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This review presents data on the characteristics of the reorganization of the hippocampus associated with 
impairment to neurogenesis in epileptiform states of different etiologies. Data on the effects of convulsive 
states of different severities and frequencies on the levels of proliferation, migration, and insertion of new 
cells into the hippocampal neural network are presented and anomalies in newly formed granule cells are 
described. The focus is placed on possible explanations of existing contradictions in anybody assessment of 
the importance of neurogenesis in epilepsy.
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 Hippocampal neurogenesis in adult mammals. The 
views that the brain is essentially unable to undergo regener-
ation and that neurogenesis does not occur in adult mammals 
have long been held. However, Altman’s studies in 1962 
demonstrated that mitotically active precursor cells persist 
in the brains of adult animals and operate as the sources for 
new neurons [1]. Several subsequent studies showed that 
neurogenesis in the adult state occurs in almost all mam-
mals, including humans [2–4]. Two main neurogenic niches 
exist in the brain: the subventricular zone of the lateral ven-
tricles and the subgranular zone of the dentate gyrus of the 
hippocampus.
 The subgranular zone of the dentate gyrus of the hip-
pocampus is one of the niches containing stem cells in the 
adult mammal brain. The narrow strip between the gran-
ule cell layer and the hilus contains a unique microenvi-
ronment, which allows a population of neuronal stem cells 
to be maintained. Neuronal stem cell proliferation occurs 
here, with their subsequent differentiation into dentate gy-
rus granule cells. Dentate gyrus granule cells formed in the 
adult body pass through several sequential stages of devel-
opment before functional integration into the hippocampal 
neural network. Cells of the fi rst type, or glial-like cells, 
constitute a population of neural stem cells and give rise to 

proliferating intermediate precursor cells (type 2). These in 
turn give rise to neuroblasts (type 3), which then differenti-
ate into mature dentate gyrus granule cells. Apart from the 
population of neuronal precursor cells, this area also con-
tains other cell types, expressing cytokines, growth factors, 
and neurotransmitters, including GABA. These cells are be-
lieved to create the conditions required for neurogenesis [5].
 Hippocampal neurogenesis in adult animals is func-
tionally linked with learning and memory. With age, the 
level of neurogenesis decreases, which coincides in time 
with decreases in the ability of the brain to recover after 
trauma. Neurogenesis is believed to play a key role in main-
taining mental health and recovery after stroke, as well as in 
depression, Huntington’s disease, and Parkinson’s disease 
[6–10]. However, the role of neurogenesis in the pathogen-
esis of Alzheimer’s disease and epilepsy is ambiguous. For 
example, some investigators take the view that the process 
of neurogenesis is impaired in Alzheimer’s disease, while 
others believe that the level of neurogenesis is increased 
[11–13]. It may be that the contradictions can be explained 
in terms of the fact that different investigators have ana-
lyzed levels of neurogenesis at different stages of disease 
and at different ages. In addition, it has been suggested that 
an increased level of neurogenesis in Alzheimer’s disease is 
compensatory in nature [14]. In epilepsy, the functional im-
portance of neurogenesis remains incompletely understood.
 Hippocampal neurogenesis in adult mammals in 
epileptogenesis. Epilepsy-associated changes in the an-
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occur in the adult brain [25]. This reaction can be blocked 
by administration of endoneuraminidase (EndoN) [26, 27]. 
Administration of EndoN into the amygdala has been shown 
to decrease the level of hippocampal proliferation, though 
this led to a decreased convulsive threshold. The number of 
ectopic granule cells in the hilus decreased signifi cantly [20, 
27]. This demonstrates that partial inhibition of the aberrant 
migration of newly formed granule cells did not prevent 
the epileptogenesis process, at least in kindling, which is 
a model of epilepsy in humans. Further studies using the 
same model demonstrated that administration of EndoN did 
not prevent the development of spontaneous seizures [27].
 On the other hand, Jung et al. [25] used prolonged in-
fusions of cytosine-β-D-arabinofuranoside, an antimitotic 
agent, to block neuron proliferation in the pilocarpine mod-
el of epilepsy. These studies demonstrated that the probabil-
ity of developing spontaneous repeating seizures decreased 
signifi cantly, pointing to the important role of newly formed 
cells in the development of convulsive activity after admin-
istration of pilocarpine. However, it is interesting to note 
that decreases in the proliferative activity of neurons had no 
effect on features such as branching of mossy fi bers.
 Thus, inhibition of neurogenesis in some cases de-
creased the frequency of convulsive seizures and promoted 
recovery of cognitive functions, which supports the sugges-
tion that aberrantly inserted newly formed cells are proepi-
leptogenetic [28]. However, in other cases, inhibition of neu-
rogenesis has been shown to increase convulsive readiness, 
increasing the frequency of convulsive seizures and their 
duration [29]. Termination of neurogenesis after manifesta-
tion of disease can also decrease seizure frequency, though 
duration increases [28]. Recent studies have demonstrated 
that low-intensity convulsive seizures decrease the level of 
neurogenesis, while intense seizures promote the differenti-
ation of neural stem cells into glial cells, leading to gliosis 
[30]. This emphasizes the importance of understanding the 
etiology and pathogenesis of disease, particularly epilepsy.
