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The formation of mineral deposit is the coupled result of multiple ore-controlling geological
factors in mineralization processes. Different ore-controlling factors affect the mineralization
typically with different mechanisms at different scales. Geographically weighted regression
(GWR) assumes the same bandwidth for all the ore-controlling factors, which is limited in
handling multiscale issues simultaneously. Multiscale geographically weighted regression
(MGWR) can provide optimal bandwidth for each independent variable. In this study, based
on the programofGWRin3Dspace,we implement theMGWRmodel inMATLAB language,
and also verify the accuracy and stability of the GWR and MGWR models by comparing the
predefined and estimated parameters of the twomodels based on designed simulation datasets.
To detect the non-stationarity andmultiple scales of the controls of geological bodies in natural
deposits, with the JinchuanNi–Cu sulfide deposit as a case study, firstly, themulticollinearity of
ore-controlling factors is excluded and the spatial non-stationarity of their impact on miner-
alization is detected; secondly, the results of twomodels are compared andhighperformanceof
both models are achieved; then, the non-stationary index and the influence scale for different
ore-controlling factors are obtained; finally, the variations of parameter estimates of the two
models are analyzed and the importance of themagma conduit to themineralization is verified.

KEY WORDS: Multiscale geographically weighted regression, Influence scale, Ore-controlling factors,
Spatial non-stationarity.

INTRODUCTION

The formation of deposits, as the result of
massive material and energy accumulation, is con-
trolled by the dynamic mineral systems of different

scales of the earth (Blewett et al., 2010; Lü et al.,
2015; Hagemann, et al., 2016). The precipitation and
enrichment of metals are closely associated with the
evolution of ore-forming fluids/melts controlled by
multiple geological factors (Guo et al., 2020). Dif-
ferent geological factors control the formation of
mineralization with different actions at different
scales (Barnes & Robertson, 2018; Carranza et al.,
2019; Groves et al., 2020; Lawley et al., 2021; Liu
et al., 2021). Exploring the multiscale non-stationary
effects of different geological factors on mineral-
ization is important to understand metallogeny of
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mineral deposits and improve the reliability of
mineral prospectivity mapping (Zuo, 2020).

Generally, different processes at different scales
should bemodeled separately in terms of the level and
essence of physical property. One model is hard to
solve multiscale problems of different processes
simultaneously (Rudd and Broughton, 2000; Wang,
2004). The research on this aspect is rarely published.
The Bayesian non-separable multiscale spatially
varying coefficient (SVC)model is an exception, which
can deal with the scales of different relationships in the
samemodel (Gelfand et al., 2003; Fotheringham et al.,
2017), but its parameters estimating isusuallyvery time
consuming (Wolf et al., 2017). Geographically weigh-
ted regression (GWR) is an SVC model and has been
used to explore the non-stationarity in relationships
between variables (Zhao et al., 2014; Huang et al.,
2020, 2021). But GWR cannot operate in different
geological processes at different scales. The newly
proposed multiscale geographically weighted regres-
sion (MGWR) is a multi-process model in which dif-
ferent processes at different scales can be carried out
simultaneously (Fotheringham et al., 2017).

The Jinchuan Ni–Cu sulfide deposit is one of the
largest magmatic sulfide deposits in the world (Li
et al., 2004; Porter, 2016). The deposit was formed in
magma conduit system, in which sulfide and olivine-
bearing magma flowed continuously in the Jinchuan
intrusion accompanied by sulfide accumulation
(Chen et al., 2013; Lightfoot and Evans-Lamswood,
2015; Duan et al., 2016;Mao et al., 2018a, b).With the
Jinchuan Ni–Cu sulfide deposit as a case study, this
study devotes to explore the non-stationarity and
multiple scales of the impact of different ore-con-
trolling factors on Ni–Cu mineralization. We first
extend the MGWR model to three-dimensional
space; and then evaluate it with simulated datasets
from aspects of model performance, bandwidth, non-
stationarity and parameters estimation accuracy;
next, we apply the GWR and MGWR models to
analyze the multiscale and non-stationary impact of
different ore-controlling factors on mineralization;
finally, we interpret the variations of parameter esti-
mates in combination with the geological conditions.

STUDY AREA AND DATASETS

Study Area

The Jinchuan Ni–Cu sulfide deposit is hosted by
the Jinchuan mafic–ultramafic intrusion, which is lo-

cated in the Longshoushan terrane, southwest margin
of North China Craton, NW China (Fig. 1a, b). The
regional NW–SE thrust faults F1 and F2 are, respec-
tively, the northern and southern boundaries of the
Longshoushan terrane, which are thought to be
formed at Neoproterozoic (Tang and Li, 1995; Song
et al., 2012). The Jinchuan intrusion is about 6500 m
long and 20–500 m wide, and dips to the southwest
with dip angles of 50�–80�. The ENE–WSW striking
faults F8, F16-1, F23 crosscut the mafic–ultramafic
intrusion and divided the Jinchuan intrusion into
segments III, I, II, IV, respectively (Fig. 1c, d). The
Jinchuan intrusion is exposed on the surface from F8

to NE–SW striking normal faults F17. The recent
studies divided the Jinchuan intrusion into two por-
tions, namely western and eastern intrusion, bounded
by F16-1 (Song et al., 2009, 2012; Duan et al., 2016;
Mao et al., 2018a, b, 2019). The western intrusion
emplaced into the Paleoproterozoic gneiss and mar-
ble, while the eastern intrusion emplaced into the
Paleoproterozoic marble and migmatites. The west-
ern intrusion is narrower, tubular-shaped and com-
prised of upper and lower lithology units (Chen et al.,
2013). The upper lithology includes fine-grained du-
nite, lherzolite, and minor pyroxenite while the lower
part mainly comprises coarse-grained dunite and
lherzolites. Sulfide mineralization in western intru-
sion is also tubular-shaped and mainly occurs near the
footwall of intrusion. Major Ni–Cu mineralization in
the western intrusion shows the disseminated char-
acteristics with relatively low grade.

