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Determination of dig-limits is one of the most critical steps in grade control and short-term
mine planning. Dig-limits optimization aims to maximize profit by identifying the optimal
destinations of blasted materials while honoring equipment selectivity. Dig-limits deter-
mined in the pre-blast stage are not operational in the post-blast stage due to blast move-
ment. Based on blast design configuration and rock characteristics, blasted materials will
move in certain directions. The magnitude of blast movement in those directions varies
across bench levels called flitches. Determining dig-limits without considering blast move-
ment can cause significant ore losses and dilution, leading to severe financial losses. In this
paper, a new methodology is proposed for quantifying uncertainty in blast movement and
assessing the impact of this uncertainty on dig-limits optimization. Blast movements were
modeled by using field measurement data obtained from blast movement monitoring balls
that were installed in blast holes. The multivariate distributions for measured blast move-
ments across flitches were fitted using drawable vine copula, and blast movement realizations
were generated using Monte Carlo simulation. A mixed-integer linear programming model
was used to determine the optimal dig-limits for all economic block models corrected and
adjusted with blast movements realizations. An ore probability map was generated showing
locations of ore and waste blocks in a probabilistic fashion. A case study for demonstrating
the proposed methodology is presented. In this case study, two scenarios were investigated;
the first scenario incorporated blast movement in determining dig-limits, while the second
scenario discarded blast movement effect on dig-limits. The result of this comparison showed
that discarding blast movement when determining dig-limits can lead to over-estimation of
the expected profit by 65.3% when compared with the other scenario that incorporated blast
movement. Post-blasting ore and waste areas with high risk of being misallocated by the dig-
limits were identified.

KEY WORDS: Dig-limits optimization, Blast movements, D-vine copula, Monte Carlo simulations,
Open-pit mining, Risk assessment.

INTRODUCTION

Ore–waste classification is an essential part of
grade control and short-term mine planning. It aims
to maximize profit from short-term mining opera-
tions by sending the blasted materials to their opti-
mal destinations and reducing ore losses and dilution
while honoring the selectivity of mining equipment.
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A block model is generated to understand the spa-
tial distribution of ore and waste zones within a
bench. This model is a simplified representation of
the bench, and it consists of a number of small
computer-generated blocks called selective mining
units (SMUs). SMUs are the smallest volumes of
materials on which ore–waste classification decisions
are made (Sinclair & Blackwell, 2006). These SMUs
are too small to be mined by themselves. Therefore,
SMUs are grouped together into spatially coherent
clusters called dig-limits, which can be mined by
large mining equipment. The misclassification of
SMUs can cause significant ore losses and dilution
issues, which lead to severe financial losses. This
misclassification problem becomes even more evi-
dent when ore cannot be distinguished visually from
waste during mining operations, such as in most (if
not all) gold deposits. During bench blasting, ore
and waste blasted rocks are moved by the blast in
various directions and distances throughout the
blasted section of the bench. It becomes difficult to
quantify the distance of this blast movement accu-
rately as a consequence of the variations of geologic
and rock properties. These variations may add
uncertainty in ore and waste boundaries, resulting in
financial losses. Therefore, assessing blast movement
uncertainty is considered a crucial predecessor step
before determining optimal dig-limits. If dig-limits
are determined pre-blast, they will have a limited or
no operational use post-blast due to blast move-
ments.

Most of the current methods applied to deter-
mine dig-limits are based on the experience of the
grade control geologists, who manually digitize ore
and waste polygons on a bench-by-bench basis.
Their judgment on the shape of dig-limits is guided
by rock types and cutoff grade, which varies
according to deposit type, ore recoveries, and other
economic factors such as commodity price and
operational costs. However, this manual determi-
nation of dig-limits suffers from several limitations:
(1) It is subjective; (2) it takes a relatively long time
to manually digitize dig-limits; (3) it does not pro-
duce optimal dig-limits that maximizes profit; (4) it
does not correctly account for the differential blast
movements within a bench among flitches; and (5) it
does not account for the unavoidable uncertainty in
modeling blast movement. These limitations may
result in profit losses caused by dilution and ore loss.

