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Data mining is a promising new tool in mineral exploration. Here, we combined data-mining
procedures with spatial prediction modeling for gold exploration targeting in the Buhweju
area in southwestern Uganda. It was employed in a data-rich context of unavoidably partly
redundant and correlated information that offered challenges in extracting significant rela-
tionships. Our study utilized a database of co-registered digital maps related to gold min-
eralization. It comprised Landsat TM, Shuttle Radar Topographic Mission (SRTM), and
geophysical (radiometric and magnetic) datasets for geological and structural mapping. The
locations of 15 orogenic gold deposits and 87 gold occurrences were obtained from the
Geological Survey of Uganda database. These were considered direct evidence of the
presence of gold mineralization. The geological and geophysical settings at the gold deposit/
occurrences locations were based on geological units as host rocks, contacts, and structural
elements, together with continuous field values of geophysics, radiometry, and other re-
motely sensed imagery. A gold exploration targeting proposition (Tp) was defined as: ‘‘That
a point p within the study area contains a gold deposit given the presence of spatial evi-
dence.’’ All outstanding combinations of spatial evidence were obtained using empirical
likelihood ratios. With a data-mining strategy, the ratios were filtered and modeled to
identify stronger spatial associations, to rank the study area according to the likelihood of
future discoveries, to represent ranking quality, to estimate associated uncertainty, and to
select prospective target areas. The empirical likelihood ratios facilitated a transparent
strategy for generating prediction patterns and extracting small prospective target areas with
higher likelihood of discovery and lower-ranking uncertainty. Conclusions are provided on
the knowledge extraction for prospectivity with further data and the challenges of reducing
the arbitrariness of decisional steps.

KEY WORDS: Data mining, Empirical likelihood ratio, Prediction pattern, Target pattern, Uncer-
tainty pattern, Gold prospectivity, Uganda.

INTRODUCTION

Geological, geochemical, geophysical, and re-
mote sensing digital data are critical ingredients in
mineral exploration targeting for new mineral re-
sources (Chung, 2003). Commonly, within a study
area, the context of known mineral deposits of dis-
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tinct genetic types is characterized by spatial mod-
eling to identify the setting of future occurrences at
locations at some distance from the known ones
(Chung et al., 2002; Fabbri and Chung, 2008;
Agterberg, 2014; Chung and Fabbri, 2020). In a
data-driven task, the detail and resolution of the
digital data collected for the purpose are assumed
sufficient for modeling. When the data are deemed
incomplete or unsatisfactory, an expert�s knowledge
is used to complement the data and the spatial
relationships to obtain model- or knowledge-driven
maps of the likelihood of future deposit discovery
(Harris and Sanborn-Barrie, 2006; Harris et al.,
2015; Ford et al., 2019; Montsion et al. 2019). A vi-
sion of a future exploration information system
(EIS) was proposed by Yousefi et al. (2019). It is
based on a mineral-system concept of connecting
incompletely known critical mineralization pro-
cesses to mappable criteria in a workflow. More re-
cently, Yousefi et al. (2021) pointed out the risks of
overfitting in data-driven applications or the risk of
biases in knowledge-driven applications.

Herbert (2012) and Herbert et al. (2014) inte-
grated regional geoscience data to generate a new
geological interpretation of a poorly mapped part of
southwestern Uganda. The purpose of the data
integration was to model prospectivity for orogenic
gold (Groves et al., 1998) using historical geological
maps, field observations, digital terrain models,
Landsat TM data, and airborne geophysical data.
Given the scarcity of geological information and the
absence of significant gold deposits, a mineral-sys-
tem approach (McCuaig et al., 2010) based on ex-
pert knowledge was applied to link conceptual
mineralization models with data available at a re-
gional-level scale. Evidence was used for the source
of gold, active mineralization pathways, and physical
traps at a district scale (1:100,000) for a study area of
roughly 46,875 km2. Their approach implied a
workflow similar to the one envisaged by Yousefi
et al. (2019, 2021). A total of 15 gold deposits and 87
gold occurrences were recorded in the study area. A
knowledge-driven multi-class index overlay method
was employed to model prospectivity, and eight sub-
areas covering 2,500 km2 were identified and rec-
ommended for follow-up exploration (Herbert et al.,
2014). However, using expert opinion is potentially
biased toward the expert�s view, and so it becomes
hard to separate it from the data-driven numerical
support provided by data.

Likewise, Bahiru and Woldai (2016) integrated
geologic mapping and updated the geology of a
much smaller study sub-area (1,801 km2) in south-
western Uganda that contains the gold deposits and
occurrences previously studied by Herbert et al.
(2014). They tested the relationships between
lithology and structures in the sub-area using
Landsat TM, shuttle radar topographic mission
(SRTM), and potential field datasets (radiometry
and magnetics), which were subsequently validated
directly in the field, generating a richer and more
detailed database. They obtained better lithologic
differentiation, structural data, and more detailed
relationships with gold deposits and occurrences.
The locations of the sub-area, the gold deposits, and
the occurrences are shown in Figure 1.

Our project’s goal was to use data-driven
modeling in a data-rich and much smaller sub-area
in southwestern Uganda. For this, we used a large
part of the database created by Bahiru (2011),
Herbert (2012), Herbert et al. (2014), and Bahiru
and Woldai (2016), converted into co-registered
digital images related to geology, structure, and gold
mineralization in the Buhweju area (see Figs. 1, 2
and 3). Having at our disposal a data-rich database
focused mainly on lithology mapping, however,
represented a challenge for navigating through many
different numerical relationships and extracting the
most relevant and interpretable ones. Therefore, our
data-mining exercise was meant to test the relevance
of the various digital maps of the database to iden-
tify the ones more closely related to the presence of
orogenic gold deposits and gold occurrences using
empirical likelihood ratios (ELRs). After describing
the geology and metallogeny of the Buhweju area
and its database, we introduce a mathematical
model of spatial relationships. The modeling is to
identify and measure the numerical support of
relationships with the presence of gold occurrences
and deposits and integrate them into digital images.
These are termed prediction patterns and express the
likelihood of future deposit discovery. Next, a
strategy of data-mining experiments is proposed
within a workflow leading to the identification of the
most supportive data and some of the possible pre-
diction patterns of undiscovered gold deposits. We
discuss the data-mining experiments for applying
that strategy. We finally develop an example of using
top ranks of prediction patterns in prospectivity
mapping.
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THE BUHWEJU STUDY AREA: REGIONAL
AND LOCAL GEOLOGY, STRUCTURE,
MINERALIZATION, AND DIGITAL
DATABASE

Three major Proterozoic belts underlie central
and west Uganda: (1) Paleo-Proterozoic Buganda-
Toro metasediments (Westerhof et al., 2014); (2)
Meso-Proterozoic Karagwe-Ankolean (Kibaran)
series in the southwest of the country consisting of
metamorphosed rocks varying from slightly cleaved
mudstone, shales to mica schists; and (3) Neo-
Proterozoic sediments (Gabert, 1990). Paleozoic,
Mesozoic, and Cenozoic rocks related to the rift
activities cover the country�s eastern and western
borders, whereas Tertiary and recent sediments fill
the down-faulted western rift.

The area covered comprises various lithological
units, ranging from Archaean to Paleo-Proterozoic
metamorphic complexes. The rock units (Fig. 3) are
represented by tonalite–trondhjemite–granodiorite
rocks (or TTG) in the northern part and plutonic
rocks and dykes belonging to the �Toro Complex�,
assigned to the Rukungiri Suite (Westerhof et al.,
2014) in the southern part. The TTG comprises

medium-grained, equigranular-to-porphyroblastic
rocks with variable granitoid compositions. Uncon-
formably overlying the Rukungiri Suite is the Bu-
ganda Group, representing a sedimentary sequence
comprising mica schists with quartzite and con-
glomerate interbeds metamorphosed and migma-
tized. Its sedimentary features reflect shallow-water
deposition with argillites, shales, and sandstones in a
smooth succession. The thinner sandstones and
quartzites are lenticular. Unconformably overlying
the Buganda Group is the Buhweju Group, con-
sisting of psammitic and pelitic rocks. The latter
group is a sedimentary sequence comprising paras-
chist with occasional quartzite that has been meta-
morphosed and migmatized. The Buhweju Group
comprises six formations: Isingiro, Lubare, Nsika,
Kasyoha and Munyoni Formations, in the order of
succession from bottom to top (Fig. 3). Quartz veins
and doleritic dykes represent intrusive rocks older
than Pleistocene but younger than the Buhweju
Group (Combe, 1934; Reece, 1959, 1961; Bahiru,
2011). The beddings, cleavages, and linear structures
mapped on various lithological units of the Buhweju
Group led to an interpretation that it was folded
with WNW-trending axes and the intensity of fold-

Figure 1. Buhweju study area and location in southwestern Uganda. Gold deposits are shown as 15 red dots and gold occurrences as 87

white squares, with a digital elevation model as background. The presence of gold deposits and occurrences is represented as digital

images in Figure 2 to match the digital database.

2291Data Mining of a Geoscience Database Containing Key Features



ing increasing to the south. Pleistocene rocks occu-
pying the rift valley floor are poorly consolidated
and comprise fine-grained sand, silt, clay, and highly
calcareous volcanic tuffs and conglomerates with
occasional lavas (Combe, 1934; Reece, 1959, 1961).

Our investigation showed that most gold
occurrences were restricted to specific orientations
and host rocks (Bahiru, 2011; Bahiru & Woldai,
2016). Density analysis of surface and subsurface
lineaments also reveal that the Buhweju Group
rocks and the undifferentiated schist and amphibo-
lites are highly impacted by surface lineaments,

whereas the basement rocks are affected mainly by
subsurface lineaments. Two large gold occurrence
clusters were identified in the area. A low magnetic
anomaly and high lineament density characterize the
gold cluster at Kitaka, while the gold occurrence at
the Katonga mine is hosted by mudstone and Lubare
quartzite and underlain by a high magnetic anomaly
(Bahiru, 2011; Bahiru & Woldai, 2016). The NNW-
and NNE-trending faults spatially control these gold
clusters, and their intersection determines the
localization of most Buhweju gold occurrences. The
two structural trends in the study area could

Figure 2. Components of the Buhweju area database: digital images used in the analyses to establish spatial relationships with the

presence of gold occurrences or deposits. The numbers 1, 2, and 3 next to short names indicate the respective 3 Landsat TM bands,

here combined and displayed with pseudo-colors (value for each band 0–255). Only lithology is categorical (see Fig. 3), and all other

images are continuous fields. The fault lines in black were converted to distance functions ranging from 0 to 9648 m. All images

consist of arrays (rasters) of pixels of 30 9 30 m resolution. The raster dimension was 1327 pixels 9 1508 lines. The short names

were used to list the individual bands input to each analysis. Occurrences and deposits were two separate images here combined into

one and used as direct evidence of mineralization, while the remaining images were treated as indirect evidence expressing the local

settings of gold mineralization.
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potentially be viewed in terms of the NNW-trending
Geita (in Tanzania) and the NNE-trending Twan-
giza (in the Democratic Republic of Congo) controls
on gold mineralization (Magnus, 2003; Banro Cor-
poration, 2006).

