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 Introduction. A series of our previous studies address-
ing the mechanisms of transmitting sensory information to 
the projection zones of the cortex in rabbits showed that in 
trained animals whose CNS contained a rhythmic defensive 
dominant, presumptively “postsynaptic” neurons started to 
generate their action potentials with the same rhythm as the 
presumptively “presynaptic” neurons, thus creating the con-
ditions for transmission across the circuit from one cell to 
the other [Bogdanov and Galashina, 1999, 2000, 2008; 
Galashina andπ Bogdanov, 2012]. As the rhythm had pa-
rameters coinciding with those of the stimulation rhythm 
used to form the dominant, it was concluded that this rhythm 
was not endogenous, but was some label artifi cially speci-
fi ed by us; following the movement of this label through 
circuits of cells provides an approach to studying the direc-
tions of movement of sensory information within and be-
tween the projection zones of interest to our studies. At the 
same time, the question of how the pathways along which 
sensory information moves in neuron microsystems in un-
trained animals, animals at the initial stage of training, and 

animals with a formed defensive dominant differ from each 
other remains open. The aim of the present work was to 
clarify this question.
 Methods. Procedure for creating a rhythmic defensive 
dominant. Experiments were performed on nine conscious 
Chinchilla rabbits weighing 3–3.5 kg. The study protocol 
complied with the requirements of the Ethics Committee of 
the Institute of Higher Nervous Activity and Neurophysiology, 
Russian Academy of Sciences and international rules govern-
ing the treatment of experimental animals.
 At the beginning of the experiments, each rabbit was 
placed on a wooden bench with gentle fi xation of the head 
at the neck. The rabbit was in a natural posture on the bench. 
At 2–3 days after the animal stopped showing signs of rest-
lessness, electrodes were implanted into the rabbits’ brains 
for recording of neuronal activity. Surgery was performed 
under novocaine anesthesia. After 2–3 days, we progressed 
to formation of a latent focus of excitation (a defensive 
dominant) in the CNS of the rabbits. In two rabbits, the 
dominant was formed prior to surgery. The dominant focus 
was formed by electrocutaneous stimulation of the left fore-
paw with series of rhythmic impulses consisting of 15–20 
stimuli with interstimulus intervals 2 sec and impulse dura-
tion of 0.2 msec. Current strength was threshold for elicit-
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tivity started 2–3 days after surgery (Fig. 1, 3). A four-chan-
nel amplifi er was used with a bandpass of 400–5000 Hz. 
Data from morphological monitoring obtained when the 
experiments were complete showed that the tips of the re-
cording electrodes were located in the lower layers (4–5) of 
the cortex. Activity was recorded with two electrode plates 
throughout the experiment – one in the sensorimotor cortex 
and one in the visual cortex. Spike sequences from four neu-
rons were recorded from each multineuron trace.
 Analysis of neuron activity. One-minute segments 
of multineuron activity recorded between periods of test 
light delivery were analyzed, to identify how the function-
al connections between neurons in micronetworks before 
twitching of the animal’s paw in the test were organized. 
Multineuron traces were processed using a program written 
by Sakharov in MatLab. Spikes from MNA ere discriminat-
ed using a “window” and four impulse sequences were se-
lected (Fig. 2, 1–4). After removing noise, MNA amplitude 
was 100 arbitrary units. The width of the window for neu-
rons of the fi rst, highest-amplitude, sequence, was 20–30 
Units. Selection was based not only on spike amplitude and 
shape, but also on spike frequency. Window width for the 
second spike sequence was 8–10 Units, while widths for the 
third and fourth sequences were 1–3 Units. The interval be-
tween windows varied over the range 7–10 Units; the fourth 
neuron was no less than 14–20 Units. Spike frequency for 
the fi rst neuron was in the range 10–14 spikes/sec, com-
pared with 17–22 spikes/sec for the others.
 Primary analysis consisted of constructing cross-cor-
relation histograms (CCH) (Fig. 2, 5). CCH are based on the 