To overcome those limitations in solving the
dig-limits problem, various methods have been
proposed in the literature. Most of these proposed

methods rely on heuristics and metaheuristics algo-
rithms such as simulated annealing (Isaaks et al.,
2014a, 2014b; Deutsch, 2017; Norrena & Deutsch,
2000), genetic algorithms (Ruiseco, 2016; Ruiseco
et al., 2016; Ruiseco & Kumral, 2017; Williams et al.,
2021), heuristics (Richmond & Beasley, 2004; Va-
sylchuk & Deutsch, 2018, 2019a), greedy searches
(Wilde & Deutsch, 2015), or they adopted a hybrid
approach such as combining branch and bound with
simulated annealing to determine the dig-limits
(Deutsch, 2017). In this hybrid approach, when the
branch and bound need many iterations, simulated
annealing takes part resulting in sub-optimal solu-
tions. The mentioned techniques can solve big
computational problems in a relatively short time.
However, they do not guarantee optimality and they
require careful selection for input parameters to
obtain near-optimal results.

Another way of solving a dig-limits problem is
spatial clustering. Tabesh and Askari-Nasab (2011)
proposed a hierarchical clustering algorithm for
generating dig-limits based on a similarity index,
which includes distance between blocks, rock types,
destinations, metal grade, and the shape of mining
cuts to produce spatially coherent clusters or dig-
limits. The generated clusters are refined in a later
stage using a Tabu search. However, this post-pro-
cessing step reduces cluster homogeneity and in-
creases ore loss and dilution. Tabesh and Askari-
Nasab (2013) proposed another spatial hierarchical
clustering algorithm to define spatially coherent
groups of blocks used at different stages of mine
planning. Their algorithm accounts for mining
shapes and the direction of mining when creating
these clusters. Tabesh and Askari-Nasab (2019) ex-
tended their proposed spatial clustering algorithm to
account for geological uncertainty and proved that it
could be implemented on real-size block models and
generate clusters within a reasonable processing
time. Salman et al. (2021) explored a block cluster-
ing algorithm based on the K-means clustering
algorithm to define dig-limits. This algorithm
aggregates blocks with a similar grade, rock types,
and spatial proximity and generates clusters with
controllable sizes that are used as dig-limits.

The clustering approaches summarized above
are used to produce mine schedules quickly by
dividing open-pit benches into a number of clusters
and grouping SMUs with the same characteristics
together to form dig-limits. However, these ap-
proaches do not find optimal dig-limits when form-
ing their clusters to separate ore from waste. They
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also require careful selection for input clustering
parameters, such as the desired number of clusters,
making the solution very subjective. Moreover, the
dig-limits optimization problem is formulated as a
mixed-integer linear programming (MILP) problem
(Kumral, 2015; Sari & Kumral, 2018; Nelis & Mor-
ales, 2021). These models guarantee optimality but
they usually require a longer time to find the optimal
solutions.

Many dig-limits optimization techniques do not
account for blast movement when determining
optimal dig-limits. Therefore, determination of dig-
limits that ignore blast movements is impractical
(Thornton et al., 2005; Engmann et al., 2013). The
possible dilution associated with blast movement can
be minimized if blast movement is considered
appropriately (Zhang, 1994; Yennamani, 2010). As a
result of incorporating blast movement in deter-
mining dig-limits, ore recovery can increase because
mined materials are sent to their optimal destina-
tions (Gilbride, 1995; Harris, 1997; Taylor & Firth,
2003).

Modeling blast movements throughout a bench
section is an essential step for determining optimal
dig-limits. There are three approaches for modeling
blast movements in the literature: (1) by conducting
a multi-physical simulation of blast movements (Zou
& Jun, 2021); (2) by modeling blast movements
using physical field measurements (Isaaks et al.,
2014a, 2014b; Vasylchuk & Deutsch, 2019b; Yu
et al., 2021); and (3) by training machine learning
algorithms on previous blast movement information
to predict future blast movement in a mine (Yu
et al., 2020, 2021). Physical field measurements are
also required for validating multi-physics simulation
models of blast movement. Moreover, these mea-
surements may be used as input data in machine
learning algorithms for training purposes. If the
mechanism behind the blast movement distance is
not well quantified, there will be high ore losses and
dilution levels. Given that blasting is a relatively
cheap process in mining, the operations tend to
overbreak rock, leading to turbulent movements. In
other words, the financial benefits acquired from
reaching small particle sizes through blasting can be
lost due to ore loss and dilution caused by blast
movement.

