons, which, with further develop-
ment of hypoxic tolerance mechanisms, protects hippocam-
pal neurons from apoptosis. NMDAR-mediated increases in 
intracellular calcium levels activate the transcription factor 
cAMP-responsive element binding protein (CREB), glyco-
gen synthase kinase 3β (GSK3β), phosphatidylinositol-3-ki-
nase (PI3K), and protein kinase B (Akt). Interestingly, these 
kinases, which are involved in neuroprotective signaling 
pathways for the further development of neuronal hypoxic 
tolerance, can only be stimulated by low doses of NMDA 
[76] or, probably, by moderate hypoxic stimulation in PreC. 
We ran an immunocytochemical analysis of brain sections 
from rats surviving 1–3 sessions of hypobaric PreC. The re-
sults showed that each series of hypobaric PreC increased the 
level of Akt phosphorylation, while severe hypobaric hypox-
ia did not produce any such effect [2].
 Along with neuronal mechanisms, the role of the cap-
illary/glial/neuronal system in the induction of cerebral hy-
poxic tolerance is discussed. A few studies have noted the 
possibility that the cerebral endothelium is a site of primary 
perception of the conditioning hypoxic stimulus. These con-
sider possible mechanisms of protection of the blood–brain 
barrier (BBB), limiting the intake of potential neurotoxic 
compounds from the blood and exacerbating ischemic brain 
damage. Evidence is also provided on the release of signal-
ing factors by the endothelium, these compounds mediating 
neuroprotective functions [85, 120].
 Since the beginning of the current century, there has been 
discussion of the idea that the process forming the neuropro-
tective effects of both hypoxic and ischemic PreC includes 
two successive stages (phases): an early stage with induction 
of short-term tolerance and a late stage with expression of sta-
ble tolerance [for reviews see 23, 66, 84, 104, 106, 107]. The 
early phase includes the rapid mechanisms described above, 
which are triggered by sensory and trigger systems within 
tens of seconds and exert neuroprotective effects within tens 
of minutes or several hours after PreC treatments. These in-
clude mechanisms activating protein kinases and proteases, 
along with post-translational modifi cations of ion channel 
proteins, receptors, and redox-sensitive proteins. This phase 
is largely due to modifi cation of neuronal intracellular sig-
nal transduction processes [2, 16, 24], activation of succi-
nate-mediated signaling pathways [78], and changes in the 
activity of pro- and antioxidant systems [49, 87, 90]. The late 
phase is characterized by the production of de novo synthe-
sized proteins which activate many protective functions, both 
in neurons themselves and in the surrounding brain tissues, as 
well as in the whole organism. See below for further detail.
 As noted above, many biochemical, physical, pharma-
cological, and other non-hypoxic effects of PreC actions 
increasing the brain’s tolerance to hypoxia have now been 
identifi ed. Although this topic is not within the remit of this 
review, brief coverage seems appropriate if we suppose that 
the fi nal components of the neuroprotective mechanisms in-
duced by moderate harmful actions of any nature and com-

1246



Hypoxic Conditioning

is on the perception and early phase of the cell’s response 
to a conditioning hypoxic stimulus. The processes of the 
subsequent genome-dependent formation of tolerance are 
refl ected more briefl y (Fig. 1).