ing motor reactions and was selected individually for each 
rabbit. If response amplitude decreased (the habituation ef-
fect), current strength was increased slightly. As a rule, fi ve 
series were presented with interseries intervals of 2–5 min. 
Twitching of the paw was recorded using applied piezo el-
ements. After cessation of electrocutaneous stimulation, the 
animal was presented with a test stimulus in the fi rst and 
all subsequent experiments – a light; electric shocks were 
no longer presented. (Fig. 1, 1). The light was delivered 
smoothly with changes in the intensity of the incandescent 
lamps (12 V, 15 W), fed with direct current in conditions of 
weak illumination of the experimental chamber. Stimulus 
duration was 8–12 sec. The indicator of whether the ani-
mal’s CNS had formed a dominant focus was the presence 
of rhythmic twitching of the left paw (once every 2 sec) in 
response to the light stimulus to which the animal did not 
respond before creation of the dominant (Fig. 1, 2).
 Recording of neuron activity. Multineuron activity 
was recorded using a monopolar method with plates of sev-
en 50-μm nichrome electrodes, glued into a single plane and 
sharpened to an angle of 35–45°, in factory insulation 
(PEvKhN-2, GOST 85-98-69). Electrode resistance in the 
gray matter of the brain was 0.8 MΩ. The indifferent elec-
trodes were made of steel wire 100 μm in diameter. The 
plate of electrodes was implanted into the sensorimotor cor-
tex at stereotaxic coordinates AP 1–2, L 1–2 (representation 
of the left forepaw in rabbits). For the visual cortex, coordi-
nates were determined immediately before surgery in zone 
17 in terms of the site with the maximal event-related poten-
tial in response to fl ashes of light. Recording of neuron ac-

Fig. 1. Scheme of experiment with a rhythmic electrodefensive dominant. 1) Schedule of electrical stimulation of the 
paw with subsequent testing with light stimuli. 2) Responses of the left paw to electrical stimulation. 3) Diagram showing 
processing of myogram and multineuron activity in the motor cortex.
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 Secondary analysis of cross-correlation histograms. 
The classical method of constructing CCH gives only a 
quantitative evaluation of the frequency of spikes arising in 
multineuron activity one after the other at strictly defi ned 
time intervals (linked spikes) and does not provide for as-
sessment of how these pairs of spikes are distributed over 
the duration of the recording period. Each histogram was 
therefore subjected to secondary analysis, in which the time 
sequences of the accumulation of linked spikes in the peak 
of each histogram could be assessed (Fig. 2, 6). Secondary 
analysis used a method of constructing ACH for sequences 
of linked spikes form neuron pairs (Fig. 2, 7). This analysis 
provided for detection of the most common intervals be-
tween the moments at which linked spikes appeared in CCH 
peaks and identifi cation of the rhythm with which they 
arose in nervous tissue. Analysis of ACH of linked spikes 
considered only those peaks exceeding the mean level of the 
set of intervals in the histogram with signifi cance p < 0.05 
(no less). ACH of linked impulses were constructed with 

principle of constructing post-stimulus histograms in which 
the spikes of one of the neurons (the support sequence) are 
regarded as the “stimulus” for the spikes of the other (the 
dependent sequence), such that peaks on CCH could be in-
terpreted as the result of an interaction between “pre-” and 
“postsynaptic” neurons, thus determining the direction of 
the infl uence. CCH were constructed using analysis steps 
of 0.5–3.5 msec, with 50 points over this range. The anal-
ysis included only those CCH in which the mean number 
of spikes per bin was greater than 20 and the peak evidenc-
ing correlated operation of the neurons in the pair included 
at least 35–70 spikes. Peaks exceeding the mean number 
of spikes in the histogram with a signifi cance of p < 0.01 
were assessed. The main criterion for the existence of peaks 
was their repeated appearance on CCH when the step and 
analysis epoch were altered. Analysis of correlational rela-
tionships (or “functional connections”) between neurons, in 
contrast to all our previous studies, addressed peaks with 
latencies of less than 80 msec.

Fig. 2. Schemes showing the processing of multineuron activity. 1) Multineuron activity; 1–4 – activity of neurons selected for further 
analysis; 2) neuron activity discrimination window; 3) standard shape of largest spike; 4) spike shapes of neurons 1 and 2 with “super-
imposition”; 5) CCH for neurons 1 and 2; 6) time distribution of spikes collecting to form the peak on the CCH (asterisk); 7) secondary 
ACH for these spikes, *predominance of 2-sec peaks; 8) dark columns show the distribution of peaks showing predominance of 2-sec 
peaks on secondary ACH in trained animals, light columns show the peak distribution before training.
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correlations between the motor and visual cortex; 132 and 
176 CCH, respectively, were analyzed in rabbits not show-
ing twitching in response to light. Processing addressed 
only the fi rst peak on each CCH and ACH.
 Results. This study presents schemes for neuronal mi-
cronetworks constructed using histograms identifying rela-
tionships between the activity of neurons in the sensorimotor 
and visual cortex of animals with a rhythmic-type defensive 
dominant formed in the CNS. Construction of schemes used 
only those histograms which on secondary analysis of peaks 
on ACH of linked spikes (secondary ACH) showed signifi -
cant 2-sec bursts. These bursts or peaks on secondary ACH 
are evidence that the “pre- and postsynaptic” neurons whose 
activity relationship was identifi ed by CCH demonstrated 
conjoint activity mostly once every 2 sec. If further correla-
tion analysis of the activity of the “postsynaptic” neuron in 
this pair was run using some other cell, for which it operat-
ed as the “presynapse,” identifi ed conjoint activation in the 
same regime (once every 2 sec), then we had grounds for 
the suggestion that we were dealing with transmission of 
information relating to stimulus properties along a circuit 
from one neuron to another. We will consider the functional 
schemes in individual experiments from this point of view. 
On comparison of schemes at different stages of learning, 
the most obvious point was that the schemes are very simple 
in untrained animals and become ever more complex at se-
quential stages of training. This is due not only to increases 
in the number of connections between neurons in microsys-
tems, but also to increases in the complexity of the confi gu-
rations and the appearance of closed neuronal circuits.
 Untrained animals (Fig. 3, A, B, C, D). In rabbit A, a 
total of 11 functional connections were found: three be-
tween neurons in the motor cortex, two between neurons in 
the visual cortex, and six in mixed pairs. In rabbit B, there 
were nine functional connections: three in the motor cortex, 
two in the visual cortex, and four in mixed pairs. In rabbit C, 
there were 12 functional connections – two between neu-
rons in the motor cortex, one between neurons in the visual 
cortex, and nine in mixed pairs. In rabbit D there were 12 