 The functional role of newly formed ectopic hilar 
granule cells. One of the proposed functions of the dentate 
gyrus is the “gatekeeper” function. As the proportion of in-
hibitory innervation of granule cells is greater than the pro-
portion of excitatory innervation [31], the dentate gyrus 
limits the number of excitatory signals, thus controlling the 
level of arousal. In fact, innervation of GABAergic inter-
neurons by granule cells is a negative feedback mechanism 
controlling hippocampal arousal [32]. In rodents experienc-
ing epileptiform activity, the dentate gyrus fails to cope with 
this task [33, 34]. The cause of impairments to hippocampal 
function may be the reorganization of neuronal connections 
induced by aberrant neurogenesis. Within the framework of 
the fact that aberrant granule cells contribute to the develop-
ment of impairments to neural networks in epileptogenesis, 
it can be suggested that these cells undergo functional inte-
gration into hippocampal neural networks. Shifts in the ratio 
of excitation and inhibition can occur as a result of insertion 

atomical structure of the dentate gyrus and hilus may be 
of prime importance for the initiation and development of 
convulsive states. The hippocampus of patients with tem-
poral partial epilepsy shows numerous cellular anomalies, 
including decreases in the numbers of pyramidal cells in 
fi elds CA1 and CA3, along with hippocampal astroglio-
sis. Impairments seen in the hilus, known as endosphorial 
sclerosis, constitute one of the most characteristic signs of 
temporal partial epilepsy [15]. In addition, the dentate gyrus 
shows branching of mossy fi bers, dispersion of the granule 
layer, the appearance of ectopic cells in the hilus, and in-
creases in the density of the basal dendrites of neurons [16]. 
The rodent hippocampus responds to pilocarpine, which 
induces status epilepticus, with similar changes: branching 
of mossy fi bers, dispersion of the granule cell layer, the ap-
pearance of ectopic cells, and increases in the density of 
basal dendrites [17]. Increased levels of neurogenesis also 
contribute to the development of epilepsy, though the func-
tional signifi cance of neurogenesis in the development of 
epileptiform states remains undetermined. We will consider 
the probable consequences of aberrant neurogenesis, lead-
ing to impairments in hippocampal function, in more detail.
 A number of in vivo experimental models of temporal 
partial epilepsy display signifi cant increases in the prolifer-
ative activity of precursor cells and accelerated maturation 
of neurons at the initial stages of epileptogenesis. However, 
the level of proliferation is decreased at the later stages. In 
particular, cell proliferation in the dentate gurus has been 
shown to increase by factors of 5–10 after some latent peri-
od (lasting several days or weeks) after convulsive seizures 
induced by pilocarpine or kainate [18–20]. In the dentate 
gyrus, this sharp increase in the level of proliferative activi-
ty is due to active proliferation of glial-like neuronal precur-
sor cells [21].
 Studies have shown that 75–90% of cells newly formed 
after convulsive seizures start to express mature neuron 
markers within four weeks [19, 22]. In addition, it has been 
suggested that convulsive seizures accelerate the maturation 
and integration of newly formed neurons [23].
 The level of proliferation returns to initial about 3–4 
weeks after a convulsive seizure [19]. It should be noted 
that chronic temporal partial epilepsy is accompanied by a 
decreased level of neurogenesis. Proliferative activity has 
been shown to drop signifi cantly by fi ve months after ad-
ministration of kainate [24].
 The functional role of newly formed granule cells. 
One approach to understanding the role played by neuro-
genesis in adult mammals in epileptogenesis is provided 
by selective inhibition of the process of neurogenesis in-
duced by epileptiform activity. if newly formed granule 
cells promote epileptogenesis, inhibition of neurogenesis 
should have a protective effect. This hypothesis was tested 
in a model of epilepsy, i.e., kindling induced by stimulation 
of the amygdala. Attachment of polysialic acid to neuronal 
cell adhesion molecules is important for neurogenesis to 
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should be noted that animals in which the number of cells 
knocked out was minor and branching of mossy fi bers was 
not seen displayed epileptiform activity [44]. Branching of 
mossy fi bers has been demonstrated in many models of epi-
lepsy [16, 45, 46]. Mossy fi bers form contacts with the api-
cal dendrites of granule cells, and only a small proportion 
of these cells form contacts with GABAergic interneurons 
[47]. This reorganization of the dentate gyrus promotes the 
formation of a focus of epileptogenesis. However, studies 
have been reported showing that newly formed granule cells 
are most subject to overarousal immediately after induction 
of a convulsive seizure, before branching of mossy fi bers 
is seen [48], i.e., the functional signifi cance of increased 
branching of mossy fi bers in epileptogenesis remains in-
completely understood. Furthermore, studies have shown 
that repeated convulsive seizures in WAR rats do not lead to 
increased branching of mossy fi bers [49].