Data concerning known mineral occurrences
were obtained from the database, maps, and publi-
cations of the Department of Geological Survey and
Mines, DGSM, in Entebbe, Uganda. With this da-
tabase in hand, Bahiru (2011), Bahiru and Woldai
(2016), and Herbert (2012) extracted 102 known
gold occurrences in the study area. Very few scien-
tific and/or company reports are available for all
these occurrences. Therefore, in subsequent field-
work, they observed and recorded all interesting
indications of various mineral commodities, includ-
ing structural elements and potential rock types
hosting mineralization. As shown in Figure 4, most
gold occurrences are located north of the NW–SE-

striking fault A-B. Specifically for the current work,
15 sites were assigned as deposits and 87 as occur-
rences, as outlined in the DGSM database. The term
deposit in this paper refers to an established oro-
genic gold deposit where the host mineral is known
and has been or is currently in production. The de-
posits are represented as red stars in Figure 4.

Much of the present land surface of Uganda has
suffered intense weathering over geological time.
These processes have led to some materials being
concentrated in ores, most notably gold, tin, pyro-
chlore (niobium, tantalum, and rare earth), and
apatite (African Mining, 2000; Lehto et al., 2014a).
For example, in the Buhweju study area, fresh
bedrock is only apparent on the tops of hills and
along streams and deep valleys. Much of the so-
called alluvials or gold occurrences referred in the
current work are soft, mica- and kaolinite-rich
material and laterite or formations molded by

Figure 3. Geological map of the Buhweju area (modified after Bahiru (2011), Lehto et al. (2014a), Bahiru and Woldai (2016).
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weathering of vast volumes of the underlying Ar-
chaean greenstones that can reach depths of 15–
20 m and extends over tens of square kilometers
(Wayland, 1936; The Republic of Uganda, 2006;
Lehto and Kato, 2014). The 87 occurrences corre-
spond mostly to current or historically exploited
small, high-grade alluvial gold findings (Wayland,
1936; Herbert 2012; Lehto et al., 2014a, b) and in the
database of the DGSM are evident in the form of
shallow underground adits or quarries (88.5%),
alluvial diggings (8%) and prospection (3.5%). On
the Buhweju plateau, gold-bearing solutions were
mostly diffuse, resulting in general impregnations
rather than definite veins formation. According to
Combe (1939), the absence of veins carrying eco-
nomic quantities and gold concentrations indicates
that the alluvial deposits were significantly clustered
due to weathering. Gold production has been by
small producers, including licensed and illegal min-
ers or artisans. However, production statistics from
these mines are only indicative, given that most
operators are not licensed, and even the licensed
ones tend to under-declare; hence, most of the gold
is transacted through dubious channels (Nagudi,
2011).

Information on the gold deposits in the Buh-
weju–Mashonga study area was derived from the
work of various investigators: Barnes (1961), Reece
(1961), Pekkala et al. (1995), Bahiru (2011), Herbert
(2012), Lehto (2014a, b), and the final Geological
map of Uganda (GTK, 2012). The 15 gold deposits
were excavated in-depth so that their locations cor-
respond to gold mines for which the host rocks are
known to represent orogenic mineralization. These
include (1) Mashonga, (2) Rwengwe, (3) Bisisa, (4)
Katenge Valley, (5) Katonga Swamp, (6) Bisya, (7)
Muti River, (8) Chonyo River, (9) Anderson�s Reef,
(10) Kyangwahanda River, (11) Buckley�s Reef, (12)
Kampono, (13) Nyamunyobwa River, (14) Kitaka,
and (15) Kitomi River. Limited scientific and com-
pany reports are available for all these localities.
Even the database of the Department of Geological
Survey and Mines, DGSM, in Entebbe, Uganda,
from which the source for the 15 gold deposits was
extracted, does not shed light on host rocks, miner-
alogy, structural controls, size, and grade. However,
recent field exploration by Bahiru (2011) and Bahiru
& Woldai (2016), and lithological interpretations
reveal the Lubare quartzitic sandstone and mud-
stone, shale, and clay of the Rakai Formation, as the
dominant country rocks hosting gold deposits in the
Buhweju plateau. Gold workings below the plateau

are hosted by different bedrocks, such as schist,
gneiss, granites, and amphibolites (Bahiru, 2011).
For example, in the surveyed mine areas, Kitaka and
Kampona Pb–Zn mines in quartz veins have gold
disseminated throughout the host rock (Nyakecho
and Hagemann, 2014; Bahiru and Woldai, 2016).
Recent exploration in the structurally controlled
intrusion-hosted mesozonal Mashonga gold district,
SW of the study area, shows much of the gold ex-
tracted by artisans derived from lateritic gravel and
conglomerate lying on kaolinized bedrock (Fig. 5a).
The thickness of the weathered profile ranges from
12 to 20 m (Herbert, 2012). Quartz veins do exist,
and some are being reworked (Taylor, 2007).

According to Wayland (1934), reef gold occurs
in the structurally controlled sandstone-hosted and
Meso-zonal Muti mine (Fig. 5b), forming stockwork
of quartz stringers transecting a quartzite bore of
pyrite and fine gold. Wayland (1934) also indicated
gold occurrences in the sandy transition of the
quartzite and pelites. Three sulfide veins have been
identified (Reece, 1961) at Kitaka and Kampono.
For example, in the Kitaka mine, galena, chalcopy-
rite, gold, and Fe-sulfide-bearing quartz veins are
quarried in a medium-grained meta-dolerite, em-
placed in schist and gneiss. In these mines, coarse
crystalline epithermal gold occurs in vugs lined by
quartz crystals (Reece, 1961). In addition to the
observations described above, specific indications
may be considered ‘‘favorable’’. The first being
provided by granite-quartzite contacts, which are
not always visible; they are also more common in
higher than lower valleys. The second is a concen-
trate obtained by panning (from the bottom of the
gravels and higher parts); this is rich in pegmatite
minerals, particularly zircon, monazite, and fre-
quently rutile are conspicuous (Wayland, 1936), and
a small percentage of tiny cassiterite crystals,
sometimes of relatively long, bi-pyramidal form, is
generally present.

Table 1 summarizes the gold deposits in the
Buhweju–Mashonga area derived from the work of
various investigators: Barnes (1961), Reece (1961),
Pekkala et al. (1995), Bahiru (2011), Herbert (2012),
Lehto et al. (2014a), Magnus (2003), and the final
Geological map of Uganda. The spatial distribution
of the 87 gold occurrences identifies just the mapped
rock units at those locations. The source of miner-
alization is not well known. Therefore, to some ex-
tent, their distribution around the 15 gold deposits
reflects the intensity of exploration. For this reason,
modeling of undiscovered gold occurrence will be
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used as a descriptor of gold occurrences of presently
uncertifiable origin but representing geologic set-
tings similar to those of the gold deposits. The cor-
responding prediction patterns and their
characteristics were initially suspected of being of
potential support in interpreting the prediction pat-
terns of the 15 gold deposits. They have been used in
the analyses under the assumption of potential
support.

The digital database containing the 15 gold
deposits and the 87 gold occurrences is portrayed in
Figs. 1, 2, and 4. It was digitized at spatial resolution
of 30 m. Occurrences and deposit locations were
represented as 3 9 3 pixel neighborhoods within a
study area of raster 1327 9 1508 = 2,001,116 pixels,
i.e., � 1801 km2. They were considered direct evi-
dence of the presence of gold mineralization. The

geologic settings of their neighborhoods in the study
area were represented by geologic units, lithologic
contacts, structural elements, and continuous field
values of geophysics, radiometry, and other re-
motely sensed imagery, all digitized at the same
resolution of 30 m (Fig. 2). All digital images of
direct and indirect evidence of gold mineralization
have the same spatial resolution, raster dimension,
and pixel-to-pixel correspondence so that the spatial
relationships are established and quantified.

THE EMPIRICAL LIKELIHOOD RATIO
FUNCTION

The ELR is one of the well-known mathemat-
ical tools used together with other Bayesian models

Figure 4. Map showing known gold deposits and gold occurrences in the Buhweju–Mashonga area. The 87 gold occurrences

consist of shallow underground adits or quarries (blue triangles), alluvial workings (green circles), and prospections (purple

squares). The geology of the area and the structure are in the background. Lines A–B indicate the NW–SE-striking fault

separating the gold mineralized area to the north.
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for spatial prediction modeling in mineral explo-
ration and natural hazard assessment (Bonham-
Carter, 1994; Chung et al., 2002; Chung, 2006; Chung
and Fabbri, 2020). It is based on joint conditional
probability to establish spatial relationships. For
instance, in gold exploration, the likelihood ratio is
the ratio of the normalized frequency of a map unit
or value in the presence of gold deposits to the
normalized frequency in their absence within the
study area. A corresponding ratio is computed for
the presence and absence of gold occurrences. The
function is used to classify a study area into classes
of similarity with areas with the presence of miner-
alization.

Chung and Fabbri (1993) developed a mathe-
matical framework for various spatial prediction
models, termed ‘‘favorability function.’’ As dis-
cussed by those authors and Chung (2003), several
representations within well-established mathemati-
cal frameworks can be used as a favorability func-
tion: the conditional probability function, the
likelihood ratio (also the certainty factor function or
the weights of evidence function as special cases of
the likelihood ratio function), the Dempster–Shafer
belief functions, and the fuzzy set membership
functions (Chung and Fabbri, 1993, 2001). We used
only one representation in this contribution, namely
the ELR, to express spatial relationships and the
favorability function. The reason for using it is the
easiness of interpretation of likelihood ratios and the

combination rules of the function (Chung and Fab-
bri, 1998). Chung (2006) discussed the function and
its assumptions in detail in the context of landslide
hazards. Here, we summarize the function and its
use in mineral exploration.

A fundamental assumption in spatial prediction
modeling is that what is modeled is the occurrence
of future events given the known characteristics of
past events through time and space. In practice, this
is done for a study area, of given dimensions, which
is hopefully large enough to represent those char-
acteristics numerically. Over a study area, besides
the distribution of known events in point-form or of
relatively small sizes, the distribution of corre-
sponding categorical map units or continuous fields
is used to capture the characteristics of the events�
typical conditions or settings. Past and future events
(known and expected, respectively) are assumed to
be relatively rare in a study area and to belong to a
distinct, recognizable genetic type.

For instance, in mineral exploration, known
events can be occurrences of gold mineralization or
gold mines whose spatial distribution is related to
the geological, geochemical, and geophysical maps
and images, including those from various remote
sensors. Their units or their value ranges are thought
by experts to characterize or support the distribution
of the location of mineralization events. It means
that two types of spatial distributions are established
and compared: that of the events and those of the

Figure 5. Artisanal gold miners working in the gold mine areas of a Mashonga and b Muti. At Mashonga, gold is in a steep NE–SW-

trending shear zone composed of soft schistose material and kaolinized granite veins with only minor quartz veins. The soft mica-rich rock

in the shear zone has resulted from strong deformation, hydrothermal alteration, and weathering into clay-rich material (Lehto et al.,

2014b). The panning sites are located downstream from an old gold reef composed of a quartz stockwork in a light-colored sericite

quartzite (or sandstone) matrix at Muti River workings. The river cuts this reef, which is most likely the gold source.
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supporting map units and continuous value ranges.
The basic idea is that one should know enough past
events in a study area to extract their distinct char-
acteristics. It is expected within a study area to have
future events (undiscovered gold occurrences or
deposits) of the same type and setting and at some
distance from the known ones.