steps of 0.08–3 msec and histograms with peaks with latent 
periods of 2 ± 0.2 sec were selected. Our previous studies 
demonstrated [Bogdanov and Galashina, 1998, 2003] that 
in contrast to the analysis results obtained in naïve animals, 
ACH of linked spikes in trained animals were signifi cantly 
dominated by peaks arising with latent periods close or 
equal to 2 sec, which coincides with the rhythm with which 
the left paw was initially stimulated with the electric current 
(Fig. 2, 8).
 Volume of study. As in previous studies, we compared 
three phases of learning: naïve rabbits (seven rabbits, 15 
segments of multineuron activity traces), trained rabbits 
(four rabbits, 11 segments of multineuron activity traces), 
and rabbits with good twitching responses to light (four rab-
bits, 15 segments of multineuron activity traces). A total of 
41 fragments of neuron traces recorded simultaneously 
from the sensorimotor and visual cortex were analyzed.
 Within each fragment, analysis was applied to activity 
from six neuron pairs in the sensorimotor cortex and visual 
cortex (12 CCH for the sensorimotor and visual cortex) and 
eight mixed neuron pairs including neurons whose activity 
was recorded simultaneously in the sensorimotor and visual 
cortex (16 CCH for detection of possible “interactions” be-
tween the neurons of these projection zones). Construction 
of each histogram used different analysis steps. The total 
volume of the analysis was 2296 CCH. In naïve and trained 
rabbits with twitching in response to light, 180 CCH were 
analyzed for the motor and visual cortex and 240 CCH for 

Fig. 3. Schemes of functional connections between neurons in the motor 
and visual cortex in untrained animals during 1-min traces of multineuron 
activity. A, B, C, D) different rabbits. Light circles how neurons in the 
motor cortex; dark circles show neurons in the visual cortex. Circle size 
refl ects the amplitude of spikes in multineuron activity. Arrows show the 
directions of connections. See text for detailed explanation.

Fig. 4. Schemes of functional connections between neurons in the motor 
and visual cortex in animals at the initial stage of training. See caption to 
Fig. 3 for details; see text for explanation.
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cortex neurons and six in the reverse direction); eight closed 
circuits of different complexities could be identifi ed from 
four motor and four visual neurons. For example, one fi g-
ure-of-eight through the second motor neuron (Fig. 5, 4) 2m 
→ 4m → 1v → 2m → 4v → 2v → 2m and the second 
through the fi rst motor neuron (Fig. 5, 5) 1m → 2m → 2v → 
3m → 1m → 2v → 3m → 1m.
 Finally, the last example (Fig. 6) of 12 experiments is 
rabbit F, in which the paw twitched in response to nine of 13 
test stimuli. The fragment before presentation of the light 
contained 28 functional connections. The illustration (Fig. 
6, upper) shows all variants of connections in the motor (6) 
and visual (9) cortex. For example, closed circuits in the 
motor cortex were of the type 4 → 1 → 3 → 2 → 4 – while 
those in the visual cortex were of the fi gure-of-eight type – 
1 → 2 → 3 → 1 → 4 → 3 → 2 → 1. There were 13 connec-
tions joining the motor and visual projections, though only 
fi ve are shown, to avoid complexity. Of these fi ve, there was 
one closed circuit 3v → 2v → 1m → 3v. The lower part of 
the fi gure shows one of the longest circuits, including 15 