The eastern intrusion shows V-shape cross sec-
tion and occurs awider feature fromwest to east (Mao
et al., 2019). The lithology of intrusion includes
medium- to coarse-grained lherzolite and dunite. The
mineral grain size of dunite generally occurs in a
variety of moderate to fine from center to outward.
Sulfide mineralization in eastern intrusion occurs as a
concentric shell with a net-textured sulfide (or mas-
sive sulfide) center, and comprises the two largest
orebodies of the Jinchuan deposit, namely Nos. 1 and
2orebodies (Fig. 1d). Thenet-textured and low-grade
disseminated ores are the dominant mineralization of
Nos. 1 and 2 orebodies. There are some massive ores
at the bottom of the intrusion.

Themagmaticconduitsystemfortheformationof
the Jinchuan Ni–Cu deposit is widely accepted (Tang
and Li, 1995; Song et al., 2009, 2012). Previous studies
have proposed that the Jinchuan Ni–Cu sulfide min-
eralization is the result of the accumulation and
emplacement of sulfide after different amounts of
prior removal before ascending shallow crust (Song
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et al., 2012; Chen et al., 2013; Mao et al., 2019). Based
on the characteristics of platinum-group elements,
chalcophile elements, petrology zonation and ore
distribution, there are most likely several subclass
magmaconduits for thewesternandeastern intrusions
(Zeng et al., 2016; Mao et al., 2019; Kang et al., 2022).
The geological models of intrusions, magma conduits
and faults in this study are displayed in Figure 2.

Data and Variables

The whole study area was divided into voxels
with the size of 10 m 9 10 m 9 10 m. The attributes
of each voxel included spatial coordinates, ore

grades and features of related ore-controlling fac-
tors. The definitions and data characteristics for
these attributes are presented in Table 1. Consider-
ing the different geochemical behaviors of Cu and
Ni in the sulfide mineralization during ore-bearing
magma flow, we selected the Cu and Ni grades as the
dependent variables in this study. Their spatial dis-
tributions in 3D space are displayed in Figure 3. The
ore-controlling factors (‘‘dFault’’, ‘‘dMC’’, ‘‘dRatio’’
and ‘‘dTrend’’) that can reflect the controls on
mineralization by several geological bodies were
extracted quantitatively according to the methods of
Mao et al. (2018a, b, 2019). They were also selected
as the independent variables. The detailed descrip-
tions of the ore-controlling factors are as follows.

Figure 1. Geological sketch of the Jinchuan copper nickel sulfide deposit: (a) the location of the Jinchuan deposit in China, (b) a

simplified geological map of the Longshoushan terrane based on Zhang et al. (2013), (c) geological map of the Jinchuan deposit based on

Liang et al. (2022), (d) a projected long section of A-A� and B-B� based on Mao et al. (2019).
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1. dFault. The shortest distance from the voxel to
the relevant fault, represents the influence de-
gree of the fault. A positive value indicates that

the voxel is located on the hanging wall of the
fault while a negative value indicates otherwise.
Although the fault that originally provided space

Figure 2. The 3D models of intrusions, magma conduits and faults.

Table 1. Data description

Variable Definitions Intrusion Voxel

numbers

Minimum Maximum Mean Standard

deviation

Cu Cu Grade Western 76,051 0.00 3.70 0.31 0.23

Eastern 179,785 0.00 6.42 0.58 0.55

Ni Ni Grade Western 76,051 0.00 7.72 0.51 0.38

Eastern 179,785 0.00 8.42 0.91 0.67

dFault Shortest distance to the fault Western 76,051 � 893.59 � 1.11 � 423.17 221.28

Eastern 179,785 � 595.64 1882.58 518.56 468.60

dRatio Ratio of distance to intrusion roof to distance to

intrusion floor

Western 76,051 0.00 1.00 0.62 0.36

Eastern 179,785 0.00 1.00 0.54 0.40

dMC Shortest distance to centerline of the magma

conduit

Western 76,051 0.00 443.85 174.00 94.81

Eastern 179,785 1.45 1611.73 324.46 371.66

dTrend Shortest distance to trend of the intrusion floor Western 76,051 � 37.88 29.32 � 0.53 4.10

Eastern 179,785 � 99.56 97.88 � 0.01 6.98

X X coordinate Western 76,051 5349 6575 5925.69 272.30

Eastern 179,785 6034 9748 7447.11 1036.98

Y Y coordinate Western 76,051 7975 9385 8628.52 277.33

Eastern 179,785 5444 7937 6953.66 545.29

Z Z coordinate Western 76,051 935 1765 1432.08 168.02

Eastern 179,785 398 1679 1057.25 220.47
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for ore pulp was transformed by later tectonic
movement, it still has a certain indication of
magma position.