signaling systems. The main processes of formation of hy-
poxic (ischemic) tolerance of the brain initiated by hypoxic 
conditioning as described above can be graphically summa-
rized with some simplifi cation (Fig. 1). Here, the emphasis 

Fig. 1. Perception of conditioning stimuli consisting of moderate hypoxia by brain cells. The scheme shows the main hypoxia sensors, the molecular triggers 
inducing the mechanisms of the early phase of brain tolerance, and some signaling pathways for the expression of the genome-dependent late phase of the 
formation of cerebral hypoxic tolerance. Lines with arrows show activatory connections and lines with circles show inhibitory connections. MX – mitochon-
dria; AMP/ATP – adenosine phosphates ratio; ROS – reactive oxygen species; HPH – HIF prolyl hydroxylase; PHB – prohibitin; A1R – adrenoreceptor 1; 
mKATP – mitochondrial ATP-potassium channels; AMPK – 5’-adenosine monophosphate-activated protein kinase; FOXO3 – transcription factor Forkhead 
box O3; NO – nitric oxide; Glu – glutamate; VETC – speed of the mitochondrial electron transport chain; GLYC – glycolysis; APY – autophagy; HIF1α – 
transcription factor 1-α induced by hypoxia; mGluRI – group I metabotropic Glu receptor; AMPAR – AMPA glutamate receptor; NMDAR(2B) – NMDA 
glutamate receptor with a predominance of the NR2B subunit; P2X7R–P2X(7) – ATP purinoreceptor; IP3R – inositol-3-phosphate receptor; BDNF – 
brain-derived neurotrophic factor; TRKB – tyrosine kinase receptor B of trophic factors (BDNF); ATPex – extracellular ATP; NFkB – nuclear transcription 
factor kappa B; CaMKII,IV – Ca2+/calmodulin dependent protein kinases II and IV; eNOS – endothelial NO synthase; PI3K/Akt – signaling pathway medi-
ated by phosphoinositide-3-kinase and protein kinase B; pCREB – phosphorylated cAMP response element binding protein, a transcription factor.
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of HIF-1 induction by the inhibitor topotecan in conditions 
of severe hypoxia promotes better survival of hippocampal 
neurons [116]. A probable mechanism of this effect, associ-
ated with HIF-1-induced suppression of the activity of the 
transcription factor Nrf-2, which regulates the expression 
of the antioxidant glutathione, has been described [25]. In 
addition, persistent induction of HIF-1α has been shown to 
occur in models of pathogenic psychoemotional stress and 
to accompany the formation of depressive-like states [1]. 
Thus, the issue of the dual role of this factor in conditions of 
hypoxic or ischemic PreC requires balanced study.
 Discussion the PreC-mediated mechanisms of induc-
tion and expression of tolerance of brain neurons to harmful 
effects requires their probable differences in conditions of 
application of hypoxic or ischemic PreC stimuli to be tak-
en into account. These mechanisms must clearly have their 
own specifi c features. In the case of ischemia, in addition 
to O2 defi ciency, there is a complex ischemia-related fac-
tor that includes not only aglycemia, but also restriction of 
transport of metabolites within tissues and humoral signal-
ing factors.
 Experimental Hypobaric Hypoxia as an Action Pro-
ducing PreC. In seeking the optimal PreC regimen that pro-
vides a fully-fl edged neuroprotective effect, a convenient hy-
pobaric hypoxia model was selected in our laboratory. This is 
a physiologically quite appropriate model, easily controlled, 
dosed, suitable for studying both harmful and protective pre-
conditioning effects, without surgical intervention and with-
out toxic components.
 Presentation of hypobaric hypoxia as an adaptogenic 
factor that increases the resistance of pilots’ bodies to in-
juries of various etiologies has been used in Russia since 
the 1930s by Vladimirov and by Sirotinin et al. [7, 28]. 
Kreps et al. [11] performed experimental studies of elevated 
resistance to severe hypoxia after animals were kept at a 
reduced partial pressure of oxygen. Studies of high-moun-
tain acclimation showed that this increased resistance to ep-
ileptogenic agents [14] and suppressed the development of 
bronchial asthma and schizophrenia [29]. These studies are 
mainly based on the phenomenon of hypoxic acclimation, 
i.e., adaptation of the body to prolonged moderate hypoxia. 
Protective mechanisms at the systems level are gradual and 
are mobilized in stages. Erythropoiesis and angiogenesis 
are stimulated, glucose utilization is increased, the oxygen 
transport system is rebuilt, etc. [30]. It should be empha-
sized that the mechanisms of acclimation are different from 
the immediate mechanisms of hypoxic tolerance induced by 
hypoxic/ischemic PreC as described above.