Regardless of which approach is used for
modeling blast movements, there will be
inevitable uncertainty associated with the direction
and distance of blast movement. Rosa and Thornton
(2011) remarked that blast movements are uncertain

because of inconsistencies of blast design and rock
mass characteristics. They emphasized the fact that
accurate calculation of blast movement is not pos-
sible if there are no detailed physical field mea-
surements. Moreover, there would be
inevitable human factor issues and geologic uncer-
tainty. As a matter of fact, no method precisely
guarantees predictions for blast movements. When
physical field measurements are not available, eval-
uating the risk associated with rock movement
uncertainty will be essential to quantify dilution and
ore loss.

Based on previous research conducted on
modeling blast movement, the uncertainty in blast
movement remains unstudied. For this reason, this
research is proposed to assess the effect of blast
movement uncertainty on dig-limit optimization
while honoring the selectivity of mining equipment.
The originality of this paper is twofold: (i) a com-
bined approach of blast movements and the dig-limit
optimization; and (ii) the quantification of risk at-
tributed to blast movement in bench sections such
that the effects of blast movement uncertainty on
profit, dilution, and ore losses are measured.

The paper was organized as follows. The pro-
posed methodology is elaborated in the next section,
followed by a case study demonstrating the impor-
tance of incorporating blast movement in dig-limits
optimization. Finally, the conclusions and future
work are provided.

METHODOLOGY

The methods in this paper are based on com-
bined approaches: MILP, the simulation of blast
movements through Monte Carlo simulations
(MCS) using drawable vine copula (D-vine) and
statistical analysis. Figure 1 summarizes the
methodology used in this research.

A grade control block model is formed using
exploration drill holes and blast holes resource da-
tabase. The estimation methods such as ordinary
kriging (OK) can be used to estimate ore grades and
produce a grade control block model. OK is one of
the most widely used interpolation techniques. In
the context of resource estimation, OK estimates the
grade at an SMU location by using a variogram
model and grade data in the neighborhood of the
estimation location. The variogram model provides
OK with covariance values used to assign weights
for the neighboring grade data to estimate the un-
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known grade value at an SMU location. This process
is repeated until all SMUs in a grade control block
model are estimated. The most significant advantage
of using OK is that it is the best linear unbiased
estimation technique compared to other techniques
such as inverse distance weighting. This grade con-
trol block model should cover the investigated sec-

tion of the bench that needs to be blasted. When
creating the grade control block model, the number
of SMUs in the vertical direction should equal the
number of bench levels called flitches.

The grade control block model is transformed
into an economic block model by applying various
parameters, including cost, price, recovery, and

Figure 1. Flowchart summarizing the proposed methodology.
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metal quantity, to all SMUs. The principal input
parameters used in generating an economic block
model are operational costs, metal price, and ore
recovery. These parameters are used to calculate a
break-even cutoff grade (COGB.E.) and compute the
profit. COGB.E. is calculated as

COGB:E: ¼
Cp þ Cm

p � r ð1Þ

where Cp is the processing cost per tonne, Cm is the

mining cost per tonne, p is the metal price, and r is
the ore recovery. COGB:E: is used to distinguish ore
SMUs from waste SMUs because the former in-
cludes the cost of mining, which is vital for calcu-
lating the profit of all SMUs in an economic block
model. The profit obtained from an ore SMU is

Pi;j ¼ p �mi;j � r � t � ðCp þ CmÞ ð2Þ

where Pi;j is the profit of SMU located in i and j on a

bench if it is assessed as ore, mi;j is the contained

metal of SMU i, j, and t is SMU tonnage. If the
mined material is considered waste based on
COGB:E:, then the profit generated from mining this
waste SMU is calculated as

Wi;j ¼ �t � Cm ð3Þ

where Wi;j is the extraction cost of SMU located in i

and j on a bench if it is assessed as waste. After
generating an economic block model, two initial
input parameters must be specified: (1) blast move-
ment direction and distance; and (2) minimum
mining width. The direction and magnitude of blast
movement are estimated from physical field mea-
surements using blast movement monitor (BMM)
balls. Minimum mining width must be specified
based on the selectivity of the equipment used for
mining the bench.

The extent of horizontal blast movement is
different in each flitch because of the blast design
and rock characteristics. In general, most explosives
are placed in mid-holes. This placement results in
blasted rocks in the middle flitches of a bench
moving further than the upper and lower flitches.
These differential movements generate a D-like
shape structure prior to settling a new location.
Figure 2 illustrates a typical D-like shape of blast
movements. The number of flitches depends on the
blasting design and SMU sizes used in the estimation
stage. Typically, the direction of blast movement is

parallel to the initiation direction of the blast (Gil-
bride, 1995).