2. dRatio. The ratio of distances to intrusion top
and bottom from one voxel in thickness direc-
tion, represents the relative position in the
intrusion. It may reflect the gravity differential
characteristics of Cu and Ni mineralization.

3. dMC. The shortest distance to center of the
magma conduit from a voxel, represents the
influence of the magma conduit on metal
enrichment.

4. dTrend. The shortest distance to the trend sur-
face of intrusion bottom from the voxel, repre-
sents the original geometric features of country
rocks or early fault. A positive value indicates
that the intrusion bottom is convex relative to
the trend while a negative value is otherwise. It
may reflect the mineralization during magma
flow affected by variable physical conditions
caused by country-rock or early fault geometry.

For convenience of subsequent description, the
datasets with dependent variables Cu and Ni were
represented by datasetCu and datasetNi, respec-
tively. The statistical description of the variables in
the western intrusion and eastern intrusion is shown
in Table 1 from which we find that the two intrusions
have different distribution characteristics.

Data Preprocessing

Multicollinearity and Hypothesis Test

The multicollinearity test is the basis of
regression analysis. This study employed the vari-

ance inflation factor (VIF) to justify whether multi-
collinearity exists among the independent variables.
The VIF values in Table 2 are smaller than 7.5,
which illustrates that the redundancy can be ac-
cepted (Marquardt, 1970). As the starting point for
regression analysis, the OLS (ordinary least squares)
was performed and the hypothesis testing results are
obtained (Table 3). The Jarque–bera statistics illus-
trate that the predictions are biased, the Koenker
statistics show that the modeled relationships are
unstable. All these results illustrate that the OLS
models cannot well express the relationships.

Spatial Non-Stationarity Detection

GWR model is used to detect the spatial non-
stationarity in spatial processes. In this study the

global and local R2 values, global and local spatial
autocorrelation of model residuals, and stationary
index of parameters were employed to test whether
the relationship between mineralization and its
determinants is non-stationary.

The global R2 values of GWR and OLS models

are shown in Table 4. The global R2 values of GWR
on both datasets in two intrusions are all bigger than
0.96 while those of OLS are all smaller than 0.20,
which reflect that GWR models express the rela-

tionships better than OLS models. The local R2

Figure 3. Spatial distributions of the grade of (a) Cu and (b) Ni. The whole deposit is divided into (c) western intrusion and (d) eastern
intrusion by the fault F16-1.

Table 2. Multicollinearity test result for the independent

variables

Variable Area dFault dRatio dMC dTrend

VIF value Western 1.04 1.03 1.05 1.01

Eastern 4.45 1.00 4.46 1.01
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values of the two models are illustrated in Figure 4.

Most of the local R2 values of GWR models are
bigger than 0.75, which indicates that GWR models

fit well in most areas. Both the global and local R2

values illustrate that the GWR models fit better than
OLS models and the non-stationarity exists in the
relationships.

The spatial autocorrelation of model residuals
represented by Moran�s I was employed to measure
the model ability to deal with non-stationarity be-
tween relationships of variables. The global Moran�s
I values from both models are shown in Table 4 and
the spatial distributions of local Moran�s I values are
illustrated in Figure 5. The global Moran�s I values
from GWR models are all smaller than those from
OLS models (Table 4) and the local Moran�s I values
from GWR models (Fig. 5(a-2) and (b-2)) are more
evenly distributed than those from OLS models
(Fig. 5(a-1) and (b-1)). All these results reflect that
GWR models can better decrease the spatial auto-
correlation in residuals.

The non-stationarity degree of parameter esti-
mates can be evaluated by the stationary index.
Values bigger than 1 are considered non-stationary
(Brunsdon et al., 2002; Huang et al., 2020). The
values of all the parameter estimates were bigger
than 1 (Table 5), which means that the relationships
between ore grades and their controlling factors
were non-stationary.

METHOD

The Basics of GWR in 3D Space

GWR is a local regression method that allows
the parameters varying in space. Given

Y ¼ y1; y2; ; ynf g, X ¼ x11; x12; ; xnmf g, the GWR
model is stated:

yi ¼ Xib
T
i þ ei ð1Þ

where i is the point number, ei is the error, bi is the
location-specific parameters that can be estimated:

b̂ ¼ XTWX
� ��1

XTWy ð2Þ

where W is the weight matrix, usually determined by
smooth kernel distance function and bandwidth
(Fotheringham et al. 2002a, b). In this study, the
number of nearest neighbors was adopted as the
bandwidth and bi-square kernel was adopted as the
weighting function, thus:

bi-square:wij ¼ 1� dij=Di

� �2h i2
if dij\Di

¼ 0 otherwise
ð3Þ

where dij represents the distance between points i

and j, Di is the distance determined by the band-
width. The bi-square kernel ensures that observa-
tions outside of the bandwidth have no effect to the
regression point, and observations within the band-
width closer to the specific point have a larger
weight.