The ELR function model is then applied to
compare and integrate the normalized frequencies
of categorical map units and the density functions of

continuous fields in the presence of the events with
those in their absence within the remainder of a
study area. To do this, a proposition is constructed
so that a mathematical expression can be supported
to be true using the data available in a study area. In
our case, the events are the set of locations of gold
deposits or gold occurrences (i.e., their spatial dis-
tribution in the study area), which we term direct
supporting pattern (DSP) of the proposition. An
example of the proposition (Tp) is: ‘‘That a point p in

Table 1. Attribute data of the 15 gold deposits used in the study area

FID E_WGS

84UTM

N_WGS

84UTM

Deposit_Na Type Comment

1 182,934 � 42,564 Mashonga Au Quartz vein stockwork in muscovite schists of the Igara Formation adjacent to

granitic intrusion. Proximal to thrust contact of Meso-Proterozoic conglom-

erate (Nyakecho & Hagemann, 2014)

2 212,081 � 39,452 Rwengwe Au Gold deposit associated with the gently west-dipping mylonitized and brecciated

quartzite

3 205,331 � 35,802 Bisisa Au The host rocks of the gold are dominantly sandstone belonging to the Lubare

Quartzitic sandstone Formation

4 208,581 � 35,002 Katenga

Valley

Au Katenge Valley gold is found a few kilometers SW of Muti River. According to

Hooper (1964), the hydrothermal alteration was confirmed by the Ugandan

Mines Department records. The host rock comprises Quartzitic sandstone

belonging to the Lubare Formation

5 203,681 � 34,502 Katonga

Swamp

Au Old mine striking N20W; Swampy area. The gold occurrences at Katonga

Swamp are hosted by Lubare quartzitic sandstone and mudstone of Rakai

Fm. It is underlain by relatively high magnetic material (Bahiru, 2011; Bahiru

& Woldai, 2016)

6 215,581 � 33,802 Bisya Au Weathered granite on top. The host rock comprises conglomerate and grit of the

Isingiro Formation

7 209,384 � 31,588 Muti River Au According to Nyakecho and Hagemann (2014), the gold in the Muti River is

hosted by poorly sorted, fine- to medium-grained quartzitic sandstone con-

glomerate and grit overlaying granite exposed 4 km East of the Muti River

working

8 202,481 � 30,802 Chonyo Riv-

er

Au Alluvial gold was found in the downstream and valleys of the Chonyo River. A

large part of the weathered sediments observed are by-products of the Mica

schist and amphibolite higher in the Buhweju plateau

9 206,181 � 24,952 Anderson�s
Reef

Au, Sn,

Ta

Quartz vein stockwork in Paleo-Proterozoic schists, conglomerate and grit of the

Isingiro Formation. Cassiterite, tantalite, and tin are found associated with

gold. The mineralization covers a wide area

10 215,081 � 22,302 Kyangwaha-

nda River

Au According to Bahiru (2011), the rock type associated with this area’s gold de-

posit is granite gneiss

11 216,769 � 19,324 Buckley�s
Reef

Au Several small quartzite reefs and stringers penetrated Quartz vein stockwork in

Paleo-Proterozoic mica schists with psammite and gneiss interbeds derived

from sandstone

12 198,388 � 17,424 Kampono Au, Pb,

Cu

Gold occurs in quartz veins associated with Pb and Cu

13 197,281 � 16,102 Nyamunio-

bwa River

Au Unknown source of gold, but it is found in the area covered by granitoid gneiss

(TTG)

14 200,474 � 14,393 Kitaka Au, Ag,

Pb,

Au

Coarse crystalline gold occurs in vugs lined by quartz crystals and was the last

(epithermal) phase of complicated mesothermal sulfide mineralization. Gold

is hosted by meta-granodiorite and meta-dolerite. It is associated with a

predominantly Pb–Zn–Ag deposit

15 201,370 � 14,800 Kitomi Riv-

er

Au Coarse crystalline gold occurs in vugs lined by quartz crystals in sulfide veins

(Nyakecho and Hagemann, 2014)
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the study area contains gold occurrences | the pres-
ence of additional spatial evidence’’. Here Tp stands
for true, p refers to a point or pixel, and the symbol
‘‘|’’ indicates ‘‘given.’’ We termed the spatial evi-
dence, additional to the presence of the occurrences,
indirect supporting patterns (ISPs) of the proposi-
tion. Such spatial evidence is the presence at the
location of the occurrences of categorical map units
and continuous field values that indicate, are related
to, and support the presence of the gold occurrences
(deposits, mines) whose location they share.

The computation of ELRs is simplified by
having a database for the study area in which both
the DSP and the ISPs are digitized at the same
spatial resolution and are in point-to-point corre-
spondence (although this is not a restriction). Fig-
ure 2 shows the digital images used to model future
gold discoveries in the Buhweju study area. Lithol-
ogy (L) is a categorical image with 21 units. Fault
line (fl) is a continuous distance image of values
ranging from 0 to 9648 m, and the other continuous
field images, from as1 to tern3, have values ranging
from 0 to 255. The remaining two images are loca-
tions of the 15 gold deposits and the 87 gold occur-
rences represented as index numbers from 1 to 15 or
1 to 87, respectively.

Tables 2 and 3 show the likelihood ratio values
for the individual lithology units in correspondence
of the 15 gold deposit pixels and the 87 gold occur-
rence pixels, respectively. Table 4 shows the likeli-
hood ratio values for the 15 gold deposits for all the
different ISPs in the study area analyzed. We used
the short name Au15dp to indicate the image of
locations of the 15 gold deposits within the study
area. For the modeling analyses, they represent a
DSP. Similarly, the short name Au87oc indicates the
image of locations of the 87 gold occurrences as
another DSP. Table 5 shows the ratio values for the
Au87oc.

Examples of normalized frequencies, density
functions, and ELR functions for gold deposits are
shown in Figure 7. Besides empirically generating
the ratios DSP/ISPs for each point of the study area,
the ELR is also used as a modeling function in
several conditional independence assumptions to
combine, by its rules, the ratios into integrated val-
ues (Chung, 2006). ELR values can range from 0 to
infinity. For instance, an ELR value of 2 indicates a
frequency in the presence of occurrences that is
twice the one in their absence in the remainder of
the study area, and thus, it supports the proposition.
A value close to 1 indicates the same frequency in

the presence and the absence of occurrences,
therefore not supporting the proposition (i.e., no
contrast between the two conditions). Integrated
ELR values, also ranging from 0 to ¥, are then used
to separate areas likely to have deposits from areas
not known to have them. Even if we expect more
deposits and occurrences in the study area, being
relatively rare, they are considered not to affect the
remainder of the study area numerically.

As Chung (2006) discussed, the modeled abso-
lute values of integrated ELRs are not inter-
pretable beyond their ranks being simply relative
measures of dissimilarity. For this reason, it is rec-
ommended to convert the ordered sequence of ELR
values (from maximum to minimum) into a conve-
niently small number of equal area ranks, such as
200 ranks, corresponding each to 0.5% of the study
area. The 200 ranks can then be visualized as pre-
diction patterns by grouping them into more com-
prehensive wider ranges for lower ranks and
narrower ranges for higher ranks, i.e., of gradually
greater relative support.

Obtaining prediction patterns, however, is only
the initial step of the process of prediction modeling.
The generation of a prediction pattern is based on the
assumption that the characteristics of undiscovered
gold deposits or occurrences are the same or are
similar to the known ones in the study area. Several
strategies can then be thought of to assess the pre-
dictive quality and stability of the prediction patterns,
including their uncertainty. The ELR function model
of spatial prediction can also be used as a tool for data
mining to extract from the study area�s database the
most supporting ISPs that generate geologically
interpretable prediction patterns. Recent works by
Chung and Fabbri (2020) discussed unresolved re-
search issues in prediction modeling for mineral
occurrence target mapping. As demonstrated earlier
by Chung and Fabbri (1998), the results of applying
the three functions termed weights-of-evidence
(WoE), certainty factor (CF), and ELR provide an
identical equal-area ranking of a study area when
using the same input data.

The modeling applied established spatial rela-
tionships between pixels representing the deposit or
occurrence locations (in our case, 3 9 3 pixel
neighborhoods) and the corresponding locations of
the categorical map (lithology, L) and continuous
field values (distance from fault lines, fl, and the 28
bands from as1 to tern3) listed in Figure 2. The
tentative numerical strategy used for the Buhweju
area is discussed next.
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Table 2. Lithology units, their number of pixels, normalized frequencies within the Au15dp (15 9 3x3 = 135 pixels), within the remainder

of the area (2,000,981 pixels), and the corresponding ELRs, in the Buhweju study area

ID Lithology unit Pixels Freq-occurrence Freq-non-occurrence ELR

L1 Gravel, sand, silt and clay 56,369 0.0667 0.0282 2.3669

L2 Rift Alluvium & lacustrine deposit 89,695 0.0000 0.0448 0.0000

L3 Tuff, agglomerate, lava and K-rich Volcanics 162,310 0.0000 0.0811 0.0000

L4 Laterite 23,295 0.0000 0.0116 0.0000

L5 Lava 6482 0.0000 0.0032 0.0000

L6 Quartzite with minor pelitic bands 115,971 0.0000 0.0580 0.0000

L7 Pelite with minor quartzite bands 391,850 0.0000 0.1959 0.0000

L8 Mylonitized and brecciated quartzite 40,046 0.0667 0.0200 3.3319

L9 Quartzitic sandstone 310,854 0.2667 0.1553 1.7167

L10 Conglomerate & grits 121,680 0.0667 0.0608 1.0964

L11 Mudstone, shale, clay 22,661 0.0000 0.0113 0.0000

L12 Less weathered schist 72,822 0.0593 0.0364 1.6284

L13 Pelitic schist 83,824 0.0000 0.0419 0.0000

L14 Undif. mica schist and amph. (high K/Th anomaly) 108,933 0.0667 0.0544 1.2247

L15 Undif. mica schist and amph. (>K,<Th anomaly) 130,370 0.1333 0.0651 2.0467

L16 Quartz dyke 23,621 0.0074 0.0118 0.6275

L17 Granitoid gneiss (TTG) 86,914 0.2000 0.0434 4.6059
L18 Granite (1987 A ± 5 MA) 15,912 0.0667 0.0080 8.3883

L19 Porphyritic granite gneiss 98,974 0.0000 0.0495 0.0000

L20 Variable granite Gneiss 36,241 0.0000 0.0181 0.0000

L21 Water body 2292 0.0000 0.0012 0.0000

In bold are ELRs ‡ 2 and their corresponding lithology units

Table 3. Lithology units, their number of pixels, normalized frequencies within the Au87oc (87 9 3x3 = 783 pixels), within the remainder

of the area (2,000,333 pixels), and the corresponding ELRs, in the Buhweju study area

