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Abstract
Evidence shows that the N-methyl-d-aspartate (NMDA) antagonist MK801 reduces the development of 
morphine (Mor) tolerance. The paraventricular nucleus of the thalamus (PVT) comprises the highest lev-
els of μ-opioid receptors in the thalamus and is involved in pain modulation. The present study examined 
whether blocking NMDA receptors by administration of MK801 in the PVT nucleus could affect the noci-
ceptive behavioral manifestations caused by the formalin in Mor-dependent rats. Male Wistar rats weighing 
250–300 g were dependent on Mor by subcutaneously (s.c.) injection (6, 16, 26, 36, 46, 56, and 66 mg/
kg, 2 ml/kg) at an interval of 24 h for 7 days. Animals were randomized into four experimental groups in 
which the NMDA receptor antagonist, MK801 (20 mM in 0.1 ml), or its vehicle were injected into the PVT 
nucleus for 7 days before each Mor injection. On day 8, the formalin test was carried out. Results showed 
that repetitive Mor administration prompted antinociception in interphase and phase II of formalin test. 
Also, inhibition of NMDA receptors decreased formalin-induced nociceptive behaviors in all phases of the 
test in Mor-dependent rats. Our findings suggested that continuous co-administration of MK801 into PVT 
with Mor could enhance the antinociceptive effect of Mor and reduce the nociceptive behaviors prompted 
by formalin in Mor-dependent rats.
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Introduction

The thalamus is one of the places that receive projections from multiple ascending pain pathways. This structure is 
involved in the processing of nociceptive information before conveying the information to different parts of the cortex 
[1, 34]. The PVT in humans and rats comprises the primary levels of μ-opioid receptors in the thalamus [10, 24] and 
comprises a high aggregation of thalamic fibers with the endogenous μ-opioid receptor ligands [36]. Following noxious 
stimulation, the initiation of c-fos expression has been revealed in the thalamic PVT nucleus [7, 8, 12]. Mor enhances 
basal PVT neuronal firing. The intrinsic excitability of PVT neurons is increased by Mor [27]. Initiation of the μ-opioid 
receptor activity in PVT diminishes physical pain and may also control social pain. The firing of PVT neurons is inhibited 
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by the activation of μ-opioid receptors in this nucleus [5]. Furthermore, it is revealed that frequent Mor injection enhances 
the spontaneous firing of PVT neurons along with augmentation of PVT neuronal excitability and excitatory synaptic 
glutamatergic transmission [27].
It is known that the PVT consists primarily of glutamatergic neurons [9, 30]. Evidence has shown that NMDA receptors 
are implicated in nociceptive transmission in the thalamus [11, 33]. Though NMDA receptor subunits have been detected 
in the medial thalamus [6] and NMDA inactivation has a significant role in drug addiction, the inhibition of NMDA 
receptors on nociception in the PVT nucleus has not been established and needs further investigation. Therefore, our 
attention was attracted by the question of whether intra-PVT administration of NMDA antagonism has a significant effect 
on nociceptive behaviors in Mor-dependent rats.

Materials and methods

Animals

Male Wistar rats, weighing 250–300 g were purchased from the Iran University of Medical Sciences and kept in plexi-
glass breeding cages with free access to water and food. Animals were kept in a colony room at constant room temperature 
and 12 h dark and light cycles. All experiments were carried out at 7–9 a.m. to evade any bias induced by circadian rhythm.

Ethics declarations

The current research was achieved based on the ethical rules of Iran University of Medical Sciences Ethics Committee, 
Tehran, Iran, which is based on the NIH Guide for the Care and Use of Laboratory Animals.

Stereotaxic surgery and cannulation

The rats anesthetized by ketamine (100 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.). then, bregma was identified as the 
coordinates taken from Paxinos and Watson’s rat brain atlas by a stereotaxic device [31]. The coordinates for the PVT 
were 3.1 mm posterior to bregma, 1.3 mm lateral to the midline, and 4.0 mm ventral to the skull, with the incisor bar set 
at 3.3 mm below the intraaural line [23]. Then, a stainless-steel guide cannula (23-gauge needle) was unilaterally placed 
at the depth of 1 mm above the PVT and was fixed by means of dental acrylic cement and two screws [2]. Animals were 
allowed to recover after the operation for 7 days.
Rats were randomly assigned to four groups (n = 32): Group 1: Animals received a subcutaneous injection of saline at an 
interval of 24 h for 7 days (Sal, n = 8). Group 2: Animals received a subcutaneous injection of Mor at an interval of 24 h 
for 7 days (Mor, n = 8). Groups 3 and 4, animals received intra-PVT microinjection of MK801 (20 mM in 0.1 ml, n = 8, 
MK. Mor), or its vehicle (Sal.Mor, n = 8), respectively, for 7 days before each Mor injection.