The Basics of MGWR in 3D Space

The MGWR model was proposed by Fother-
ingham et al. (2017); it is a flexible model in which
processes with different levels of spatial hetero-
geneity and different spatial scales can be simulated
simultaneously. Different from the unique band-
width in the GWR model which assumes that all the

Table 3. Result of statistical significance tests

Item Western Eastern Item Western Eastern

Ni Observations Number 76,051 179,785

Joint F-Statistic 1837.81 10,224.96 Prob(>F), (8,10,800) degrees of freedom 0.000000* 0.000000*

Joint Wald Statistic 5045.88 96,485.68 Prob(> chi-squared), (8) degrees of freedom 0.000000* 0.000000*

Koenker (BP) Statistic 3045.71 6768.10 Prob(> chi-squared), (8) degrees of freedom 0.000000* 0.000000*

Jarque–Bera Statistic 502,758.46 126,702.48 Prob(> chi-squared), (2) degrees of freedom 0.000000* 0.000000*

Cu Observations Number 76,051 179,785

Joint F-Statistic 1857.86 7296.54 Prob(>F), (8,10,800) degrees of freedom 0.000000* 0.000000*

Joint Wald Statistic 5701.77 65,040.14 Prob(> chi-squared), (8) degrees of freedom 0.000000* 0.000000*

Koenker (BP) Statistic 940.46 4990.89 Prob(> chi-squared), (8) degrees of freedom 0.000000* 0.000000*

Jarque–Bera Statistic 664,094.49 510,612.28 Prob(> chi-squared), (2) degrees of freedom 0.000000* 0.000000*

*Indicates a statistically significant p-value (p< 0.01)
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explanatory variables work on the response variable
in the same scale, the MGWR model allows various
bandwidths for different explanatory variables. The

MGWR model is originally developed in python
language in 2D space (Oshan et al., 2019). We ex-
tended it to 3D space and implemented it in MA-

Table 4. Comparison of global R2 values and spatial autocorrelation of residuals

Intrusion Dependent variable Model Adjusted

R2 value

Moran�s I value Z-score

Western Cu OLS 0.089 0.051 5.064

GWR 0.961 0.005 0.490

Ni OLS 0.088 0.050 4.933

GWR 0.960 0.005 0.485

Eastern Cu OLS 0.140 0.178 12.157

GWR 0.983 0.006 0.043

Ni OLS 0.185 0.151 10.299

GWR 0.977 0.0003 0.023

Figure 4. Local R2 distributions of GWR models for (a) Cu and (b) Ni.

Figure 5. Local Moran�s I distributions of OLS and GWR models.
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TLAB language by referencing the Econometrics
Toolbox 7.0 (LeSage and Pace 2009). The formula is:

yi ¼
Xm

j¼0

bbj ei; ni; hið Þxij þ e ei; ni; hið Þ i ¼ 1 � � � n ð4Þ

where bj is the bandwidth for the jth variable,
ei; ni; hið Þ is the spatial coordinates. The calibration
of MGWR follows the logic of generalized additive
models (GAMs; Buja et al., 1989). Set fj ¼ bbjxj,

which represents the jth additive term in MGWR,
the GAM-style MGWR is expressed as (Fothering-
ham et al., 2017):

y ¼
Xm

j¼0

fj þ e ð5Þ

The model can be calibrated with a back-fitting
algorithm whose flow chart is displayed in Figure 6.
First, initialize parameter estimates to zero, or to the
results from a global or local model; and then regress

each independent variable xj to êþ f̂ j using GWR

model; finally, judge whether the convergence is
reached, if so, output the parameters and end the
calculation, else repeat the regression. The detailed
process is described in Fotheringham et al. (2017)
and the implementation code is available in the
supplementary materials (Appendix). The conver-
gence depends on the score of change (SOC), which
represents the value of the differential between
successive iterations whereby the process is deemed
to have converged. The SOCf displayed below was

adopted as the convergence function to justify
whether the iterations end by comparing its value
with a predetermined sufficiently small value.

SOCf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

j¼1

Pn

i¼1
f̂ new
ij

�f̂ old
ij

� �2

n

Pn
i¼1

Pm
j¼1 f̂

new
ij

� �2

vuuuut ð6Þ

Multiple GWR operations are required in a
MGWR model. The calibration of MGWR model is
a time-consuming process. It is seen that the MGWR
model has a much higher computational complexity
than GWR model.

Simulation Design

The original MGWR model was implemented
in python language in 2D space (Fotheringham
et al., 2017). This study extended it to 3D space
based on the GWR model (Huang et al., 2020). To
test the model effectiveness and accuracy, we de-
signed three non-stationary processes with different
scales represented by b0, b1 and b2. Figure 7 shows
their spatial distributions: b0 values were all the
same throughout the space, b1 values increased from
lower left corner to upper right corner and b2 values
formed multiple clusters. Obviously, from b0, b1 to
b2, the scale changed from big to small and the non-
stationarity became higher and higher.

The simulated datasets were constructed as:

yi ¼ bi0 þ bi1xi1 þ bi2xi2 þ ei i ¼ 1; 2; . . . ; n ð7Þ

where { x11; x21; � � � ; xn1} and { x12; x22; � � � ; xn2} are
randomly generated with a normal distribution
N(0,1) and the error item { e1; e2; � � � ; en} is randomly
generated with a normal distribution N(0,2). The
dataset size n in 2D space was 40� 40 and 20�
20� 20 in 3D space.

Model Evaluation

Using SOCf\1E� 5 as the termination crite-
rion, the MGWR model was tested and evaluated
with the above simulated datasets from four aspects:
bandwidth, model performance, non-stationarity
and estimation accuracy. The bandwidth for GWR
model was unique while the bandwidths for MGWR
model varied with independent variables. The per-
formance of both GWR and MGWR models were
measured by the adjusted R2 value. The non-sta-

tionarity of b̂ was evaluated by the stationary index
(Brunsdon et al. 2002) and the estimation accuracy

of b̂ was evaluated by the spatial distribution, bias
and its root mean squares error (RMSE).