ID Lithology unit Pixels Freq-occurrence Freq-non-occurrence ELR

L1 Gravel, sand, silt, and clay 56,369 0.0230 0.0282 0.8160

L2 Rift Alluvium and lacustrine deposit 89,695 0.0038 0.0448 0.0854

L3 Tuff, agglomerate, lava, and K-rich Volcanics 162,310 0.0038 0.0811 0.0472

L4 Laterite 23,295 0.0000 0.0116 0.0000

L5 Lava 6482 0.0000 0.0032 0.0000

L6 Quartzite with minor pelitic bands 115,971 0.0000 0.0580 0.0000

L7 Pelite with minor quartzite bands 391,850 0.0000 0.1959 0.0000

L8 Mylonitized and brecciated quartzite 40,046 0.0000 0.0200 0.0000

L9 Quartzitic sandstone 310,854 0.1483 0.1553 0.9537

L10 Conglomerate and grits 121,680 0.1162 0.0608 1.9120

L11 Mudstone, shale, clay 22,661 0.0575 0.0113 5.0832

L12 Less weathered schist 72,822 0.0920 0.0364 2.5284
L13 Pelitic schist 83,824 0.0000 0.0419 0.0000

L14 Undif. mica schist and amphibolite (high K, Th anomaly) 108,933 0.1379 0.0544 2.5353

L15 Undif. mica schist and amphibolite (>K,<Th anomaly) 130,370 0.2644 0.0651 4.0628

L16 Quartz dyke 23,621 0.0230 0.0118 1.9483

L17 Granitoid gneiss (TTG) 86,914 0.1188 0.0434 2.7365

L18 Granite (1987 A ± 5 MA) 15,912 0.0115 0.0080 1.4458

L19 Porphyritic granite gneiss 98,974 0.0000 0.0495 0.0000

L20 Variable granite Gneiss 36,241 0.0000 0.0181 0.0000

L21 Water body 2292 0.0000 0.0012 0.0000

In bold are ELRs ‡ 2 and their corresponding lithology units
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DATA-MINING QUESTIONS
AND STRATEGIES

Data mining is the process of discovering pat-
terns in large datasets involving methods at the
intersection of machine learning, statistics, and da-
tabase systems. It is the analytical steps of the so-
called knowledge discovery in databases (KDD)
process. It has been applied to mineral exploration
in areas ranging from mineral prospectivity predic-
tion (e.g., Barnett and Williams, 2006) to geologic
terminology interpretation of mining reports (Hol-
den et al., 2019). Examples of challenges addressed
by data mining are: sparse, imbalanced labels of
mineral occurrences, varied label reliability, and a
wide range of data uncertainty (Granek and Haber,
2015); massive size, multiple sources, multiple types,
multi-temporality, non-stationarity, and hetero-
geneity of geological prospecting big data (Zuo,

2020); lack of transparency of ‘‘black box’’ ap-
proaches that use deep learning networks for which
exploration data are poorly suited (Dashaurnais
et al., 2017); comparison of data-mining algorithms
in terms of prediction and processing efficiency
(Chen and Wu, 2019) or the determination of pre-
dictive variables based on mineral-deposit models
(Wang et al., 2022).

In our case, the Buhweju database resulted
from efforts to improve the geologic knowledge of
the corresponding study area to assist in mineral
exploration eventually. Its focus on the compilation,
documentation, and fieldwork verification of Bahiru
and Woldai (2016) was to obtain explicitly a detailed
geological map by integrating previous maps, direct
field observations, and remotely sensed imagery. It
means that all spatial data captured provided infor-
mation strictly related to the presence of different
lithologies that could only in part be mapped in the

Table 4. Main ELR values for predictions with the distribution of the 15 gold deposits,Au15dp as DSP and as ISPs, the complete set listed

in Figure 2: L_flas123hg123td123k123rtp123kn123th123u123tern123

Au15dp as DSP with ISPs ELR values

Lithology (21) L1 2.37, L8 3.33, L9 1.72, L10 1.10, L11 0.00, L12 1.63, L14 1.22, L15 2.05, L16 0.63, L17 4.61,

L18 8.39;
Fault lines, fl distance (0-11064 m) fl ‡ 2 0.00–260.00 (0.00 max 2.46);

Analytical signal (0–255, bands 1, 2, 3) as1 ‡ 1, 0.00–24.48 (0.00 max 1.66), 90.78–157.34 (134.38 max 1.99), 176.71–209.36

(195.84 max 1.44); as2 ‡ 2, 35.95–63.24 (53.30 max 2.48); as3 ‡ 1, 0.00–14.53 (6.63

max 1.02), 148.15–175.70 (161.16 max 1.78), 201.20–250.67 (232.56 max 1.66);

Horizontal gradient (0–255, bands 1, 2, 3) hg1 ‡ 2, 85.17–107.86 (93.58 max 3.09), 168.05–224.91 (211.14 max 2.36); hg2 ‡ 2,

97.15–118.32 (105.31 max 3.13); hg3 ‡ 2, 58.65–87.46 (79.30 max 4.37);

Tilt derivative from reduced to the pole, RTP

magnetics (0–255, bands 1,2,3)

td1 ‡ 1, 0.00–28.56 (0.00 max 1.40), 59.16–163.71 (121.63 max 1.64); td2 ‡ 2, 213.44–

234.35 (226.19 max 2.21); td3 ‡ 2, 83.13–106.59 (94.09 max 2.97);
Gamma-ray data potassium (0–255, bands 1,2,3) k1 ‡ 2, 125.46–168.56 (145.09 max 3.53); k2 ‡ 1, 73.44–89.25 (80.32 max 1.10), 115.00–

153.25 (125.71 max 1.26), 162.95–174.68 (169.58 max 1.04), 230.78–255.00 (255.00

max 1.92); k3 ‡ 1, 0.00–84.15 (43.61 max 1.31);

Total magnetic intensity RTP (0–255, bands

1,2,3)

rtp1 ‡ 2 27.54–48.20 (37.43 max 4.30); rtp2 ‡ 2 181.82–200.94 (192.02 max 2.62); rt-

p3 ‡ 2 188.87–27.54 (23.46 max 2.07);

Normalized gamma- ray data potassium (0–255,

bands 1, 2, 3)

kn1 ‡ 1, 0.00–159.38 (90.27 max 1.53), 203.24–226.44 (214.97 max 1.15); kn2 ‡ 1, 42.59–

66.56 (58.81 max 1.14), 113.98–203.49 (193.55 max 1.24), 225.68–255.00 (234.60 max

1.08); kn3 ‡ 2, 185.39–202.73 (195.59 max 2.14);

Gamma-ray data thorium (0–255, bands 1, 2, 3) th1 ‡ 1, 0.00–162.69 (51.77 max 1.67); th2 ‡ 1, 118.06–136.68 (127.75 max 1.21), 210.12–

255.00 (255.00 max 1.98); th3 ‡ 2, 26.26–68.60 (37.74 max 3.24), 133.87–157.08

(146.37 max 2.18);
Gamma-ray data uranium (0–255, bands 1, 2, 3) u1 ‡ 1 37.99–88.74 (50.23 max 1.65), 99.45–164.73 (137.95 max 1.68), 234.60–255.00

(255.00 max 1.07); u2 ‡ 1 10.20–37.48 (29.32 max 1.61), 69.62–128.26 (105.31 max

1.95), 191.25–225.68 (210.63 max 1.52); u3 ‡ 1 0.00–23.46 (0.00 max 1.31), 64.52–

124.18 (99.45 max 1.25), 235.37–255.00 (255.00 max 1.13);

Ternary signal comb. of K, Th and U (0–255,

bands 1, 2, 3)

tern1 ‡ 2, 104.80–134.38 (120.10 max 2.88); tern2 ‡ 2, 25.24–41.31 (38.89 max 2.27);

tern3 ‡ 1, 0.00–84.66 (71.15 max 1.35), 121.13–167.03 (135.66 max 1.77), 186.41–

203.75 (194.31 max 1.14)

The long name is the list of lithology, fault lineament distance and all the bands of continuous field values maps. Abbreviations for

categorical ISPs are as in Table 2: L1-21. Next to the name of continuous ISPs in column 1 is a numeric range within brackets. Values are

bold if ELR ‡ 2.00. The corresponding range of classes is in italics, with the maximum class and ratio in brackets
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field. Because it contains information on the distri-
bution and characteristics of a few gold deposits and
several gold occurrences (15 and 87, respectively)
and 29 digital maps of unavoidably partly redundant
and correlated data, the database offers the oppor-
tunity of applying data-mining strategies using spa-
tial prediction models and fast processing steps. In
particular, it allows considering label reliability of
mineral occurrences, data uncertainty, multiple
sources of information, and transparency of pro-
cessing.

We have considered just a part of the database
to be modeled by a favorability function. Chung and
Fabbri (1993) discussed a variety of such functions.
In particular, the ELR function (Chung et al., 2002;
Chung, 2006) was used here to identify and model
strategic sequences of computational steps leading
to knowledge discovery, e.g., the suitability of da-
tabases for gold mineralization prospecting. In par-

ticular, answers to questions like the following can
be considered forms of knowledge discovery from
our Buhweju study area.

1. Which maps, here termed ISPs, once converted
into ELR images, are more supportive of the
proposition so that we can separate them from
the redundant or ineffective ones?

2. How ‘‘good’’ are the more supported prediction
patterns?

3. How different are the gold deposit prediction
patterns from those of the gold occurrences?

4. Can we use the gold occurrence distribution, as
DSP, to predict the location of the known gold
deposits and vice versa?

5. Can we partition a DSP, such as the gold de-
posits, using prediction pattern ranks and inter-
pret the subgroups� distribution differences and
characteristics?

Table 5. Main ELRs for predictions with the distribution of the 87 gold occurrences,Au87oc as DSP and as ISPs, the complete set listed in

Figure 2: L_flas123hg123td123k123rtp123kn123th123u123tern123

Au87oc as DSP with ISPs ELR values

Lithology (21) L1 0.82, L8 0.00, L9 0.95, L10 1.91, L11 5.08, L12 2.53, L14 2.54, L15 4.06, L16 1.95, L17 2.74,

L18 1.44;

Fault lines, fl distance (0-11064 m) fl ‡ 1, 0.00–1507.90 (0.00 max 1.86);

Analytical signal (0–255, bands 1, 2, 3) as1 ‡ 2, 37.70–57.63 (47.68 max 2.90); as2 ‡ 1, 194.82–251.43 (226.95 max 1.55); as3 ‡ 1,

0.00–29.98 (19.89 max 1.17), 152.49–179.52 (164.98 max 1.24), 211.40–243.78 (230.01

max 1.31);

Horizontal gradient (0–255, bands 1, 2, 3) hg1 ‡ 2, 132.34–159.12 (146.88 max 2.19); hg2 ‡ 1, 65.79–95.11 (77.52 max 1.15),

113.22–144.84(130.81 max 1.39), 170.59–225.17 (206.30 max 1.10), 233.84–255.00

(255.00 max 1.08); hg3 ‡ 1, 0.00–127.75 (100.98 max 1.82);

Tilt derivative from reduced to the pole, RTP

magnetics (0–255, bands 1,2,3)

td1 ‡ 1, 0.00–27.79 (0.00 max 1.41), 143.56–178.25 (162.43 max 1.29); td2 ‡ 1, 0.00–

21.42 (3.82 max 1.07), 64.77–139.74 (75.99 max 1.15), 164.73–195.84 (181.30 max

1.09); td3 ‡ 1, 57.38–64.26 (60.69 max 1.03), 87.72–142.03 (122.91 max 1.42), 170.79–