Even though the use of BMM balls in deter-
mining the magnitude of blast movement is consid-
ered one of the best and the most reliable sources of
blast movement information, the measurements of
blast movement obtained from these balls remain
uncertain. That is because (1) BMM balls do not
cover the entire blasted section of the bench, (2) it is
difficult to determine the locations of the BMM balls
post-blasting accurately, and (3) the blast movement
distances associated with the balls vary even within
the same flitch. For these reasons, the uncertainty in
modeling blast movement needs to be quantified
before determining any dig-limits because it signifi-
cantly impacts ore loss, dilution, and, subsequently,
mine profit.

After bench blasting, the new locations of the
BMM balls are determined, and they are used to
calculate the magnitude and the overall direction of
blast movement. To help modeling blast movement
across bench flitches, blast movement data collected
from BMM balls are grouped together based on the
bench flitch within which they are located. Then, a
multivariate statistical distribution is fitted to the
blast movement measurements across these flitches.
This multivariate distribution honors the existing
correlations between flitch movements. By applying
MCS to the fitted multivariate distribution of blast
movement measurements, several blast movement
realizations are generated. These realizations yield
the expected D-like shape from blast movements.
There is always a possibility of producing unex-

Figure 2. Schematic diagram illustrating the expected D-like

shape of a blasted bench with three flitches.
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pected shapes because of issues emerging from the
implementation of blasting operation, and unfore-
seen rock and geologic features that affect the
magnitude of blast movement. This method can
successfully produce realizations of these unex-
pected shapes.

In this paper, the multivariate relationships
between blast movements of bench flitches were
modeled using D-vine copula, a subclass of regular
vine copula (R-vine), which was proposed by Aas
et al. (2009). This method preserves the multivariate
correlations between the blast movements of bench
flitches using bivariate copulas and a nested set of
trees. Figure 3 shows an example of D-vine copula
trees for the blast movement measurements of three
flitches where F1 is blast movement for Flitch1, F2 is
blast movement for Flitch2, and F3 is blast move-
ment for Flitch3. F1F2 and F2F3 are the bivariate
blast movement copula distributions between
Flitch1-Flicth2 and Flitch2-Flitch3. F1F3|F2 is the
Flitch1 and Flitch3 bivariate copula distribution gi-
ven Flitch2 blast movement. Bivariate copulas are
functions that describe the dependency among two
one-dimensional distributions. If both marginal dis-
tributions and copula are known, then the entire
bivariate distribution of those two one-dimensional
distributions is also known. Following Sklar�s theo-
rem (Sklar, 1959), if H(x,y) is a two-dimensional
distribution function with marginal distribution
functions F(x) and G(y), then there exists a copula C
such that

H x; yð Þ ¼ C F xð Þ;G yð Þð Þ8x; yinR ð4Þ
When applying copulas to blast movement

scenarios F(x) and G(y), which are two continuous
marginal distributions, they will represent blast
movement magnitudes in two bench flitches. Based
on Sklar�s theorem, if both marginal distributions
are continuous, then a unique copula must exist.

Copulas are used for modeling complex multi-
variate relationships. Nevertheless, they have been
applied to solve a limited number of mining-related
problems (Ardian & Kumral, 2021; Singh et al.,
2021). In this paper, the D-vine copula was selected
for modeling blast movement across flitches. This
decision of selecting the D-vine copula instead of the
C-vine copula was made due to the nature of the
problem, in which all flitch movements are equally
important. There is no single flitch movement that
controls all other flitch movements when rocks are
blasted. The C-vine copula is only used in fitting
multivariate distributions when one variable con-

trols several other variables. This situation does not
exist in the blast movement problem.

A number of well-known bivariate copula dis-
tributions can be used to fit bivariate relationships of
blast movements between flitches such as Gaussian
and Archimedean copulas. The Gaussian copula is
used to model linear bivariate relationships, whereas
Archimedean copulas are used to model nonlinear
or heteroscedastic bivariate relationships. Clayton,
Frank, and Gumbel are good examples of Archi-
medean copulas. These bivariate Archimedean dis-
tributions have a single parameter that controls the
degree of dependence (h). The h of the Archime-
dean copula is the leading and only parameter used
in constructing a bivariate Archimedean distribu-
tion, and it indicates the association between ran-
dom variables. The h can be derived from Kendall�s
tau correlation coefficient due to its ability to dis-
entangle the marginal distribution effect, which is
suitable for nonparametric methods (Frees & Val-
dez, 1998; Chemen & Teilly, 1999). Kendall�s tau
correlation coefficient is computed as