The bias of parameter estimate was the differ-
ence between the simulated and estimated values. It

Table 5. Stationary index of parameter estimates from GWR

models

Intrusion Variable dFault dRatio dMC dTrend

Western Cu 577 174 684 41

Ni 635 164 688 35

Eastern Cu 1128 258 852 46

Ni 1281 305 920 62
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reflects the local estimation accuracy and can be
denoted as (Yu et al., 2020):

cij ¼ bij � b̂ij ð8Þ

The RMSE is formulated as:

RMSEj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼0

c2ij

s

ð9Þ

The smaller RMSEj is, the higher estimation

accuracy of b̂j is. It reflects the overall estimation

accuracy of parameter b̂j.

Model Performance

The results of GWR and MGWR models on
both simulated datasets are displayed in Table 6.
The adjusted R2 values of the GWR models on da-
taset1 and dataset2 were 0.9845 and 0.9916, respec-

tively, and the adjusted R2 values of the MGWR
models on the two datasets were 0.9859 and 0.9923.
Both models yielded high performance on the two
datasets. This reflects that both GWR and MGWR
models replicated the y accurately.

Bandwidth Evaluation

From Table 6 we find that the unique band-
width from the GWR model on 2D dataset was 38

while the bandwidths for b̂0, b̂1 and b̂2 from the
MGWR model on the same dataset were separately
430, 160 and 20. The bandwidth from the GWR
model on 3D dataset was 36 while the bandwidths
from the MGWR model on the same dataset were
separately 8000, 100 and 20. For both datasets, the

bandwidths for b̂0 were the biggest while the band-

widths for b̂2 were the smallest. This agrees with the

Figure 6. Flow chart of MGWR (Fotheringham et al. 2017).
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fact of the simulation design. That is, from b0, b1 to
b2, the scale changed from large to small.

Non-Stationarity Evaluation

Table 7 shows the stationary index values of b̂
from both models. The stationary index values on
2D and 3D datasets from both models increased

from b̂0, b̂1 and b̂2, indicating that the non-station-

Figure 7. The spatial distributions of b0, b1 and b2 in 2D and 3D space.

Table 6. The evaluation results from GWR and MGWR models

Dataset Model bmin bmax Step SOCf Adjusted R2 value Bandwidth Estimation accuracy

b0 b1 b2 RMSE0 RMSE1 RMSE2

Dataset in 2D space GWR 20 1600 1 0.9845 38 0.78 0.76 1.36

MGWR 20 1600 10 5.81E�6 0.9859 430 160 20 0.18 0.35 1.33

Dataset in 3D space GWR 20 8000 5 0.9916 36 1.04 1.19 2.11

MGWR 20 8000 20 4.36E�6 0.9923 8000 100 20 0.04 0.47 1.89
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arity increased from b̂0, b̂1 to b̂2. This is in line with
the simulation design. There was also the difference
between the two models: the stationary index values

of b̂0 from GWR were greater than 1 while those
from MGWR were less than 1; that is to say, the

simulated processes b̂0 from MGWRwere stationary
and those from GWR were non-stationary. Obvi-
ously, the MGWR results were more consistent with
the simulation design. This may be because, in the
GWR model, all the independent variables acted on
the dependent variable with the same bandwidth,
the simulated results of global processes were af-
fected by other local processes, and at the same time
the global parameters were estimated with a band-
width smaller than its own, all of which led to the
global process becoming more localized, while these
were not the case in the MGWR model.

Estimation Accuracy Comparison and Evaluation

Figures 7 and 8 respectively show the spatial
distributions of b0; b1andb2 from simulation design

and b̂0, b̂1 and b̂2 calculated from GWR and MGWR
models in 2D space. Figure 9 shows those in 3D
space. From Figs. 7 and 8, we find that the b0 values

are all the same throughout the whole space and b̂0
values calculated from both models are also evenly

distributed, b1 and b̂1 both followed linear distribu-
tions with the coordinates, and the spatial distribu-

tions of b̂2 from both models follow the similar
circular trends as that of b2. The above result sug-
gests that the distributions of the parameter esti-
mates are similar to those of design in 2D space. The
comparison of Figs. 7 and 9 shows the same simi-
larity in 3D space. There was still a small difference
between the two models: the spatial distributions of

b̂0, b̂1 and b̂2 from MGWR were more like those of
b0; b1andb2 than those from GWR.

Figure 10 shows the bias scatterplots of the two
models. The slopes of trend lines in Figure 8(a-1),
(a-2), (b-1) and (b-2) were less than one, which

illustrates that mostly the biases of b̂0 and b̂1 from
GWR models were bigger than those from MGWR.
The slopes of trend lines in Figure 10(c-1) and (c-2)
were close to one, which illustrates that the bias of

b̂2 from the two models were almost the same. At
the same time, from the comparison of RMSE for
the GWR and MGWR (Table 6), we find that the
RMSE values of parameter estimates from MGWR
are all smaller than those from GWR. The RMSE

values of b̂0 and b̂1 from MGWR are far less than
those from GWR while little difference existed in

those of b̂2 between the two models. From the
comparisons of bias distributions and RMSE values
between the two models, we find that the estimation

accuracy of b̂0 and b̂1 from the MGWR models is far
higher than that from GWR models while the esti-

mation accuracy of b̂2 from the two models is not
much different. This can be explained as the great

difference of b̂0 and b̂1 scales and high similarity of

b̂2 scales between the two models.
All the results above confirm that MGWR

models can achieve high performance, targeted
scales, realistic non-stationarity, and better estima-
tion accuracy for parameter estimates than GWR
models. We can conclude that the MGWR model
can better represent the relationships between
variables in multiscale processes with different non-
stationarity.