Induction of Mor dependence and formalin test

To induce Mor dependence, Mor was injected (6, 16, 26, 36, 46, 56, and 66 mg/kg, 2 ml/kg) for 7 days [18, 32]. On day 
8, formalin (50 μL of 2%) was injected and nociceptive behaviors were observed and calculated for 30 min in a transparent 
plexiglass chamber. Injections were achieved at the same time during the experiments.

Intra‑PVT microinjection

The non-NMDA receptor antagonist or dizocilpine hydrogen malate (MK801) (20 mM) solved in 0.1 ml sterile saline 
(5 µg solved in 1.0-µl sterile saline [18, 35]. The solution was divided into portions and then frozen in − 20 °C. MK801 
and its vehicle were injected into PVT prior to each Mor injection through an injection cannula that was connected to 
hamilton syringes with volume of 1 μl by a 20 cm polyethylene tube (PE-20). A 30-gauge needle, the length of which was 
1 mm longer than the guide cannula, was applied for injection. Drugs were microinjected for 60 s, and the microinjection 
needles were left at the site of injection for a further 60 s before being taken out [25].
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MK801 is a selective non-competitive NMDA receptor antagonist. It inhibits NMDA-induced excitation by interacting 
with open ion channels associated with NMDA receptors [21, 22].

Histological verification

After each test, the correct placement of the cannula tips was verified histologically. For this purpose, animals were 
deeply anesthetized by urethane (1.5 g/kg, i.p.). Afterward, pontamine sky blue (2%, 0.2 μl) dye was microinjected into 
the PVT nucleus. Then rats were sacrificed, the brains were removed, and kept in a solution of 10% phosphate-buffered 
formalin for 24 h. The fixed tissues were sectioned into 300-μm-thick slices and injection sites were verified histologically 
by the rat brain atlas of Paxinos and Watson [31] (Fig. 1). Rats with misplaced cannula were excluded from the analysis.

Evaluation of nociceptive behaviors in Mor‑dependent rat using formalin test

Formalin tests were achieved in the Plexiglas chamber (30 × 30 × 30 cm) with a mirror located below at a 45° angle to 
provide an unimpeded view of the animals’ paws.
In the current research, initially, rats were acclimatized for 30 min in an acrylic observation chamber. Afterward, 10 to 
20 min after the last injection of Mor, formalin (50 μl;s.c.; 2%) was injected subcutaneously through a 25-gauge needle 
into the plantar surface of the right hind paw.
The stable scores from formalin were ensured by inserting the needle 5 mm under the skin. Subsequently, each rat was 
immediately returned to the observation box, and behavioral recording was commenced. Pain behaviors were scored as 

Fig. 1  Histological verifica-
tion by pontamine sky blue 
(2%) injection site in the PVT 
nucleus according to the atlas 
of Paxinos and Watson. The 
black points show the injec-
tion sites in PVT
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follows: 0 = the injected paw was not favored, 1 = the injected paw had little or no weight placed on it, 2 = the injected paw 
was increased and not in contact with any surface, and 3 = the injected paw was licked or bitten. Recording of nocicep-
tive behaviors began immediately after formalin injection (time 0) and was continued for 60 min. The length of licking/
biting the formalin-injected hind paw during each phase was assessed by a digital time-out stopwatch as an indicator of 
the pain response. In all groups, the behavioral response of rats during the first phase, interphase, and second phase were 
separately measured. The behavioral assessment was achieved just once for each animal, i.e., the formalin was never 
injected into the same animal twice [29, 37].
Injection of formalin induces a biphasic nociceptive and active response, including an early phase (0–5 min), quiescent 
interphase (5–20), and a second long-lasting phase (20–60 min). To confirm stable scores from formalin, it was required 
to be sure that the needle was inserted through the skin and run for 5 mm under the skin. Afterward, each rat was directly 
returned to the observation box, and behavioral recording started. Nociceptive behaviors were scored as follows: 0, the 
injected paw was not favored;1, the injected paw had little or no weight placed on it; 2, the injected paw was raised up 
and not in contact with any surface; and 3, the injected paw was licked or bitten. Recording of pain behaviors commenced 
immediately after formalin injection (time 0) and was sustained for 60 min.

Data analysis

Data were expressed as mean ± SEM and analyzed using unpaired two-tailed Student’s t test for comparison of two 
groups by prism software. The defined level of statistical significance was p < 0.05.

Results

To study the effect of tolerance to the analgesic effect of Mor, we used the formalin test, the nociceptive score was 
measured in different phases (phases I, II, and interphase) of the formalin test.
To examine the impact of Mor in the induction of tolerance formalin-induced pain was used. The nociceptive score was 
evaluated in each phase of the pain evoked by formalin (phase I, interphase, and II). Mor failed to alter pain behaviors 
evoked by formalin in phase I. In interphase and phase II, Mor could reduce the nociception (analyzed by unpaired t test, 
Fig. 2).
We found that the pain behaviors created by formalin in Mor-treated rats decreased by the chronic application of MK801 
in phase I (p < 0.05), interphase (p < 0.01), and phase II (p < 0.0001) (analyzed by unpaired t test, Fig. 3).
These results propose that NMDA receptors are important mediators of the development of long-lasting, non-associative 
Mor effect. The increment of Mor’s antinociceptive influences by MK801 recommends the exciting likelihood that the 
NMDA receptor activity may exert nociception.