Kendall correlation coefficient ¼ 2 nconcordant � ndiscordantð Þ
n n� 1ð Þ

ð5Þ

where ncondordant is the number of concordant pairs,
ndiscordant is the number of discordant pairs, and n is
the sample size. For Clayton, Frank, and Gumbel
copulas, the value of h can be calculated using
Eqs. 6, 7, and 8, respectively (Genest & Favre, 2007):

h ¼ 2s
ð1� sÞ ð6Þ

h ¼ 1

ð1� sÞ ð7Þ

½Y1 hð Þ � 1�
h

¼ ð1� sÞ
4

ð8Þ

where Y1 hð Þ is the Debye�s model, which can be
estimated as (Genest & Favre, 2007)

Yk hð Þ ¼ 1

h

Z h

0

t

et � 1
dt ð9Þ

For modeling Archimedean-type copulas (e.g.,
Clayton, Gumbel, and Frank), Nelsen (2007) pro-
vided the models given in Eqs. 10, 11, and 12,
respectively:
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C ¼ max u�h þ v�h � 1; 0
� �� ��1

h ð10Þ

C ¼ e
� �lnuð Þhþ �lnvð Þh½ �

1
h

� �
ð11Þ

C ¼ � 1

h
ln 1þ

e �huð Þ � 1
� �

eð�hvÞ � 1
� �

e �hð Þ � 1

 !
ð12Þ

where C is the bivariate copula function. In order to
estimate copula, the original values of the two one-
dimensional distributions are converted to u and v.
Then, u and v follow a uniform distribution with
[0,1]. Examples of Gaussian and Archimedean cop-
ulas are presented in Figure 4.

Most phenomena in nature exhibit a nonlinear
or heteroscedastic behavior. The linearity assump-
tion is typically considered to simplify most real-life
problems. Therefore, the Clayton model is highly
recommended for modeling blast movement data
across flitches where blast movement correlations
between the movements of these flitches are stron-
ger near blast holes. They get weaker and weaker
when the distance becomes larger from the nearby
blast holes.

The proposed methodology can deal with blast
movements in any direction. First, the azimuth angle
of the overall blast movement direction is initiated
as an input parameter. Then, the SMUs within a
block model are further divided into smaller SMUs.
Thus, small SMU movements can be captured, and

the accuracy of dig-limit optimization is increased.
Later, all pre-blast small SMUs are moved to the
direction specified. N number of blast movement
simulations generated from D-vine copula multi-
variate distribution using MCS is applied to the
centroids of the pre-blast small SMUs. This step
results in generating N number of post-blast eco-
nomic block models that include block economic
values, the geological properties of the deposit,
grade, metal quantities, and block profits. In the end,
post-blast economic block models are submitted to
dig-limit optimization model.

Before running dig-limits optimization, the 3D
post-blast economic block models are transformed
into 2D economic block models. In doing so, the x
and y coordinates of their centroids are kept the
same, and the contained metal values of all SMUs
with the same x and y coordinates are added to-
gether such that a 2D model is obtained. This step
reduces the size of the dig-limits optimization
problem significantly. Also, this step does not have
an impact on the final dig-limits because dig-limits
are drawn on 2D maps, and they are not determined
on a flitch-by-flitch basis. Another important step for
reducing further the size of dig-limits optimization
processing time is that of re-gridding the small
SMUs. In this step, SMUs are re-gridded back to
their original SMU size, and the total amount of
contained metal and profit are calculated for these
re-gridded SMUs. This re-gridding step may slightly
increase ore loss and dilution applied to the SMU

Figure 3. Example of D-vine copula trees for three flitches blast movements.

169Effect of Blast Movement Uncertainty on Dig-Limits



model. This step generates 2D post-blast economic
block models that contain the amount of contained
metal at original SMU support. Finally, the re-grid-
ded 2D economic block models are used as an input
to the dig-limits optimization model to generate a
number of dig-limits realizations corresponding to
the number of post-blast 2D economic block models.