239.45 (225.42 max 1.42);

Gamma-ray data potassium (0–255, bands 1,2,3) k1 ‡ 1, 0.00–42.07 (0.00 max 1.49), 90.01–228.23 (127.24 max 1.91); k2 ‡ 1, 170.34–

255.00 (203.49 max 1.60); k3 ‡ 1, 0.00–37.99 (29.58 max 1.05), 64.26–84.40 (79.05 max

1.27), 128.26–162.44 (144.58 max 1.68), 232.56–255.00 (254.49 max 1.46);

Total magnetic intensity RTP (0–255, bands

1,2,3)

rtp1 ‡ 1, 27.54–41.56 (34.17 max 1.37), 85.17–229.25 (209.35 max 1.50); rtp2 ‡ 2,

189.98–207.83 (200.43 max 2.10); rtp3 ‡ 1, 0.00–32.38 (6.63 max 1.94);

Normalized gamma- ray data potassium (0–255,

bands 1, 2, 3)

kn1 ‡ 1, 0.00–118.83 (91.29 max 1.36), 199.41–230.27 (213.69 max 1.34); kn2 ‡ 1,

124.18–166.52 (147.39 max 1.30), 217.26–255.00 (255.00 max 1.21); kn3 ‡ 2, 127.24–

162.18 (144.58 max 2.61);
Gamma-ray data thorium (0–255, bands 1, 2, 3) th1 ‡ 1, 0.00–108.37 (0.00 max 1.99), 131.83–201.20 (179.52 max 1.33); th2 ‡ 2, 73.69–

88.48 (80.32 max 2.13); th3 ‡ 1, 24.48–85.42 (78.29 max 1.51), 128.52–162.18 (145.10

max 1.58), 196.35–203.75 (199.92 max 1.07), 230.78–255.00 (255.00 max 1.89);

Gamma-ray data uranium (0–255, bands 1, 2, 3) u1 ‡ 1, 225.42–255.00 (255.00 max 1.66); u2 ‡ 2, 26.01–30.85 (28.56 max 2.01); u3 ‡ 2,

92.82–119.08 (106.59 max 2.11)

Ternary signal comb. of K, Th and U (0–255,

bands 1, 2, 3)

tern1 ‡ 2, 0.00–23.71 (9.69 max 2.81); tern2 ‡ 2, 0.00–24.22 (0.00 max 2.35); tern3 ‡ 1,

0.00–100.21 (53.55 max 1.86), 159.38–173.15 (166.26 max 1.07)

The long name is the list of lithology, fault lineament distance and all the bands of continuous field values maps. All the abbreviations for

categorical ISP lithology units are as in Table 1: L1-21. Next to the name of continuous ISPs in column 1 is a numeric range within brackets.

Values are bold if ELR ‡ 2.00. The corresponding range of classes is in italics, with the maximum class and ratio in brackets
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The following are strategic steps that have tenta-
tively been selected and followed. They imply a
workflow (e.g., Ford et al., 2019, Figure 1) of data
compilation and preparation (Step 1), mapping of
spatial supports (Steps 2–3), testing the usefulness
and uncertainty of prediction maps (Steps 4–11),
production of mineral potential maps and assess-
ment of results (Step 12). Figure 6 shows a chart of
these strategic steps.

(1) Use in turns the DSPs (deposits, Au15dp or
occurrences, Au87oc) and all ISPs to com-
pute the ELR values representing separation
power between the presence of mineraliza-
tion and presumed absence in the study area.
ELR values for the two types of DSPs are
given in Tables 4 and 5. They were obtained
using normalized frequencies of the categor-
ical ISP, with 21 lithology units, L1-21, and the
density functions for all 28 continuous field
ISPs, from fl, as1, as2, as3, …, to tern3 (short
names listed in Fig. 2). They link the DSPs
and ISPs to the prediction patterns. System-
atically use lithology units and fault linea-
ment distances (L_fl) together with nine sets
of three bands for all other continuous ISPs
(e.g., as1, as2, as3 separately and as123 to-
gether) to generate prediction patterns to
interpret and compare them visually. This is
to familiarize with supportive and not sup-
portive ISPs generating, respectively, higher
and lower ELR values and isolate the sup-
portive ones.

(2) Set an ELR value threshold for supporting
ISPs, e.g., ‘‘all ISPs with ELR values close to
or higher than 2.00’’ (as a rule of thumb).
Discard, because ineffective, all ISPs with
lower ELR values and retain all the others.

(3) Generate prediction patterns using as ISPs
only those with ratio values above the
threshold. They are L, fl, …, tern3, listed in
Tables 4 and 5 in bold fonts. Note that, be-
cause of the strength of support shown by L
and fl, if necessary for interpretation, use
these two and one or more of the more sup-
porting ones. Repeat also without L and fl
but then show the geologic boundaries over-
laid as vectors. The boundaries are a visual
help in interpreting noisy patterns.

(4) Use the iterative cross-validation of sequen-
tial exclusion of 1, Au15m1dp (m stands for

minus) and of 5, Au87m5oc, to obtain and
compare the resulting prediction-rate curves.

(5) Compare predictions within the DSP
Au15dp, or Au87oc, and between the two
DSPs, Au15dp and Au87oc, by cross-valida-
tion. Based on numerical results and inter-
pretation of prediction patterns using
Au15dp as DSP or Au87oc, decide which
prediction patterns are preferable and signif-
icant.

(6) Reconsider sequentially the prediction pat-
terns obtained using one-by-one all accepted
ISPs (ELR � 2 or ELR ‡ 2) for visual
inspection. Why a visual inspection? This is
because, not knowing, initially, how to mea-
sure similarities and differences between
relative rankings, visual interpretation allows
associating prediction patterns (fixed relative
ranks of equal area groupings) with geologic
knowledge and detecting ‘‘redundancies,
similarities, and deterioration of area conti-
nuity’’ at a glance in pairwise comparisons.
Exclude all ISPs that generate redundancy or
disturbance of pattern. Later, we can easily
automate the process.

(7) Aggregate accepted ISPs to generate new
prediction patterns for visual evaluation (re-
call that two ISPs appear indispensable: L
and fl).

(8) Once acceptable subsets of ISPs to generate
Au15dp or Au87oc prediction patterns are
obtained, use again the sequential cross-val-
idation procedures applied earlier, namely
Au15m1dp and Au87m5oc. Compare the
benefits of using the reduced set of ISPs to
generate new prediction patterns and associ-
ated prediction-rate curves. Are these curves
better (steeper) than the ones obtained in
Step 5? Use the Au15dp to cross-validate the
prediction pattern generated with Au87oc as
DSP, and vice versa. Is the prediction-rate
curve better than the one obtained in Step 5?
This is to assess whether it is possible to im-
prove the prediction quality. If not, it will
mean that we have finished demonstrating
database�s predicting capability and, conse-
quently, its usefulness in mineral prospectiv-
ity.

(9) As done in step 5, compare predictions within
the DSP Au15dp, or Au87oc, and also be-
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tween the two DSPs, Au15dp andAu87oc, by
cross-validation. Based on numerical results
and interpretation of prediction patterns
using Au15dp as DSP or Au87oc, decide
which prediction patterns are preferable and
significant to predict the Au15dp.

(10) Obtain Target Patterns and Uncertainty Pat-
terns, after Step 8, as median rank and range
of ranks of the prediction patterns from the
cross-validation processes. Combine them

into Combination Patterns to identify areas of
lower uncertainty in the study area.

(11) Explore further the congruity of the 15 gold
deposit settings. Separate Au15dp into well-
predicted and poorly predicted groups using
Au15m1dp procedures. Get the ELR values
for the separate groups and display their
distribution for interpretation. What is caus-
ing the separation into two groups? From
what we know from the database, is it justi-

Figure 6. Analytical steps in gold prospectivity modeling in the Buhweju study area. The vertical arrow

indicates the comparison of prediction-rate curves, the horizontal one the integration of ranks.
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fiable to consider them as one group or split
into two or more and repeat the analyses?

(12) Extract the convenient part of the study area
with the higher ranks and the lower uncer-
tainty to guide in prospecting for gold. Use
cost/benefit criteria to delimit the high-pri-
ority prospective areas with lesser uncer-
tainty of ranking.

L and fl are of fundamental support to the
proposition, and patterns without them are harder to
interpret and appear very noisy. The data-mining
steps were used to evaluate all ISPs using DSP, ei-
ther the deposits, Au15dp, or the occurrences,
Au87oc, which obviously have a different geologic
significance in terms of prospectivity, i.e., charac-
teristic signatures in the database. The specific suit-
ability of the database has been explored via the
ELR modeling procedure leading to information
extraction. The process can be fine-tuned and auto-
mated for larger datasets, but the essential steps
have been identified. An important aspect of the
process area is its transparency, simplicity, inter-
pretability and general applicability beyond the
present study. The following section provides the
results of the various experiments on the Buhweju
study area.

DATA-MINING EXPERIMENTS

Prediction modeling with ELR functions was
considered a functional means of navigating through
a complex database unavoidably containing many
conditionally dependent digital images, the ISPs,
poorly congruent 15 gold deposits, and 87 gold
occurrences, the DSPs. The computation of ELR
values, the generation of prediction patterns using 29
ISPs, and a fixed set of rank classes were found to be
fast and practical. Visual comparison of patterns in
organized sequences was also found conveniently
fast. As to the prediction-rate curves and histograms,
use was made of a spreadsheet. The procedure fol-
lowed intends to be detailed, transparent, and widely
applicable.

The following subsections describe the main
results leading to the extraction of the suitability of
the database of supporting the proposition men-
tioned in ‘‘The Empirical Likelihood Ratio Func-
tion’’ section. They document the characterization
of the ISPs, the generation and validation of the
prediction patterns, the subsequent computation of

Target and Uncertainty Patterns, and an example of
congruity analysis of the gold deposit inspired by
those patterns. Finally, an attempt was made to ex-
tract prospective areas.

Characterization of Indirect Supporting Patterns

Having at our disposal in the database several
digital maps converted into supporting spatial evi-
dence, the ISPs, i.e., images of spatial relationships
as ELR values, became the first priority to measure
their usefulness to the ELR prediction modeling. A
first step in the analysis was to obtain the ELR
values for the 15 gold deposits from all lithologic
units (Table 2). Lithology is the only categorical ISP
in the database. The table shows the unit ID, the
lithology unit name, the corresponding number of
pixels occupied in the study area, the frequency in
correspondence of the occurrence pixels of the 15
gold deposits, the frequency in the remainder of the
study area, and the likelihood ratio, ELR, in the last
column to the right.

As we can see in Table 2 for the 15 gold de-
posits, lithology units L1, L8, L15, L17, and L18 most
support the proposition. For instance, the frequency
value of 0.0667 for unit L8 corresponds to 9 out of
the 135 pixels representing the position of one gold
deposit. The remaining 40,046–135 = 39,911 pixels
are the frequency 0.0200 of
2,000,116—135 = 2,000,981 pixels in the remainder
of the study area. The resulting ratio is 0.0667/
0.0200 = 3.3319. Of course, the statistics, when
comparing areas of 135 pixels with areas of over two
million pixels, are coarse. Nevertheless, this repre-
sents what we know from the database. The area
occupied by the gold occurrences is 783 pixels and in
Table 3 for the 87 gold occurrences, it is the units
L11, L12, L14, L15 and L17 that most support the
proposition. In addition, L10 and L16 show ELR
values rather close to 2 (1.91 and 1.95, respectively).