 We developed an experimental model of acute hypo-
baric exposure in the early 2000s. This model is based on 
presentation to the animal of a limited number of transient 
episodes of acute sublethal hypoxia in a pressure cham-
ber. Various different hypobaric regimens are used. Severe 
harmful hypobaric hypoxia (180 mmHg, 3 h) is used as the 
test exposure, while single or multiple (3–6) episodes of 

 Expression of persistent tolerance induced by hy-
poxic PreC. In the late phase, for at least a day, persistent 
genome-dependent tolerance mechanisms are triggered, 
providing intracellular plastic rearrangements mediating 
antihypoxic structural and functional rearrangements of 
the vital activity of cerebral neurons. The main role in the 
development of these proadaptive mechanisms is played 
by transcription factors which, after translocation from the 
cytosol to the nucleus, regulate target gene promoter and 
enhancer activity [112]. The key components of the activa-
tion of late-acting genes, whose products are involved in the 
mechanisms of neuronal plasticity and cell survival, include 
inducible (c-Fos, NGFI-A, HIF-1) and activatory (pCREB, 
NF-κB) transcription factors. The targets of these are the 
genes for a number of proadaptive proteins, such as neu-
rotrophins (BDNF, NT3, IGF, VEGF, etc.), anti-apoptotic 
proteins of the bcl-2 family (Bcl-2, Bcl-xL), erythropoietin, 
glucocorticoid and mineralocorticoid receptors, glutamate 
receptors, and stress proteins HSP70 and HSP90, which 
regulate the folding, refolding, stabilization, activation, and 
degradation of many proteins in condition of stress, includ-
ing hypoxic stress [76, 80, 113].
 It is interesting that HSP70 and HSP90 display ac-
tivity linked with HIF-1 at the early stages of hypoxia. 
Experiments on preconditioning in rats using series of epi-
sodes of hypobaric hypoxia of varying severity and duration 
showed that only a moderate level of severity (equivalent 
to 5000 m above sea level) and a limited number of dai-
ly repetitions (3–8) induced the HIF1α/HSP90-dependent 
mechanisms of hypoxic tolerance. Smaller and larger PreC 
doses were less effective [10].
 The targets of the main regulator of reactions to hy-
poxia, HIF-1 transcription factor, consist of several thou-
sand genes whose products are involved in forming adap-
tive rearrangements in conditions of hypoxia [70]. Studies 
in our laboratory have shown that an increase in the resis-
tance of brain neurons to severe forms of hypoxia induced 
by hypoxic PreC is accompanied by immediate activation 
of factor HIF-1, this being followed by expression of its 
target genes [19]. The extent of the increase in the expres-
sion of the HIF-1α regulatory subunit correlates with the 
neuroprotective effi cacy of PreC [27]. Accumulated data 
indicate that the HIF-dependent mechanisms of formation 
of cerebral hypoxic tolerance induced by hypobaric PreC 
include the expression of EPO and BDNF [99], as well as 
the main enzyme involved in the pentose phosphate path-
way of glucose metabolism, glucose phosphate-6 dehydro-
genase [115]. It should be noted that activation of the pen-
tose phosphate pathway in hypoxic conditions is one of the 
important proadaptive reactions that ensure the functioning 
of enzymatic antioxidant systems.
 In addition, the neuroprotective role of HIF-1 clearly 
cannot be seen as unconditional. There have recently been 
reports of adverse effects occurring on activation of HIF-1. 
In particular, our studies have shown that in vivo blockade 
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 The protective effects of PreC by hypobaric hypoxia on 
the brain are not restricted to the harmful effects of severe 
hypoxia. In particular, we have demonstrated that such PreC 
has a restraining effect on the development of anxious-de-
pressive states induced by stress. A signifi cant role in this 
appears to be played by triggering of the mechanisms of 
the so-called cross-adaptation as defi ned by Meerson [13], 
due to modifi cations of the hormonal regulation of adaptive 
processes aimed at effective mobilization of hormone-de-
pendent defense mechanisms. It is important from both the 
theoretical and practical points of view that the neuropro-
tective effect of PreC occurs regardless of the modality of 
the harmful factor presented. It was known from previous 
work that cerebral cross-tolerance occurs in relation to hy-
poxia, ischemia, and toxins, i.e., factors whose harmful 
mechanisms, including oxidative stress, are largely related. 