The formulation of dig-limit optimization used
in this research was based on the MILP model
developed by Sari and Kumral (2018). This model
was re-coded using Python 3.8 and ran on the
CPLEX solver (IBM, 2021). The objective function
was to maximize the profit of the blasted section of
the bench while satisfying equipment selectivity
constraints. To describe this approach in simple
words, equipment dimensions were defined as an n x
n frame where n represents the number of SMUs in
x- and y-directions. Every SMU should be assigned
to a frame in which all SMUs in it are either ore
SMUs or waste SMUs. A frame is called a valid
frame if all SMUs inside it are either ore or waste. If
an SMU belongs to more than one frame, it should
be assigned at least one valid frame. The dig-limits
optimization model is formulated as

Maximize
XDx

i¼1

XDy

j¼1

xi;jPi;j þ 1� xi;j
� �

Wi;j

� �
ð13Þ

where xi;j is a binary decision variable at i,j SMU,

Pi;j is the economic value of SMU i,j when mined as

ore, and Wi;j is the economic value of SMU i,j when

mined as waste. The i and j are SMU indices in x-
and y-directions, respectively.

Subject to

bi;j;fa;fb ¼
Xn�1

c¼0

Xn�1

d¼0

xi�faþa;j�fbþb

fa ¼ 0; . . . ; n� 1; i ¼ 1; . . . ;Dx; fb ¼ 0; . . . n� 1;

j ¼ 1; . . . ;Dy

ð14Þ

where c and d are the frame index in x- and y-di-
rections, respectively, and bi;j;f a;f b is a decision vari-

able that represents the total number of SMUs (xij)
at (i, j) locations that belong to a frame where

Figure 4. Examples of widely used bivariate copulas distributions.
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i� fa þ n � DX ;

j� fb þ n � Dy;

i� fa � 0;

j� fj � 0

ð15Þ

where Dx and Dy are the numbers of SMUs in the x-
and y-directions, respectively, n is the minimum
mining width in SMU terms, and fa and fb are frame
indices in x- and y-directions, respectively. The
decision variable bi;j;fx;fy is transformed to a new

binary decision variable, vi;j;fa;fb, controlling if a

frame is valid; thus,

vi;j ;fa ;fb ¼ 1; if bi;j ;fa ;fb ¼ 0 or bi;j ;fa ;fb ¼ n2

0; otherwise

�

ð16Þ

where vi;j;fa;fb is a valid frame. This constraint en-

sures that a SMU is assigned at least to one valid
frame; thus,

Xn�1

f a¼0

Xn�1

f b¼0

vi;j;f a ;f b � 1i ¼ 1; _s;Dx; j ¼ 1; _s;Dy ð17Þ

To remove incomplete frames at the corners,
the following constraints were added:

bi;j;fa;fb ¼ �1i ¼ 1; _s;Dx; j ¼ 1; _s;Dy; f b ¼ 0; _sn� 1

ð18Þ

where

i� f a þ n[Dxori� f a\0 ð19Þ

bi;j;fa;fb ¼ �1i ¼ 1; _s;Dx; j ¼ 1; _s;Dy; f a ¼ 0; _sn� 1

ð20Þ

where

j� f b þ n[Dyorj� f b\0 ð21Þ

After running dig-limits optimization using all
2D economic block models generated from the N
blast movement realizations, N numbers of dig-lim-
its realizations are generated. These N realizations
of dig-limits are used to calculate the probability of
having ore and waste for all SMUs. Furthermore,
uncertainty in ore loss and dilution amounts can be
quantified, and profit distribution can be generated
for the blasted section of the bench.

CASE STUDY

In this section, a case study demonstrating the
impact of blast movement uncertainty on dig-limits
optimization is presented. First, a 3D grade control
block model was generated from blast hole resource
database at a porphyry gold mine. The block model
definition is summarized in Table 1. Next, this block
model was used to generate an economic block
model applying a cutoff grade based on economic
and metallurgical input parameters listed in Table 2.

The section of the bench under consideration
was partitioned into three flitches. Each flitch had a
thickness of 5 m. Blast movement data were simu-
lated from 51 BMM ball field measurements, which
cover the three flitches at 17 locations. In other
words, each blast hole had three BMM balls. The
movement direction was northeast (45� azimuth)
toward the two free faces of the bench on the north
and east sides. The direction of movement was
ascertained by comparing the pre-blast locations of
BMM balls against their post-blast locations. The
blast movement data were best fitted to triangular
distributions, which are widely used in engineering
simulations. It is a helpful distribution because it has
fixed minimum and maximum values, unlike the
normal distribution and other distributions where
their minimum and maximum values go to positive
and negative infinity. The selection of a distribution
extending to both infinities (e.g., normal distribu-
tion) might generate unrepresentative results. These
distributions were used to fit Clayton bivariate
copulas and D-vine multivariate copulas between
flitches blast movements. MCS was then used to
generate 1000 realizations of blast movements from
the fitted D-vine copula distribution to check the
reproduction of multivariate relationships between
flitch movements.