Let us now consider the statistics relative to all
the ISPs. Table 4 shows ELR values of the 29 ISPs of
the database for the 15 gold deposits, Au15dp. Note
the selected ratios for the units of the lithology ISP,
also listed in Table 2. Table 5 shows the ratios ob-
tained for the gold occurrences, Au87oc, ISPs. Ob-
serve the main differences and similarities in ratio
values for lithology units in Tables 2 and 4. In par-
ticular note the high values for Au15dp of L1 (2.37),
L8 (3.33), and L18 (8.39) in Table 4 for the deposits,
and the low ratios for Au87oc of L1 (0.82), L8 (0.00),
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Figure 7. Empirical frequency function, density functions, and likelihood ratio functions for selected ISPs using Au15dp as DSP: a

lithologic units, b fault line distance, c band 2 of analytical signal, and d band 3. ELR values ‡ 2 are good discriminators. See explanations

in the text.
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and L18 (1.44) in Table 5 for the occurrences. High
lithology unit ratios in common for deposits and
occurrences are: L15 (2.05 and 4.06) and L17 (4.61
and 2.74), respectively. The ELR values of the
continuous-field ISPs identify the numeric ranges
corresponding to the ratios ‡ 2, or when such ratio is
not reached, ELR values ‡ 1 listing also the maxi-
mum observed. Such simplifications in the
table avoid displaying the diagrams of frequency
distribution and likelihood ratios like the ones in
Figure 7.

Figure 7 shows some of the ELR functions,
whose characteristics are synthesized in Tables 2 and
4 for the gold deposits, Au15dp. The histogram in
Figure 7a1 compares the normalized frequency of
each of the 21 lithology units in the presence of the
15 deposit pixels (15 9 9 = 135), blue columns, with
the corresponding one of the remainder 2,000,981
pixels in the study area, red columns. In Table 4, the
corresponding values for the lithology units, L1-L21,
the fault lineament distance, fl, and analytical signal
bands 2 and 3, as2-as3.

The histogram in Figure 7a2 shows the corre-
sponding ratio values. Units L1, L8, L17, L15 and L18,
have ratios close to or higher than 2.00. They pro-
vide strong support to the proposition in (1) and
separate the areas with presence from those with the

absence of deposits. Figure 7b1 shows the fault lin-
eament distance density function in the presence of
the deposits, blue curve, and in the remainder of the
study area, red curve. As we can see in Figure 7b2,
the corresponding ratios show higher values up to
2.46 only for short distances< 260 m, showing the
separation of the pixels in the presence of occur-
rences from the ones in their absence. Such separa-
tion by fault lineament distance is weaker for the
gold occurrences that reach a maximum ratio value
of 1.86 for distances< 1507 m when comparing the
respective values in Tables 4 and 5.

Figures 7c and d show the analytical signal�s
density functions and likelihood ratio functions of
bands 2 and 3. Band 2 in Figure 7c2 shows good
support in separating the presence and absence of
occurrences with a peak at 2.48, while band 3 in
Figure 7d2 shows lower support with peaks at 1.78
and 1.66. A complete list of such numerical support
is shown in Tables 4 and 5 for the 15 gold deposits
and the 87 gold occurrences, respectively. The
selection of well-supporting ISPs was made consid-
ering the values in Tables 4 and 5. All ISPs providing
ratios close to, or above 2 were used to obtain ELR
prediction patterns (Fig. 8) for the deposits and the
occurrences, Au15dp and Au87oc, separately.

Figure 8. ELR prediction patterns using only the ISPs with ratios ‡ 2. a Pattern for Au15dp_L_flas2hg1td3k1rtp1kn3th2tern1, whose

ratios are listed in Table 4. b Pattern for Au87oc_L_flas1hg1rtp2kn3th3u3tern1, whose ratios are listed in Table 5. The long names are

sequences of the DSP and the ISPs being used in the analysis, from lithology, fault lines and so on, listed in Figure 2.
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Tables 4 and 5 were considered decision
tables for proceeding further in the data-mining
exercise. They were used to group the relevant ISPs
and generate the prediction patterns mapping their
support (Fig. 8). The patterns in the illustration were
obtained by equal area ranking of the prediction
scores, initially computed as real numbers ranging

from zero to infinity. They were sequenced in
decreasing order, from maximum to minimum, and
then converted into 200 equal-area ranks, each cor-
responding to the 0.5% of the study area, i.e.
2,001,116/200 � 10,006 pixels. This is a general ro-
bust procedure of relative ranking visualization and
interpretation.

Figure 9. Fitting- and prediction-rate curves. In a they are for Au15dp, using all the ISPs with ELR ‡ 2

with cross-validation Au15m1dp of the prediction pattern in Figure 8a (gray and red curves), and with the

prediction pattern of Au87oc shown in Figure 8b (blue curve). In B they are for Au87oc, using all the

respective ISPs with ELR ‡ 2 with cross-validation of Au87m5oc in Figure 8b (gray and red curves), and

with the prediction pattern of Au15dp shown in Figure 8a (blue curve).
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The ranks of interest in the two prediction pat-
terns (colored using the pseudo-color lookup table of
the legend to indicate the groups of ranks) are the
top 30% (from 70.0 to the top 1% class, i.e. from
light green to violet) and in particular the top 10%
(i.e., from 90.0 to the top 1%, i.e., from orange to
violet). The two patterns reveal sharp differences in
the spatial configuration of the top ranks as a con-
sequence of the differences in support. Note that the
ISPs selected for the generation of Figure 8a differ
from those selected for Figure 8b. Figure 8a, for
Au15dp, shows a dispersed distribution of high ranks
that extends to the southeastern and southern parts
as a narrow belt, also reflecting, only in part, the
distribution of the 15 gold deposits (see Figs. 1 and
4). Figure 8b, for Au87oc, shows large patches of
high ranks from the center area to the north–
northeasterly areas where the gold occurrences are
concentrated (see Figs. 1 and 4).

In addition, the distributions or clusters of the
deposits and occurrences used to integrate the ISP
support throughout the patterns are represented as
gray fitting-rate curves in Figure 9. The horizontal
axes represent cumulative proportions of study area
pixels classified as having relatively higher ranks vs.,
on the vertical axes, the corresponding cumulative
proportions of gold deposits and occurrences. For
this, the 200 equal-area ranks were placed in
decreasing order on the horizontal axis, and the
cumulative proportions of deposits or occurrences in
the corresponding ranks are on the vertical axes. For
instance, the top 10% ranks in the gray curve of
Figure 9a indicates that the corresponding area
contains 85% of the deposits. The top 20% instead
contains 95%, and the top 30% contains 100%. As
to the occurrences, the gray curve in Figure 9b, the
corresponding proportions are 52%, 86% and 95%.
The fitting rates represent only how well the DSP
aggregates in the equal area ranks that classify the
study area.

However, having obtained the prediction pat-
terns does not yet indicate the ‘‘goodness’’ as pre-
dictors of gold deposits or occurrences. For this, we
need some form of cross-validation, in which we use
a subset of deposits or occurrences to model the
pattern and another subset to verify whether the
remainder of deposits or occurrences happens to be
located within relatively high ranking classes in the
pattern. This is discussed next.

Validation of Prediction Patterns

Strategies of cross-validation were applied to
obtain prediction-rate curves and assess the predic-
tion capability of the patterns. Such curves are dif-
ferent from the fitting-rate curves, although
constructed similarly. Not having the time distribu-
tion of discoveries but needing to test such capability
(i.e., ‘‘goodness’’) of the selected set of DSP and
ISPs, we pretended not to know the presence of
some of the occurrences or deposits. We used the
remainder to generate the prediction patterns and
then used the ‘‘unknown’’ ones to validate those
patterns. For the Buhweju study area, we had 15
gold deposits, termed Au15dp, and 87 gold occur-
rences, termed Au87oc. We decided to use a
sequential exclusion strategy of 1 gold deposit and of
5 gold occurrences, respectively. Other strategies
could also be used.

The sequential cross-validation process pro-
vided a prediction rate for each gold deposit and
occurrence. They have been displayed as red pre-
diction-rate curves in Fig. 9a and b, naming the
processes as Au15m1dp (m stays for minus) and
Au87m5oc, respectively. The red prediction-rate
curve in Figure 9a tells us how well the sequences of
15 prediction patterns from the iterations classify
(predict) each ‘‘next’’ deposit in the validation pro-
cess, i.e., how well the 15 deposits are classified in
the 15 corresponding patterns. The red prediction-
rate curve in Figure 9b tells us how well the se-
quences of 17 prediction patterns from the iterations
classify sets of 5 ‘‘next’’ occurrences. They were
generated iteratively, each using the remaining 83
occurrences. Clearly, the red prediction-rate curve
for deposits in Figure 9a is less efficient than that for
occurrences in Figure 9b and is also far less steep
than the corresponding fitting-rate curve. The con-
cavity and convexity of the red curve in Figure 9a
might indicate that the database signature of the
gold deposits reflects the presence of two or more
distinct settings. We will consider this aspect in the
Congruity Analysis of Gold Deposit Database sub-
section.

Note that in Figure 9b the red curve is above or
touching the blue one, telling us that Au87m5oc, red
curve, is a better curve than that for Au15m1dp,
blue curve, which indicates how well the prediction
pattern of the gold deposits predicts the gold
occurrences. However, in Figure 9a we have the
reverse situation in which the occurrence prediction
pattern, the blue curve, is a better predictor of the
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gold deposits than that of the red curve deposits. It
must be anticipated that only the higher part of the
prediction-rate curves, say the top 30% or even
20%, indicates relevant support to the modeling�s
proposition. This is because the uncertainty of the
ranks tends to increase for the lower ranks. This is
observed in the uncertainty patterns discussed in the
next section.

We tentatively used the prediction pattern of the
87 gold occurrences and validated it with the set of
15 gold deposits and, vice versa, used the prediction
pattern of the 15 gold deposits and validated it with
the set of the 87 gold occurrences. The correspond-
ing blue prediction-rate curves are shown in Fig. 9a
and b. They have approximately the same inclina-
tion, telling us that: the occurrence pattern predicts
the deposits ‘‘and’’ the deposit pattern predicts the
occurrences. What is remarkable is that the blue
prediction-rate curve in Figure 9a is more efficient
than the red curve.

One may ask a natural question at this point:
can we do any better at generating prediction pat-
terns with this database and DSPs and ISPs? As a
result of our data-mining procedure, we have iden-
tified a reduced set of ISPs to model prediction
patterns. Figure 10a shows prediction pattern
Au15dp_L_flas2rtp2, and Figure 10b shows predic-

tion pattern Au87oc_L_flas1rtp2tern1. Compared
with the patterns in Figure 8, the ones in Figure 10
show better compactness of ranks. A wider high
ranking area is visible to the North in Figure 10a,
and the disappearance of the high ranks to the
North-East, South-East, and South. The pattern in
Figure 10b shows only a minor difference from that
in Figure 8b.