RESULTS AND DISCUSSION

The GWR model treats all relationships be-
tween variables in a single process while the MGWR
can deal with multiple processes simultaneously. In
this study, we assumed that the impact of each ore-
controlling factor on mineralization was a geological
process, and the MGWR model was adopted to
further analyze these processes.

Model Performance

Setting SOCf\0:0001 as the convergence crite-
rion, the MGWR model was performed on the two
datasets. Table 8 shows the performance comparison
between the GWR and MGWR models from which

Table 7. The stationary index of b̂

Dataset dimension GWR MGWR

b̂0 b̂1 b̂2 b̂0 b̂1 b̂2

2D 2.90 8.90 27.35 0.59 8.35 29.52

3D 6.59 24.57 49.04 0.12 22.89 51.26
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we find that the adjusted R2 values of both models
are all bigger than 0.95, which reflects that both
models fit well the two datasets.

Non-Stationarity Analysis

Table 9 shows the stationary index for variables
from MGWR models on the two intrusions. The
stationary index values for all the variables on da-
tasetNi were greater than those on datasetCu. This

is because the same ore-controlling factors are
adopted in the two datasets and the Ni mineraliza-
tion is richer than Cu in the same intrusion (Ta-
ble 1).

The stationary index values for variable ‘‘dMC’’
are all smaller than 1, indicating the stationary im-
pact on mineralization throughout the space. This is
consistent with the dominant role of magmatic
channel for the formation of the deposit (Song et al.,
2012; Su et al., 2014; Mao et al., 2019).

Figure 8. Comparison of b̂ distributions from two models in 2D space.
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The stationary index values for variables
‘‘dFault’’ and ‘‘dTrend’’ are all greater than 1,
indicating the spatial non-stationary impacts on the
mineralization. This reflects that the controls of the
faults and the intrusion bottom trend on mineral-
ization vary with the spatial locations.

The stationary index values for variable ‘‘dRa-
tio’’ are mostly smaller than 1, except the value on
datasetNi in western intrusion. The stationary im-
pact of ‘‘dRatio’’ on mineralization can be explained
that it represents the gravity differentiation charac-
teristics of the mineralization itself. As for the
exception, the non-stationary impact on Ni miner-
alization in western intrusion, the first reason is that
the Ni grade was higher than Cu grade, the other

may be the Ni mineralization is distributed more
concentrated in western intrusion (Fig. 11). In
summary, the impact of relative position in thickness
on Cu–Ni mineralization at Jinchuan is likely sta-
tionary.

Scale Analysis

The minimum bandwidth bmin, maximum
bandwidth bmax and bandwidth step bstep were set as

20, 10,000, 5, respectively. The two datasets got the
optimal bandwidths for GWR models with 35 in
western intrusion and 45 in eastern intrusion (Ta-
ble 8), indicating much localized processes.

Figure 9. Comparison of b̂ distributions from two models in 3D space.
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Unlike the GWR model with the same band-
width for all the parameter estimates, the MGWR
model optimizes bandwidth for each independent
variable. Table 8 shows the bandwidths to different
parameter estimates, which indicates that different
factors control the mineralization in different scales.

From Table 8 we find that the similar band-
width trends over the ore-controlling factors existed
between the two intrusions and two datasets; that is,
the bandwidth increased from b0, bdFault, bdRatio, to
bdMC. This is coincident with the fact that the for-
mation of mineralization in the two intrusions is

Figure 10. The scatterplots of bias on 2D and 3D datasets.

Table 8. Bandwidth and performance comparison of different models

Intrusion Dataset MODEL bmin bmax bstep Adjusted R2 soc f Bandwidth

b0 bdFault bdRatio bdMC bdTrend

Western Cu GWR 20 10,000 5 0.9612 35

MGWR 20 10,000 20 0.9756 0.000098 20 40 1020 7420 1600

Ni GWR 20 10,000 5 0.9595 35

MGWR 20 10,000 20 0.9766 0.000079 20 40 480 6020 5400

Eastern Cu GWR 20 10,000 5 0.9827 45

MGWR 20 10,000 20 0.9911 0.000039 20 120 1580 7280 1100

Ni GWR 20 10,000 5 0.9767 45

MGWR 20 10,000 50 0.9869 0.000031 20 120 1820 9970 1020
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substantially similar. The smallest bandwidth b0 was
20 in two intrusions, which illustrates the high
localization of the error items. The bandwidths for
variable ‘‘dFault’’ were separately 40 and 120 (Ta-
ble 1); that is, the influence buffer size of the vari-
able ‘‘dFault’’ on the mineralization was very limited
in space. The bandwidths for ‘‘dRatio’’ were med-
ium-sized, which illustrates that variables ‘‘dRatio’’
influence the mineralization moderately. The vari-
able ‘‘dMC’’ got the largest bandwidths with 6029
and 9970, which reflect that the variable ‘‘dMC’’
influenced the mineralization in a very wide range.