Figure 5 shows the results of simulating blast
movement realizations through MCS using a D-vine
copula where the lines represent the fitted triangular

Table 1. Block model properties

Item Unit X Y Z

Block size (m) 5 5 5

Number of blocks in a direction 40 40 3

Minimum centroids (m) 2.5 2.5 2.5

Maximum centroids (m) 197.5 197.5 12.5

Azimuth (degree) 0

Dip (degree) 0
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distributions for the three flitches. In Figure 5, n is
the number of realizations, lx is the mean of the
simulated realizations, X50 is the median of the
simulated realizations, r is the standard deviation,
CV is the coefficient of variation, Xmin is the mini-
mum value, and Xmax is the maximum value. Fig-
ure 6 shows if the multivariate relationships between
blast movements are agreed upon after simulating
blast movement realizations from the D-vine copula.
A comparison of the observed movements from
BMM balls and the simulated blast movement
realizations using MCS is presented in Figure 7. As
can be seen in this figure, the movement of Flitch2
can extend as long as 50 m. This extreme value can
be observed in rare cases and related to the distri-
bution parameter fitted. These movements were
applied to the centroids of the blocks in flitches at
depths of 2.5 m, 7.5 m, and 12.5 m. The sound
reproduction of the multivariate input relationships
between BMM measurements and simulated real-
izations is observed in Figures. 6 and 7.

One hundred blast movement realizations were
submitted to the dig-limits optimization model to

determine the optimal destinations for the SMUs
while honoring equipment selectivity. A minimum
mining width of 10 m by 10 m was selected to rep-
resent the selectivity of the shovel�s bucket used to
mine the section of the bench. The optimal dig-limits
for the 100 blast movement realizations were pro-
duced and then used to generate the ore probability
map. Figure 8 summarizes the results of the pro-
posed methodology, starting from identifying pre-
blast destinations, simulating blast movement real-
izations, identifying post-blast destinations, applying
dig-limits optimization on post-blast 2D economic
block models, generating post-blast dig-limits real-
izations, and finally producing the ore probability
map.

As shown in Figure 8, the ore probability map
was generated. In the map, the areas shown in yel-
low and navy blues were certain ore and waste areas,
respectively. The greenish areas might be either ore
or waste, and they are referred to as risk areas in this
paper. These risk areas need special attention when
determining the best destination for their materials.
The ore probability map can be used to determine
areas where careful grade control sampling program
should be implemented. This map helps optimize the
number of grade control samples so that grade
control geologists can design a sampling program
that focuses on a more detailed sampling of high-risk
areas. As a result of producing an ore probability
map, risk areas were identified (Fig. 9). This ore risk
map can be used to reduce the number of check
samples taken during grade control, and this will
result in reducing the cost and the time needed in
assaying certain ore and waste areas, thus increasing

Table 2. Parameter values used for cutoff grade and block

economics values

Item Unit Value

Gold price ($/gram) 60

Mining cost ($/tonne) 5

Processing cost ($/tonne) 20

Ore recovery (%) 70

Rock bulk density (tonne/m3) 2.65

Figure 5. Reproduction of univariate blast movement distributions after simulation.
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the profit from mining this section of the bench. It is
apparent that the spatial distribution of risky areas
relies on three factors: (1) the degree of hetero-
geneity of the mineralization; (2) the difference in
the magnitude of blast movement across flitches; and
(3) the cutoff grade. A low degree of heterogeneity
will reduce the number of risky areas in the blasted
section of the bench. A high cutoff grade generates
more isolated ore areas than a low cutoff grade,
increasing the risk areas. Having a significant dif-
ference in blast movement magnitude across flitches
increases the dilution and ore losses, which also in-
creases the risk areas.

Additionally, the best locations for installing
BMM balls can be determined using ore risk maps.
In fact, BMM balls are known for their high costs
and their intermediate recovery rate after blasting.
Therefore, identifying high-risk areas before blast-
ing brings more valuable information on the mag-
nitude and direction of blast movement at those
uncertain locations and can reduce the extra cost
attributed to installing BMM balls at low-risk areas.
To generate blast movement realizations and pro-
duce ore risk maps, grade control geologists can
utilize their knowledge and experience from previ-
ous blasting operations conducted on benches with

Figure 6. Reproduction of multivariate relationships between blast movement data.
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similar geological features and blast designs. This
pre-blast study will enable grade control geologists
to generate ore risk maps and determine high-risk
areas within the bench that are considered ideal
locations for installing BMM balls.