We can validate these patterns as was done
previously when using a larger set of ISPs. Fig-
ures 11a and b show the corresponding fitting-rate
and prediction-rate curves. Note the similarity of
gray fitting-rate curves with the previous ones in
Figure 9, the overlap of the red and blue curves in
Figure 11b and some minor improvements for the
blue and red curves in Figure 11a. The blue pre-
diction-rate curve for Au15dp using the prediction
pattern Au87oc_L_flas1rtp2tern1 in Figure 11a is an
improvement and probably the best we can do with
the database at present. If we compare the blue and
red curves at the 10, 20, and 30% top ranks in the
prediction of deposits, Au15dp, in Figure 9a and
11a, we can see that the blue hardly improved (from
28%, 53%, 80% to 28%, 53%, 82%), but the red
curves improved (from 11%, 17%, 40% to 23%,
45%, 52%).

Figure 10. ELR prediction patterns using reduced numbers of ISPs with ratios ‡ 2, a for Au15dp_L_flas2rpt2, and b for

Au87oc_L_flas1rtp2tern1. Compare the corresponding prediction patterns in Figure 8, where all ISPs with ELR ‡ 2 were used. The

long names list the DSP, and the ISPs, used in the analysis, from lithology, fault lines, and so on, are listed in Figure 2.
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We can conclude that the 87 gold occurrences
are better predictors of the 15 gold deposits than are
the 15 gold deposits taken 14 each time in the iter-
ative-cross-validation process. In addition, the fact
that the strategy of sequential exclusion has pro-
vided sets of 15 and 17 prediction patterns offers us a

way of estimating the uncertainty associated with
the ranks of the prediction. One instance is for the
87 occurrence prediction pattern in Figure 10b when
used to predict the 15 gold deposits, and this aspect
is explored in the following subsection.

Figure 11. Fitting-rate and prediction-rate curves. In a they are for Au15dp, with the reduced set of ISPs

with ELR ‡ 2.00, using cross-validation Au15m1dp of the prediction pattern in Figure 10a, and with the

prediction pattern of Au87oc shown in Figure 10b. In b they are for Au87oc, with the respective reduced

set of ISPs with ELR ‡ 2.00 with cross-validation of Au87m5oc in Figure 10b, and with the prediction

pattern of Au15dp shown in Figure 10a.
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Generation of Target and Uncertainty Patterns

The red prediction-rate curve in Figure 11a re-
sulted from 15 sequential predictions, each of which
used 14 gold deposits for modeling and the
remaining 1 for validating the ranks. We can extend
the analysis by integrating the 15 patterns into what

is termed a Target Pattern (Chung and Fabbri, 2020).
We used rank-based statistics to compute the med-
ian ranks for each pixel out of the 15 patterns. The
Uncertainty Pattern in Figure 12a consists of such
median ranks and its image, Au15m1dp_L_flas2rtp2,
is almost indistinguishable from the original predic-
tion pattern, Au15dp_L_flas2rtp2, in Figure 10a,

Figure 12. Uncertainty Pattern ofAu15m1dp_L_flas2rtp2 in a and corresponding 50% Combination Pattern in b. The circles
indicate the distribution of Au15dp over these patterns. The numbers 1 to 15 in b indicate the individual deposits (see list in

Fig. 4 and Table 1). In c are the histograms of corresponding target and uncertainty ranks (vertical axis in *1000 units) for

Au15dp (numbers 1 to 15 on the horizontal axis). Note that 10 deposits 1, 2, 4, 5, 6, 8, 9, 10, 11, and 12 are located in areas

with uncertainty ranks higher than 500. The long names are listing the DSP and the ISPs being used in the analyses, from

lithology, fault lines, and so on, indicated in Figure 2. See explanations in the text. Uncertainty Pattern of

Au87m5oc_L_flas1rtp2tern1 in d and corresponding lower 50% Uncertainty-Target Combination Pattern in (e). The

circles indicate the distribution of Au15dp over these patterns. The numbers 1 to 15 in (e) indicate the individual deposits

(see list in Fig. 4 and Table 1). In f are the histograms of target and uncertainty ranks (vertical axis in *1000 units) for

Au15dp, (numbers 1 to 15 on the horizontal axis). Note that 4 deposits 1, 5, 6, and 13 are located in areas with uncertainty

ranks higher than 500, i.e., above the lower 50%.
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when using the same color legend. For this reason, it
is not shown here. However, the Target Pattern al-
lows computing for each pixel the range around the
median ranks (the range of the 15 iteration ranks).
The image ranking the ranges was termed the
Uncertainty Pattern. The wider the range, the higher
the uncertainty associated with the median ranks in
the Target Pattern. We used the same legend for
prediction patterns, Target Patterns, and Uncertainty
Patterns. However, for uncertainty ranks, the sig-
nificance is the reverse: the lower the ranks are, the
lower the uncertainty is; this is what we aim at. The
distribution of the 15 gold deposits, displayed as
circles, in the Uncertainty Pattern of Figure 12a,

indicates that only 5 out of 15 gold deposits are lo-
cated mostly in areas of relatively low uncertainty,
i.e., areas with ranks blue to dark green.

To interpret the Uncertainty Pattern relation-
ships with the Target Pattern, we set a convenient
threshold for the uncertainty ranks in Figure 12a as
follows. In the Uncertainty Pattern, we selected all
the uncertainty ranks corresponding to the pixels
with the lower 50% of the ranks. They were then
used, in turn, to select all the corresponding pixels in
the Target Pattern. The remaining target rank pixels
were then considered as having uncertainty above
the threshold. In the 50% Combination Pattern in
Figure 12b, such pixels are displayed with a gray

Figure 12. continued.
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color. In practice, we filtered the Target Pattern for
the corresponding lower uncertainty ranks. Note,
comparing the prediction pattern in Figure 10a with
the Uncertainty Pattern of Figure 12a, that large
parts of the intermediate ranks correspond to higher
uncertainty areas, as visible in the 50% Combination
Pattern of Figure 12b.

The histogram in Figure 12c compares the tar-
get and the uncertainty ranks for the 15 gold de-
posits. The ranks are in *1000 units, i.e., values of
900 correspond to the top 10% rank. The value 500
for the uncertainty ranks corresponds to the
threshold value selected for the 50% lower ranks of
the Combination Pattern, shown in Figure 12b,
where the pixels corresponding to uncertainty ranks
above 500 were set to gray color. The blue columns
in the histogram show the target ranks, while the red
columns show the uncertainty ranks for each de-
posit. Only deposits 3, 7, 13, 14, and 15 are located in
areas of lower uncertainty, i.e., 5 out of 15.

Uncertainty pattern and 50% Combination Pat-
terns for the gold occurrences
Au87m5oc_L_flas1rtp2tern1 and the corresponding
histogram with target and uncertainty ranks are
shown in Figs. 11d, 12d, and e, respectively. Note
that the uncertainty here is in the ranking of the
occurrence Target Pattern. We have superimposed
the location of the 15 gold deposits on the occur-
rence Target and Uncertainty Patterns to obtain the
corresponding ranks for the gold deposits Au15dp in
Figure 12d. Observe the difference in the distribu-
tion of higher uncertainty values between the
Uncertainty Patterns in Fig. 12a and d and the simi-
larities/differences between the two 50% Combina-
tion Patterns in Fig. 12b and e. The Target Pattern of
Au15m1_L_flas2rtp2 is affected by the relatively
higher uncertainty as shown in the histogram of
Figure 12c, where 10 gold deposits fall on higher
uncertainty ranking areas, much higher than in the
histogram of Figure 12f, where only 4 deposits fall
on higher uncertainty areas of the 50% Combination
Pattern of Au87m5oc_L_flas1rtp2tern1, 1, 5, 6, and
13. This means that their validation of prediction
rank is doubtful.

We can conclude that the occurrence Target
Pattern shows relatively lower uncertainty ranks in
correspondence with the location of most of the gold
deposits. This is in addition to the observation made
earlier that the occurrence prediction pattern
Au87oc_L_flas1rtp2tern1 is a better predictor of the
15 gold deposits than of Au15m1dp_L_flas2rtp2.
Observe the red prediction-rate curves in Figs. 9a

and 11a. They show concavities or irregularities that
might indicate differences in the settings of deposits.
This would lead to a separation into two or more
groups. We considered such aspects in the following
subsection. Then, we exemplify the aggregation of
supports from the two types of Target and 50%
Combination Patterns for deposits and occurrences.

Congruity Analysis of Gold Deposit Database
Signatures

The irregularities of the red prediction-rate
curves in Figs. 9a and 11a, generated by the iterative
cross-validations Au15m1dp_L_fl_as2hg1td3k1rt-
p1kn3th2tern1 and Au15m1dp_L_flas2rtp2 indicate
some discontinuity of ranking of the deposits, i.e., of
their characterization in the database. Can we sep-
arate the deposits into two or more groups with
better congruity and start new modeling processes?

We tentatively used the ranks of each deposit
from the iterative process to separate them into two
groups. Previously, we computed the 200 ranks to
generate the prediction-rate curves, but in this case,
we may prefer to use 1000 ranks to get a finer
numerical sequencing. That many ranks would make
it easier to separate many more deposits should we
have hundreds more. A simple strategy is then to list
such *1000 ranks and set some arbitrary threshold
values to separate groups of high and low ranks. For
instance, if an arbitrary threshold of ‡ 800 is used, it
separates the deposits predicted within the top 20%
ranks from the rest located within lower ranks. Next,
we could use the separate groups to obtain their
relative ELR values from the database. This we did
to generate Table 6 by iterative cross-validations
Au15m1dp_L_fl and Au15m1dp_L_flas2rtp2. The
table lists the deposit ID numbers in column 1, the
*1000 ranks in columns 2 and 3, two subsets of the 15
gold deposits after selecting an arbitrary threshold
of ‡ 750 for the values in column 2, and the corre-
sponding ELR values for L and fl for the two groups
in column 5. In column 2, the ranks range from a
minimum of 155 to a maximum of 992, and in col-
umn 3, from 156 to 999.

Tentative names of Au9dpHr, 9 high-ranking
deposits, and Au6dpLr, 6 low-ranking deposits, were
also used for ranks ‡ 750 and for ranks< 750,
respectively. In column 3 of the table, where also as2
and rtp2 were used, the ranking differs for deposits 4
and 9. However, when lowering the threshold to ‡
650 we get the same groups of 9 and 6 deposits. We
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can identify in column 5 the different supports of the
lithology units and distances from fault lines from
the two groups. Au9dpHr is supported by L9, L15

and L17 and by fl at distances close to 0 m and less
than 202 m. From Tables 2 and 4, we know they are
the following: Quartzitic sandstone, L9; Undiff.
Schist & amphibolite (>K,<Th anomaly), L15; and
Granitoid gneiss (TTG) L17, respectively.