The bandwidths for ‘‘dTrend’’ were also mod-
erate-sized in most cases except on datasetNi in
western intrusion (Table 8). The variable ‘‘dTrend’’
had much larger bandwidth on datasetNi in western
intrusion, indicating that the influence of the western
intrusion bottom shape on the Ni mineralization was
different. This tallies with the fact that the two
intrusions have different morphology characteristics
and mineralization distributions (Mao et al., 2018a,
b). For example, the bottom shape of the eastern
intrusion was more complex and changeable than
that of the western intrusion (Fig. 2) and the Cu
grade was distributed as small clusters and the Ni

grade shows layered distributions in the western
intrusion while there was no such difference in the
eastern intrusion (Figs. 11, 3). The relatively gentle
intrusion bottom shape and larger mineralization
cluster size were perhaps the causes of the influence
of ‘‘dTrend’’ on the Ni mineralization in the western
intrusion at a wider range.

The above influence scales for different ore-
controlling factors are not only in line with the result
of above non-stationarity analysis but also consistent
with the metallogenic mechanism of the Jinchuan
Ni–Cu sulfide deposit. As the representation of the
magma conduit, the ore-controlling factor ‘‘dMC’’
influenced the mineralization at a very large scale.
This is in line with the result that the control of
‘‘dMC’’ on mineralization is a stationary process
(Table 9) and the ‘‘dMC’’ can be considered as an
essential characteristic affecting the mineralization.
The small influence scales of ‘‘dFault’’ reflect that
the influence was local and the faults had no signif-
icant impact on mineralization. The ‘‘dRatio’’
influences the mineralization in a medium scale. This
is because it is the combination of the relative
position in the intrusion with local scale and the
gravity differential characteristics of sulfide with
global attribute. Combined with the above non-sta-
tionarity analysis, we thought that the impact of
‘‘dRatio’’ on mineralization was more inclined to be
a stationary process. The ‘‘dTrend’’, representing
the morphological characteristics of the intrusion
bottom, influenced the mineralization of different
conditions at different scales, indicating that the
morphological characteristics mainly controlled
metal deposition locally.

Table 9. Stationary index of parameter estimates for MGWR

Intrusion Variable dFault dRatio dMC dTrend

Western Cu 3.8 0.8 0.4 1.1

Ni 5.8 1.5 0.7 1.9

Eastern Cu 2.4 0.7 0.5 2.9

Ni 3.5 0.9 0.6 2.9

Figure 11. The spatial distributions of the grade of (a) Cu and (b) Ni in western intrusion.
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Spatial Variability Analysis

As the results for the two datasets were similar,
only the parameter estimates on datasetCu were
further analyzed to seek the spatially varying rela-
tionships between the mineralization and its deter-
minants. Table 10 shows the statistical comparison
of parameter estimates from which we find that the
ranges and standard deviation from GWR models
were far greater than those from MGWR models.
The change of parameter estimates from MGWR
was relatively gentler than those from GWR. As the
analysis space and the influencing geological bodies
were continuous, the parameter estimates with
gentle changes from MGWR model were more
acceptable.

Owing to different spatial distributions of
lithofacies and mineralization in the two intrusions,
the values of parameter estimates for variables show
statistical difference (Table 10) that the absolute
values of each statistics of eastern intrusion are
greater than those of western intrusion. Figure 12
displays the spatial distributions of parameter esti-
mates, from which we find that totally the distribu-
tions from GWR models were highly localized and
those from MGWR were smoother. The total trends
of parameter estimates from both models for each
variable were similar. Parameter estimates from
GWR presented a small range of aggregation while

those from MGWR rendered an overall trend. The
estimated results of MGWR could present more
clear relationships between ore-controlling factors
and mineralization.

Figures 12(a-1) and (b-1) show the parameter
estimates distributions for the ‘‘dFault’’ variable
from GWR and MGWR. The large values were
preferably distributed near the faults and the magma
conduit. The values in the other areas were evenly
distributed. This demonstrates that the ore-control-
ling factor ‘‘dFault’’ contributed more to the min-
eralization along the faults in limited ranges, and
near the magma conduit. This likely implies that the
faults reflect the previous structural zones during the
metallogenic period rather than a simple post fault.
This is consistent with the characteristics of coeval
mineralization and structural deformation. The re-
sult also reflects that the magma conduit contributed
a lot on the mineralization.

The situations for parameter estimates distri-
butions of the variables ‘‘dRatio’’ (Fig. 12(a-2) and
(b-2)) and ‘‘dMC’’ (Fig. 12(a-3) and (b-3)) were
similar: the values from GWR were localized while
those from MGWR were relatively stable. The large
values from GWR were distributed near the magma
conduit and the largest values focused on the en-
trance of the magma conduit. This may be because
their influences in GWR models are affected by
other factors. The distributions from MGWR fur-

Table 10. Statistics for parameter estimates of GWR and MGWR models

Intrusion Parameter esti-

mate

dFault dRatio dMC dTrend

GWR MGWR GWR MGWR GWR MGWR GWR MGWR

Western Mean 2.05 12.68 52.38 16.57 � 51.77 � 29.37 57.94 0.89

Standard devia-

tion

1886.95 10.79 612.47 1.00 497.19 0.33 3298.93 85.56

Minimum � 40,497.91 � 291.27 � 11,527.68 11.32 � 7362.45 � 30.01 � 229,629.63 � 9927.94