functional connections: three between neurons in the motor 
cortex, three in the visual cortex, and six in mixed pairs.
 Trained animals (Fig. 4). In the fi rst experiment, when 
rabbit C was being presented with the light only, the paw 
did not yet twitch in the test, but the number of connections 
during the period prior to delivery of the test increased form 
12 to 21 (Fig. 4, upper). The scheme of the functional con-
nections was more complex, though no closed loops had yet 
appeared. In the fourth experiment, this same rabbit (Fig. 4, 
lower) showed twitching of the paw in response to light. 
(We need to remember that in all experiments apart from the 
fi rst, the rabbit was presented only with light tests, i.e., no 
electrical stimulation of the paw.) And although the number 
of connections was small – only 10 – closed circuits ap-
peared around which information on the duration of the in-
terstimulus interval (2 sec) could return to the cell from 
which it started its journey in this micronetwork: a fi gure-
of-eight can be identifi ed from two closed loops intersecting 
at the third motor neuron – one loop 3m → 2m → 4m → 3m 
and the second loop 3m → 1v → 4m → 3m (neurons clos-
ing circuits of connections are shown in bold).
 The next illustration (Fig. 5) shows an example of 
eight experiments in rabbit E during the interval prior to 
delivery of one of the test stimuli. In this experiment, the 
rabbit’s paw clearly twitched in seven tests out of nine. The 
picture before the test was increased in complexity and 29 
functional connections appeared. We will address these in 
detail. While no closed loops were seen in the six functional 
connections of four neurons among the neurons of the mo-
tor cortex (Fig. 5, 3) (considering forward and reverse con-
nections), the visual cortex showed two closed circuits be-
tween four neurons. One was simple (Fig. 5, 1) – 1 → 2 → 
3 → 4 → 2 → 1 (fi ve transfers) and the second (Fig. 5, 2) 
was of the fi gure-of-eight type - consisting of the same four 
neurons (six transfers), at the center of which was the third 
visual neuron – 3 → 2 → 1 → 3 → 4 → 2 → 3. An even 
more complex situation was seen between neurons in the 
motor cortex and neurons in the visual cortex (10 connec-
tions in the direction from motor cortex neurons to visual 

Fig. 5. Schemes of functional connections between neurons in the motor and visual cortex in well trained animals. 
1, 2) Closed circuits between visual neurons; 3) no closed circuits between motor neurons; 4, 5) closed circuits 
between motor neurons and visual neurons. See caption to Fig. 3 for details.

Fig. 6. Scheme of pathways by which information on stimulation parame-
ters can repeatedly pass through the motor and visual cortex in a well 
trained rabbit (reverberation of sensory information). See text for detailed 
explanation.
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namics of the linked neuron activity refl ect the parameters 
of the stimulation used in the experiments [Bogdanov and 
Galashina, 1999, 2000; Galashina and Bogdanov, 2012], we 
believe that data presented in the current report can be inter-
preted in terms of “neuronal codes” and “neuronal encoding.”
 Rusinov, analyzing the nature of the trace processes 
underlying memory, suggested that maintenance of the 
rhythm in a dominant occurs by means of a reverberation 
mechanism in which the structure of nerve cells assimilates 
the stimulus parameters and retains a model of the stimulus 
in memory [Rusinov, 1987]. The important role of the re-
verberation mechanism in processes associated with the 
analysis, recognition, and remembering of external stimuli 
is not denied by contemporary investigators. Reverberation 
as a basic mechanism operates at the level of whole struc-
tures in the central nervous system [Slama and Delgutte, 
2015; Schlecht and Habets, 2015] and at the level of the cell 
membrane [Maciunas et al., 2016].
 Analysis of interaction schemes between different neu-
ron pairs showed that learning produces not only an increase 
in the number of “functional connections” between neu-
rons, but also an increase in their complexity – with the ap-
pearance of neuronal circuits connecting cells for circula-
tion of sensory information within cortical microregions 
(forward and reverse connections) and for conducting this 
information from one projection zone to another. We note 
that trained animals start to respond to light with twitching 
of the paw only when these circuits become closed and form 
microsystems of cells of different confi gurations in the in-
tervals between tests. We believe that thanks to these closed 
circuits, sensory information can repeatedly pass through 
the same pathways (reverberate), creating the conditions for 
remembering the image of the stimulus used for formation 
of the rhythmic defensive dominant.
 Conclusions. Analysis of schemes of interactions be-
tween different neuron pairs in the sensorimotor and visual 
cortex showed that learning was associated with not only an 
increase in the number of “functional connections” between 
them, but also that trained animals respond to the test light 
with twitching of the paws when functional connections 
form closed circuits of different lengths and confi gurations 
during the intervals between tests.
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