 The second morphological feature of newly formed 
granule neurons in the epileptic brain consists of basal den-
drites of dentate gyrus neurons, which usually disappear 
during cell development [50]. Increases in the number of 
basal dendrites are seen in different models of epilepsy [47, 
51, 52]. Ribak et al. [53] were the fi rst to identify the in-
volvement of the basal dendrites of granule neurons in the 
cyclic connections of the hippocampus due to formation of 
synaptic connections with mossy fi bers. Murphy et al. [54] 
found that granule cells form basal dendrites immediately 
after induction of convulsive seizures following administra-
tion of kainate. However, at this time there are only small 
numbers of newly formed cells. This indicates that basal 
dendrites also form on those granule cells appearing before 
seizures and that newly formed granule cells are not the 
only type of cell underlying morphological changes as a re-
sult of epileptiform activity.
 Thus, the impairments described in the migration 
pathways and morphofunctional characteristics of newly 
formed cells in epilepsy suggest that they have a proepi-
leptic role. However, some investigators have described a 
protective function of newly formed cells in epileptogen-
esis [55, 56]. This contradiction is partly explained by the 
suggestion of Murphy et al. [54] that newly formed granule 
cells inserted into the granule cell layer can be integrated 
differently into the existing neural network, forming dif-
ferent numbers of spines, and also forming different den-
drites. Thus, some of these cells have a protective function, 
while others promote epileptogenesis. Newly formed gran-
ule cells can be divided into two groups, differing in terms 
of insertion site and excitability. The fi rst group, which in-
cludes most newly formed cells, is characterized by a low 
density of spines, pointing to low excitability. However, 
about 10% of newly formed neurons have a high density of 
spines, and also form long basal dendrites. Cells with basal 
dendrites have more synaptic contacts with mossy fi bers, 
i.e., greater levels of integration into proepileptogenetic 
hippocampal networks. Despite the fact that a large propor-

of newly formed cells with different electrophysiological 
characteristics [35] and aberrant synaptogenesis.
 One typical feature of aberrant neurogenesis induced 
by convulsive seizures is migration of anomalous newly 
formed granule cells to the hilus of the dentate gyrus rather 
than to the granule cell layer. These cells are termed ec-
topic hilar granule cells. Ectopic cells insert into the neu-
ral network of the dentate gyrus and receive excitatory in-
nervation from other granule cells. Their axon collaterals 
have been shown to form projections in fi eld CA3, forming 
synaptic contacts with mossy fi bers from granule cells and 
GABAergic interneurons innervating pyramidal cells in 
fi eld CA3 [36]. Thus, cyclic connections form [37], lead-
ing to overexcitation of the hippocampus and exacerbation 
of epileptiform activity. in addition, hilar ectopic granule 
cells have been shown to be characterized by permanent-
ly increased activity as compared with granule cells in 
the dentate gyrus [36]. Despite the fact that hilar ectopic 
granule cells make up a small percentage of dentate gy-
rus granule cells, their arousal can lead to activation of a 
large population of dentate gyrus granule cells and induce 
epileptiform activity as a result of reciprocal synaptic con-
tacts [36]. Cyclic connections have also been shown [38] to 
form between granule cells in the healthy brain, though in 
smaller numbers and, probably, only transiently. Thus, the 
formation of cyclic connections between granule cells may 
not be a unique feature of the dentate gyrus in the epileptic 
brain, though their relative number may be increased due to 
epileptiform activity or epileptiform activity may stabilize 
these connections, such that cyclic connections can make 
a signifi cant contribution to the process of epileptogene-
sis [39]. This hypothesis has been considered in detail in 
Gulyaeva’s review [40].
 Scharfman et al. [41] used a pilocarpine model of epi-
lepsy to show that hilar ectopic granule cells express c-fos 
(an early response gene) after spontaneous seizures, which 
confi rms their active involvement in the formation of epi-
leptic connections. Studies using the pilocarpine model of 
epilepsy also demonstrated that the number of hilar ectopic 
granule cells correlates with the number of spontaneous 
convulsive seizures [17, 42].
 The functional role of newly formed dentate gyrus 
granule cells. A signifi cant proportion of newly formed cells 
migrate to the granule layer of the dentate gyrus, where they 
are integrated into the existing neural network. However, 
in the epileptic brain, these cells have a series of structural 
and functional features. Pun et al. [43] showed that newly 
formed granule cells play a leading role in the branching of 
mossy fi bers. This group used animals with knockout of the 
gene responsible for PTEN synthesis, which was excluded 
only in newly formed granule cells; the result was overacti-
vation of the mTOR signal pathway and the anomalous de-
velopment of these cells. Increases in the numbers of these 
knockout cells correlated with increases in the branching 
of mossy fi bers, i.e., the axons of ectopic granule cells. It 
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process of epileptogenesis [52, 56, 60, 62, 63]. There are 
also data indicating that newly formed granule cells do not 
play any signifi cant role in epileptogenesis [20, 27, 64], and 
all the cellular anomalies observed merely accompany ep-
ileptogenesis but have no serious consequences. Thus, the 
question of the signifi cance of neurogenesis induced by 
epileptiform activity also remains open. As shown above, 
the contribution of newly formed cells to epileptogenesis 
probably depends on the ratio of cells with different electro-
physiological properties.
 This study was supported by the State Assignment on 
topic No. AAAA-A18-118012290371-3.
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