Our own studies provided the fi rst demonstration of the ef-
fi cacy of the protective action of hypobaric cerebral PreC 
in relation to fundamentally different harmful factors, i.e., 
psychoemotional and traumatic stress, whose pathogenic ef-
fect is based on disorders of systems-based and nonspecifi c 
adaptation mechanisms [94, 95]. These studies used an index 
of resistance in rats conditioned with three sessions of MHH 
to severe forms of stress (psychoemotional and traumatic) in 
experimental models based on learned helplessness (a model 
of depression-like pathology) and stress-restress (a model of 
post-traumatic stress disorder, PTSD) respectively. The PreC 
procedure, along with a marked antidepressant effect on be-
havior, restored normal HPAS stress reactivity. Presentation 
of short-term immobilization stress (restress) to animals that 
had previously experienced severe traumatic stress led to the 
formation of a stable anxiety state in the “stress–restress” 
model of PTSD. Use of MHH as PreC prevented the devel-
opment of the anxiety state serving as the analog of PTSD.
 Neuroprotective Ischemic/Hypoxic Postconditio-
ning. Postconditioning (PostC) is the presentation of ad-
verse factors of moderate intensity after severe harmful 
effects. The phenomenon of PostC was described relative-
ly recently (in 2003) in an ischemic model in the heart. 
Presentation of brief episodes of ischemia in the early stages 
of reperfusion was found to produce signifi cant reductions 
in the size of the damage zone after infarction and to im-
prove the survival of cardiomyocytes [125]. The protective 
effect of ischemic PostC on the brain was fi rst described 
in 2006 in a rat model of focal ischemia [126]. Ischemic 
PostC with transient episodes of cerebral ischemia alternat-
ing with periods of reperfusion was found to lead to a sig-
nifi cant decrease in the size of cerebral lesions, the extent 
of neuroprotection depending on the specifi c PostC regime, 
i.e., the frequency and duration of ischemia-reperfusion cy-
cles and the time of onset of PostC, which could be in the 
early or the delayed period [92]. Despite the fact that the 
effi cacy of ischemic PostC neuroprotection in the brain has 
been confi rmed, this method, according to many research-
ers and clinicians, has no real clinical prospects due to a 

moderate hypobaric hypoxia (360 mmHg, 2 h, at 24 h inter-
vals) are used as PreC for research into the mechanisms of 
induced tolerance.
 Infl uence of severe hypobaric hypoxia (SHH) on the 
brain and the corrective effect of moderate hypobaric hy-
poxia (MHH). Our researchers found that SHH causes the 
death of more than 50% of rats, while surviving animals 
showed signifi cant structural damage to neurons in the ar-
eas of the brain most vulnerable to hypoxia (the hippocam-
pus and neocortex), mainly of the apoptotic type. Animals 
surviving reoxygenation after SHH were found to develop 
profound impairments to behavior, learning, and memory 
[4, 26, 34, 93]. The mechanism of the harmful effects of 
SHH on the brain is very complex and not fully deciphered. 
In particular, as noted above, HIF-1 signaling has recently 
been found to have a role in this process. Three episodes of 
MHH presented 24 hours before exposure to SHH signifi -
cantly increased both brain tolerance and the resistance of 
the body as a whole to SHH. Death in response to SHH in 
preconditioned rats was reduced to 15%, though single-ep-
isode MHH had almost no protective effect on survival or 
structural and functional impairment in rats.