Discussion

The current results displayed that the pain behavior in rats who received repeated Mor failed to have any significant 
difference compared to the saline-treated rats in phase I of the formalin test. This suggests that the absence of analgesia 
caused by the long-standing application of Mor in the current study might result from the development of tolerance in 
phase I. The pain behavior in rats who received repeated Mor exhibited significant reduction compared to the saline-treated 
rats in interphase and phase II of the formalin test that was consistent with our previous study [19].
Our findings also showed that long-term injection of MK801 into the PVT significantly decreased the nociceptive behav-
iors in all phases of the formalin test in Mor-dependent rats. Consistent with our study, previous studies have shown that 
NMDA receptors have a considerable role in the development and expression of opioid physical dependence [3]. It has 
been demonstrated that MK801 blocks Mor dependence and inhibits the behavioral symptoms of the Mor abstinence 
syndrome [22].
The reduction of nociceptive behaviors observed in MK801-treated animals during the experiment is consistent 
with previous ideas that this drug blocks the development of opiate dependence. These results illustrate that the 

673



Neuroscience and Behavioral Physiology (2023)53:670–677

development of opiate dependence, similar to other kinds of plasticity [17, 20] comprises NMDA receptor activation. 
Gutstein et al. demonstrated that MK801 attenuates the development of Mor dependence at spinal sites [14]. Therefore, 
NMDA receptors are largely implicated in opiate-induced plasticity and the development of opiate dependency [28].
Current findings propose that NMDA-type glutamate receptor-mediated neurotransmission exhibits important impact 
on the antinociception induction following continuing opioid administration. In previous studies, it has been shown 
that the activation of NMDA receptors has been accompanying with hyperalgesia, neuropathic pain, and reduced 
functionality of opioid receptors [4]. Hyperalgesia may induced by augmented spinal neuron sensitization, result-
ing in an increment of pain [16]. Furthermore, in another study, the essential role of NMDA receptor in the central 
sensitization of spinal cord dorsal horn has been demonstrated [15]. This assumption is consistent with evidence that 
showed an augmentation of intracellular calcium concentration by NMDA receptor activation. Increased intracellular 
calcium and calcium-calmodulin dependent kinases activity can cause uncoupling of receptor-G-protein implicated 
in sensitization of mu-opioid receptor [13]. Furthermore, the continued analgesia by co-use of Mor and an NMDA 
antagonist demonstrated the prolongation of the analgesic effect of an opioid [26].

Fig. 2  Formalin-induced 
nociceptive behaviors follow-
ing the infusion of Mor. Upper 
schematic plan demonstrates 
the experimental protocols 
used for assessment of 
nociceptive behaviors in Mor-
dependent rats. Bar chart for 
injection of Mor (Mor) in the 
formalin-induced pain repre-
sents mean of the nociceptive 
score in each phase: phase 
1 (minutes 0–5), interphase 
(minutes 5–20), and phase 
2 (minutes 20–60). Record-
ing of nociceptive behaviors 
began immediately for 60 min 
after formalin injection (50 μl, 
s.c.; 2%) into the hind paw 
(minute 0). Data are expressed 
as mean ± SEM. *p < 0.05 in 
comparison with saline (Sal) 
group, n = 8 per group
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Conclusion

In conclusion, current findings demonstrated that NMDA receptors in the PVT nucleus seem to act either directly or 
indirectly on the signaling pathways of Mor to exhibit a reasonable path for the development of Mor dependence and 
demonstrate an innovative potential therapeutic goal in the treatment of pain. Therefore, it may be concluded that NMDA 
receptors has the capability to block the non-associative opiate tolerance at the thalamus level. Indeed, MK801 might 
have changed the development of dependence and enhance the analgesic effect of Mor when administered along with 
each Mor injection. Nevertheless, additional in vitro and in vivo studies are required to clarify how the NMDA receptors 
play a role in pain modification.
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Fig. 3  Formalin-induced 
nociceptive behaviors follow-
ing infusion of MK801. Upper 
schematic design shows the 
experimental protocols used 
for measuring nociceptive 
behaviors following MK801 
injection in Mor-dependent 
rats. The mean of the nocic-
eptive score for injection of 
MK801 in the formalin test in 
each phase: phase 1 (minutes 
0–5), interphase (minutes 
5–20), and phase 2 (minutes 
20–60). Recording of the 
nociceptive behaviors began 
immediately after formalin 
(50 μl, s.c.; 2%) injection into 
the hind paw (time 0) and was 
continued for 60 min. Data 
are analyzed by unpaired t test 
and expressed as mean ± SEM. 
*p < 0.05, **p < 0.01, *** 
p < 0.0001 in comparison with 
vehicle, n = 8 per group
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