In contrast, Au6dpLr is supported by L1, L8,
L10, L12, L14, and L18, in addition to fl at distances
close to 0 m but less than 290 m. Again from Ta-
bles 2 and 4, we know that the supporting lithology
units are as follows: gravel, sand, silt, and clay, L1;
Mylonitized & brecciated quartzite, L8; Conglom-
erate and grits, L10; Less weathered schist, L12;
Undiff. Mica schists and amphibolite (high K, Th
anomaly), L14; and granite, L18. Note the high value
for L1 (5.92), gravel, sand, silt, and clay. It should not
be surprising because one deposit (number 10) falls
entirely on this unit, i.e. 1/6 = 16.7% of the
Au6dpLr. This is the only gold deposit apparently
located in alluvial units in the database. The sepa-
ration of the two groups explains the shallow part of
the red prediction-rate curves in Figs. 9a and 11a,
caused by the mixing of deposits with different set-
tings within the same DSP, Au15dp. Clearly, the
separation is due to the different lithology units in
which the gold deposits are located, possibly indi-

cating, not only different settings but perhaps dif-
ferent genetic types of mineralization. This cannot
be concluded here and would have to be confirmed
in further studies. However, the spatial distribution
of the two groups of gold deposits in the study area
shows an inner NW-trending elongated cluster of
deposits Au9dpHr (3, 4, 7, 8, 9, 12, 13, 14 and 15),
surrounded to the South and the East by an arch of
deposits, Au6dpLr (1, 2, 5, 6, 10 and 11).

Example of Interpretation of Prediction Patterns
for Prospectivity

We now consider situations in which the pre-
diction patterns of gold occurrences and deposits can
be used for decision making in prospecting. The red
and blue prediction-rate curves in Figure 11a are
used as guidance in terms of costs/benefits in further
exploration.

Let us select as tentative prospective areas the
top 5% ranks of the 50% Combination Patterns in
Figure 12b and e, and the corresponding Target
Patterns (very similar to the prediction patterns in
Figure 10a and b. Assume that we have limited
means for exploration, and we would like to extract
from our database the 5% of the study area with the

Table 6. Identification, *1000 ranking of the gold deposits, Au15dp, and their partition into two groups with the corresponding ELRs

ID *1000 rank

L_fl

*1000 rank

L_fl_as2rtp2

Subset DSP

L_fl

ELR L_fl

1 155 156 Au9dpHr ‡ 750 L1 0.00, L8 0.00, L9 2.86, L10 0.00, L12 0.00, L14 0.00, L15 3.41, L16 0.00, L17

7.68, L18 0.00;

2 686 609

3 864 845 fl ‡ 2 0.00–202.00 (0.00 max 2.09);

4 769 652

5 581 544

6 576 574 Au6dpLr< 750 L1 5.92, L8 8.33, L9 0.00, L10 2.74, L12 4.07, L14 3.06, L15 0.00, L16 1.57, L17

0.00, L18 20.97;

7 883 885

8 794 794 fl ‡ 2 0.00–290.00 (0.00 max 3.11)
9 786 669

10 652 625

11 565 209

12 831 819

13 968 914

14 899 924

15 992 999

Only ISPs L and fl were used in column 2 to compute the ELR ranks using the cross-validation strategy Au15m1_L_fl. In column 3,

Au15m1_L_fl_as3rtp2 was used instead. An arbitrary threshold value for the rank was selected as 750, corresponding to the top 25% ranks

for the ‘‘higher ranking’’ group, Au9dpHr, and below that rank for what we have tentatively termed ‘‘lower-ranking’’ group, Au6dpLr

2314 Woldai and Fabbri



highest likelihood and lower uncertainty of discov-
ering ‘‘the next gold deposit.’’

We extracted all the pixels with ranks> 95%,
i.e., the top 5%, in the Combination and Target
Patterns, and converted the pixel values ranging

from 190 to 200 to the value 1, while all other pixels
were converted to the value 0. Then, we overlaid the
resulting binary images to obtain the respective
areas of value overlaps. These overlaps are listed in
Table 7 for the top 5% and for the top 10% ranks for

Table 7. Areas of overlap of 50% Combination and Target Patterns: top 5% and 10% ranks binarized into 1 s and 0 s

Cross ELR_Au15m1_L_flas2rtp2   VERSUS   ELR_Au87m5_L_fl_as1rtp2tern1
Top 5% Top 10%

X-labels Target 
(km2)

50% Combina�on (km2) Target 
(km2)

50% Combina�on (km2)

0-0 1,828,508
(1,645.66)

1,845,915
(1661.43)

1,684,686
(1516.22)

1,735,668
(1562.10)

0-1 72,546
(65.29)

74,727
(67.25)

116,328
(104.69)

124,809
(112.33)

1-0 72,557
(66.30)

57,854
(52.07)

116,317
(104.69)

82,088
(73.88)

1-1 27,505
(24.75)

22,620
(20.36)

83,785
(75.41)

58,551
(52.70)

Pixel numbers are in bold fonts and corresponding km2 in gray within brackets

Figure 13. Overlap of top 5% ranks of 50% Combination Patterns Au15m1dp_L_flas2rtp2 and

Au87m5oc_L_flas1rtp2tern1. The top rank pixels were relabeled as 1 s and the remaining pixels as 0 s.

The areas of overlap are in numbers of pixels of resolution 30 9 30 m. Of the 15 gold deposits, shown as

circles, two are located in sub-area 1–1, two more on 1–0, and one on 0–1. In yellow are the remaining of

the study area, outside the top 5% of the two Combination Patterns.
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comparison of their respective areas. Figure 13
shows the image resulting from the overlaying
(crossing) of the top 5% ranks of the two 50%
Combination Patterns of deposits and occurrences,
namely Au15m1dp_L_flas2rtp2 and
Au87m5oc_L_flas1rtp2tern1. The image provides us
with three sub-areas of importance: 1–1 with 22,620
pixels (� 20 km2, i.e., 1.13% of study area with two
deposits); 1–0 with 57,854 pixels (� 52 km2, i.e.,
2.89% of study area with two deposits); and 0–1 with
74,727 pixels (� 57 km2, i.e., 3.73% of study area,
with one deposit). Subareas 1–1 and 1–0 are the
results from the 15 gold deposits as the DSP. Sub-
area 0–1 is due to the gold occurrences. The corre-
sponding pixel numbers for the top 5% overlaps of
the Target Patterns and the top 10% are shown in
Table 7. There we can see the corresponding num-
bers of target pixels for the top 5% and 10% ranks.
For instance, at the bottom of column 2, we have a
first priority target area of 27,505 pixels, larger than
the corresponding 5% Combination area (27,505 –
22,620 = 4,885 pixels or 4.39 km2

In other words, we identified 20.36 km2, at the
bottom of the third column, to explore as the first
priority disregarding the areas of higher uncertainty
and the 52.07 km2 to explore as a second priority
(altogether 4.2% of the study area). In essence, the
top 1.13% of study area contains 13.4% of the de-
posits, the next 2.89% contains another 13.4%, and
the next 3.73% contains 6.7% of the deposits (1 di-
vided by 15 = 6.7%). In terms of costs/benefits, we
considered area 1–1 as the highest benefit, then 1–0
the second-highest, and 0–1 the third-highest likeli-
hood of discovery of the ‘‘next gold deposit.’’ We
may want to contemplate area 0–1, the less uncertain
part of the top 5% of Au87m5oc, 67.25 km2, not
overlapping with the less uncertain part of the top
5% Au15m1dp, as part for integrating the supports
of two 50% Combination Patterns.

It should be stressed that all selections made in
this example are arbitrary and commonsensical.
They are the result of considerations from the data-
mining experiments out of the available database.
We are just applying cost/benefit criteria to the
statistics obtained from our analyses. In addition to
these, only geological/metallogenic and economic
considerations and interpretations can help further
in selecting an acceptable size of prospective area
for gold in the study area. The Bushweju study area
has to be considered a depository of information for
planning further prospection. Our results are just
providing a decisional platform.

CONCLUDING REMARKS

In modeling the spatial prediction of gold de-
posits, we used a database from a study area in
southern Uganda. Our data-mining strategy applied
ELRs to capture spatial relationships. Furthermore,
the ELR function was used to integrate those rela-
tionships into prediction patterns. The locations of 15
gold deposits and 87 gold occurrences were instru-
mental in portraying their relationships with various
corresponding categorical map units and continu-
ous-value maps in the database: lithology, distance
from fault lines, and geophysical and remotely
sensed images. All data did focus on accurate map-
ping of lithology after field verification and con-
tained unavoidable redundancy of spatial
information.

The analyses led to a reduced set of digital maps
that resulted effective in modeling. They represent
the support of the modeling proposition to obtain
and eventually improve the relative ranks of gold
deposits in prediction patterns. Complementary
support of the propositions was also observed when
using the more numerous gold occurrences. The
prediction capability of the database, its Uncertainty
Pattern and the low congruity of the deposit settings
were the knowledge extracted from the experiments.
Using the gold occurrences and a reduced set of
digital maps, the deposits were predicted better than
using the entire set of images and just the deposits as
direct support. For this, we used a sequential-ex-
clusion iterative process of cross-validation. The
most geologically interpretable and stable relation-
ships were extracted: the lithology units showed
conveniently higher ELR values ‡ 2 for the 15 gold
deposits, most geologically interpretable and
stable spatial relationships were: gravel, sand, silt,
and clay, L1; Mylonitized and Brecciated quartzite,
L8; Undif. Mica schist & amph. (>K,<Th anom-
aly), L15; Granitoid gneiss (TTG), L17; and Granite
(1987 A ± 5 MA), L18; distances from fault lines, fl,
close to 0 m and not greater than 260 m; band 2 of
analytical signal, as2; and band 2 of total magnetic
intensity reduced to the pole, RTP, rtp2.

As for the 87 gold occurrences, mudstone,
shale, and clay, L11; less weathered Mica schist, L12;
Undiff. Mica Schist & amphibolite (high K, Th
anomaly), L14; Undiff. Mica Schist & Amphibolite
(>K,<Th anomaly), L15; and granitoid gneiss
(TTG), L17; distances from fault lines, fl, close to
0 m and not greater than 1507 m, band 1 of analyt-
ical signal, as1; band 2 of total magnetic intensity
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reduced to the pole, RTP, rtp2; and band 1 of
ternary signal, tern1, a combination of normalized
K, Th and U.

An example of prospectivity considerations is
provided using Target, and Combination Pattern top
rank-threshold overlaps. It implies the application of
cost/benefit criteria and, most of all exposes the
difficulties of making an informed choice out of the
knowledge from the data mining and spatial pre-
diction modeling. The top ranks of the occurrence
prediction pattern were found to partly overlap and
complement the top ranks of the deposit prediction
patterns. It raises many questions in need of new
answers. For instance, using a threshold of the
ELRs, setting 50% lower uncertainty or using rank-
based statistics are decisions that can be objected to
or modified or just fine-tuned. These are issues
worth further attention and research work. The
transparency attempted in our study wants to point
at the question: ‘‘when will more sophisticated tools
be called for by the complexities of the database to
justify deep learning methodologies?’’

In its present condition, the Buhweju study area
database can be considered a tentative baseline
against which future spatial data, such as stream-
sediment geochemistry related to gold mineral de-
posits and occurrences, could be further integrated
to improve the quality of the prediction patterns and
the associated prediction-rate curves. Furthermore,
the results obtained are of guidance in the planning
of more detailed mapping and exploration.

While an application has been made to a par-
ticular study area, the authors believe that the
transparent and detailed proposed procedure has
wide applicability in spatial prediction modeling
in situations where ‘‘black-box’’ models are unde-
sirable.
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