To show the effect of ignoring blast movement
impact on dig-limits optimization, another scenario
was investigated where the same proposed dig-limits
optimization model was applied on the same grade
control block model using the same input parame-
ters but without considering blast movement. Fig-

ure 10 shows the results of this scenario, where
original ore and waste SMUs were compared to
their optimal pre-blast destinations after applying
dig-limits optimization.

The results of running dig-limit optimization on
a pre-blast economic block model show that equip-
ment selectivity increased the amount of ore loss by
3.2% and dilution by 35.4%. Neglecting this amount
of ore loss and dilution would lead to an over-esti-
mation of the profit from approximately $2.36 Mil-
lion to $2.80 Million (15.7% profit over-estimation).

In this case study, equipment selectivity was
considered relatively low when compared to the size
of SMUs. The low equipment selectivity (1) in-
creased dilution by adding extra waste to the mined
ore and (2) increased ore losses by mining small
portions of the ore as waste while mining the sur-
rounding waste and then sending it to the waste
dump. Consequently, the low equipment selectivity
decreased the profit obtained from mining. The
problem of profit decrease is further accelerated
when the effect of blast movements is ignored in the
dig-limit optimization. To understand the effect of
neglecting blast movements when determining
optimum dig-limits, the profit values calculated for
each optimized dig-limits realization were compared
with the single profit value obtained when no blast
movements were considered. The comparison shows
that the profit obtained from single optimum dig-
limits that ignored blast movements was over-esti-
mated by 65.3% when compared with the expected
profit value where blast movements were incorpo-
rated into the process. Figure 11a denotes the dis-
tribution of profit realizations when blast
movements were considered in determining dig-
limits. Figure 11b presents the distribution of profit
over-estimation caused by neglecting the effect of
blast movements.

Modeling blast movement prior to running dig-
limits optimization has a significant impact on the
resulting dig-limits. The results obtained from this
study should not be generalized for all mineral de-
posits because mineral deposits vary in the spatial
distribution of their mineralization, cutoff grade, and
blast designs. However, this study shows the
importance of incorporating blast movement when
determining optimal dig-limits to generate a more
realistic assessment of the expected profit. In addi-
tion, the reconciliation programs at the mine should
include blast movements when tracking ore and
waste at stockpiles and process plants.

Figure 7. Reproduction of input blast movement

measurements with simulated realizations.
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CONCLUSIONS AND FUTURE WORK

Quantifying risk in dig-limits optimization to
account for the unavoidable uncertainty in blast
movement prediction is important for grade control
and short-term mine planning. This paper�s contri-
bution lies in quantifying the uncertainty attributed
to blast movements on the optimal dig-limits
through a copula-based simulation approach. Phys-

ical field measurements for blast movement ob-
tained from BMM balls were used to furnish the
multivariate blast movement distributions for a
number of flitches within benches using a D-vine
copula. The realizations of blast movements were
generated through MCS after fitting a D-vine copula
distribution to the blast movements of flitches. The
MILP algorithm was utilized to find the optimal dig-
limits for all realizations of blast movements. The
generated ore probability map shows locations of
ore and waste in a probabilistic fashion. The ex-
pected profit from a modeled bench was over-esti-
mated by 65.3% on average when blast movement
was disregarded in comparison with the expected
profit modeled from the same bench when the blast
movement realizations were incorporated in the
proposed workflow. High-risk ore and waste areas
post-blasting were identified from the ore probabil-
ity map. Due care should be taken when mining
these uncertain (high-risk) areas.

Future work will focus on adding geological
uncertainty in conjunction with the blast movement
uncertainty to produce optimal dig-limits. Further,
the proposed methodology will be extended to cover
more than two destinations. At the same time, local
variations in the direction of blast movement will be
modeled and added to the proposed workflow. With
the advanced development in parallel computing,
aggregation/disaggregation, and decomposition
methods such as nested Bender decompositions, the
solutions that can be generated in an accept-
able time will be explored.

Figure 8. Summary of the proposed methodology.

Figure 9. Areas with high-risk probability in determining ore–

waste selective mining units (shown in brown).
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Figure 10. Map of original selective mining units� destinations (left). Map of optimized pre-blast units� destinations (right).

Figure 11. Histograms of a profit distribution and b profit over-estimation.
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