 Hormonal mechanisms of MHH-PreC. The adaptive 
capabilities of the body depend directly on the mode of 
functioning of the hypothalamic-pituitary-adrenal system 
(HPAS) and the balanced activity of all its elements. Selye 
attributed the key role to appropriate activation of the HPAS 
and its timely inactivation by inhibition by negative feed-
back [98]. Impairment of HPAS function and its regulation 
by feedback mechanisms causes the development of mal-
adaptive conditions leading to severe functional disorders 
of the body, to the point of death [44].
 In our research, the dynamics of the functional activity 
of the HPAS in rats was studied in terms of plasma levels 
of the main glucocorticoid hormone, corticosterone (the an-
alog of cortisol in humans). Three-episode MHH produced 
marked activation of the HPAS, with a three-fold increase 
in the peak corticosterone level (3 h), while single-episode 
MHH, which was insuffi cient to generate neuroprotection, 
induced only a slight increase in the hormone level. Along 
with an increase in the basal glucocorticoid level, hypoxic 
PreC signifi cantly modifi ed HPAS reactivity to immobiliza-
tion stress. Rats with three-episode preconditioning, as com-
pared with controls, showed a sharp increase in HPAS stress 
reactivity, which was particularly marked in the early stages 
after the action of the stressor. By 24 h, the corticosterone 
level returned to baseline, which indicates the normal trig-
gering of regulatory mechanisms by negative feedback. The 
biphasic dynamic of HPAS was deranged in rats subjected 
to SHH. The blood corticosterone level in these animals 
gradually increased to 24 hours post-exposure, indicating 
impairment to the mechanisms of immediate activation and 
glucocorticoid inhibition of the HPAS. Three-episode PreC 
had a marked protective effect, normalizing the phasic na-
ture of the HPAS reaction (activation–inhibition) [17].
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demonstrates the need for de novo protein synthesis for the 
neuroprotective effects of PostC to be realized.
 In contrast to ischemic PostC, the protective mecha-
nisms of hypoxic PostC, especially in the brain, have re-
ceived virtually no study. Our pioneering research found 
that the expression of Bcl-2, BDNF, the α subunit of factor 
HIF-1, and its transcriptional target erythropoietin in hip-
pocampal and neocortical neurons in rats are activated to 
varying degrees on presentation of hypobaric hypoxia in 
the PostC regime. Comparative analysis of expression pro-
fi les showed that among the factors studied, HIF-1 clearly 
played the most important role in the mechanisms of this 
PostC [6, 7, 115]. The role of HIF-1α and its targets was 
also confi rmed in another model of hypoxic PostC [130]. 
Along with induction of HIF-1α, activation of antioxidant 
systems was also demonstrated in our MHH model [51]. 
Realization of the anxiolytic effect of PostC in the model of 
poststress pathology was accompanied by stimulation of the 
production of the neurotrophin BDNF in the hippocampus 
and neocortex, while no signifi cant changes in the expres-
sion of HIF-1α or EPO were detected [9].
 On the basis of current data, it can be suggested that the 
mechanisms of the neuroprotective action of hypoxic PreC 
and PostC are largely similar, though this point requires fur-
ther study, as does identifi cation of universal and specifi c 
mechanisms for preventing the harmful effects of factors of 
different natures (hypoxia, psychoemotional stress).
 Conclusions. Analysis of the literature indicates that 
intensive studies are being pursued around the world, using 
different experimental models to address the infl uence of 
the hypoxic factor on the induction of both pathological and 
adaptive states of the brain. This challenge is relevant and 
has great practical importance. There is interest in results 
obtained in the last decade, including our own, using mod-
erate hypobaric hypoxia as pre- and post-conditioning to 
prevent structural and functional cerebral disorders caused 
by harmful effects (severe forms of hypoxia and stress), as 
well as for rehabilitation after these infl uences. In the near 
future, it will be possible to develop practical and oriented 
approaches for medicine and healthcare based on them.
 This work was supported by the State Program GP-47 
“Scientifi c and Technological Development of the Russian 
Federation” (2019–2030), topic 0134-2019-0004.
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