First quartile � 306.67 10.64 � 50.97 16.38 � 187.02 � 29.61 � 18.82 1.48

Median � 8.88 12.56 11.55 16.97 � 21.43 � 29.45 0.00 1.76

Third quartile 304.74 14.79 128.49 17.16 117.87 � 29.21 19.75 1.99

Maximum 56,493.87 206.12 15,120.71 20.61 11,205.45 � 27.85 93,314.41 1700.92

Eastern Mean � 193.80 23.28 86.57 16.89 � 496.91 � 135.33 157.97 45.70

Standard devia-

tion

8360.04 48.95 1226.02 1.73 4384.89 4.01 11,079.47 2736.08

Minimum � 213,218.34 � 2888.32 � 27,506.07 � 3.39 � 89,119.66 � 190.35 � 931,120.66 � 160,429.77

First quartile � 2040.36 20.42 � 168.10 16.41 � 1716.50 � 135.40 � 21.13 0.00

Median � 82.87 25.37 7.40 17.36 � 254.89 � 135.00 0.00 1.71

Third quartile 1702.28 28.33 290.07 17.74 835.34 � 134.00 24.69 2.96

Maximum 216,509.08 2280.00 28,769.14 29.66 90,659.44 � 126.74 742,658.59 275,418.91
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ther reflect that the effects of the variables ‘‘dRatio’’
and ‘‘dMC’’ on the mineralization were stationary
through the space.

Figure 12(a-4) and (b-4) exhibit the parameter
estimates distributions for the ‘‘dTrend’’ variable
from the two models. The values from the two
models were highly localized and the large values
occurred near the magma conduit, especially in the
areas of downward enrichment. A possible reason is
that when rising magma suddenly enters the open
magma chamber, magma flows back and accumu-
lates downward due to gravity (Barnes et al., 2017;

Yao et al., 2020). This confirms the contribution of
the magma conduit to mineralization.

In summary, the impacts of relative position in
thickness and distance to magma conduit on min-
eralization were stationary global processes and
those of distance to fault and intrusion bottom
morphology were non-stationary local processes.
The greatest impacts occurred near the magma
conduit. This verifies the contribution of the magma
conduit to the mineralization.

Figure 12. Spatial distributions of parameter estimates from GWR and MGWR models.
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CONCLUSIONS

To quantitatively explore the multiscale non-
stationary impact of ore-controlling factors, the
MGWR model was extended to three-dimensional
space and implemented with MATLAB language.
Simulation tests in 2D and 3D space verified the
accuracy and stability of the MGWR model. The
GWR and MGWR models were applied to the
Jinchuan Cu–Ni sulfide deposit and the multiple
scales and non-stationarity of the influence were
analyzed: both models achieved good performance.
The parameter estimates from MGWR had smaller
variance and more obvious overall trends than
GWR. The non-stationarity analysis from MGWR
illustrated non-stationary impacts of distance to
fault, intrusion bottom morphology and stationary
impact of distance to magma conduit and relative
position in the thickness direction of intrusion. The
scale analysis reflected the relative size of influence
range of different ore-controlling factors on miner-
alization. The distance to magma conduit and rela-
tive position in thickness affected the mineralization
globally while the distance to fault and intrusion
bottom morphology influenced the mineralization
locally. The parameter estimates distributions of
local processes showed that the high-impact areas
appeared near the magma conduit. Such a study may
develop a new way for quantitatively exploring the
non-stationarity and scales of the influence of dif-

ferent geological bodies on mineralization in com-
plex tectonic and magmatic activities.
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% compute mul�-scale geographically weighted regression 
func�on result = mgwr (y,x,east,north, al�tude,info);   

%       y = dependent variable vector  
%       x = explanatory variable matrix   
%       east = x-coordinates in space   
%       north = y-coordinates in space   
%       al�tude = z-coordinates in space    
%       info = a structure variable with fields: 
%       info.dtype       = 'bi-square'     for bi-square weigh�ng 
%       info.bwCriterion  = 'AIC'    for AIC criterion 
%                      =‘CV’       for CV criterion 
%       info.qmin   = minimum number of neighbors to use 
%       info.qmax   = maximum number of neighbors to use 
%       info.step   defaults: 1 
%       info.itera�ons  = maximum itera�ons 
%       info.SOC_f =  SOC_f limit 
% ---------------------------------------------------                                     

beta_final=zeros(n,k); 
result1=ols(y,x); 
for j=1:k 
    beta_final(:,j)=result1.beta(j,1); 
end; 
Ebs=zeros(n,1); 
f=zeros(n,1); 
ff=x.*beta_final; 
f=sum(ff,2); 
Ebs=y-f; 
SOC_f=999999999.9; 
ff_new=ff; 
�=1; 
q_final=zeros(itera�ons,k); 
soc=zeros(itera�ons,1); 
while(SOC_f > soc_limit && �<=itera�ons) 
    for mk=1:k 
       ym=zeros(n,1); 
       f1=ff(:,mk); 
       ym=Ebs+ f1; 
       xm=x(:,mk); 
       �c; result2 = gwr (ym,xm,east,north ,al�tude,info); toc; 
       q_final(�,mk)=result2.q; 
       beta_final(:,mk)=result2.beta; 
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