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Salt domes are one of the seismic patterns with exploration significance. This study focuses
on supervised and unsupervised machine learning (ML) and feature selection methods using
North Sea F3 block seismic data. Nine 3D dip-steered seismic attributes sensitive to chaotic
features, including geometric, edge-detection, and two GLCM (gray level co-occurrence
matrix) texture, were selected. A pickset consisting of 10,402 samples was gathered and
normalized. Unsupervised self-organizing map (SOM), supervised support vector machine
(SVM), and multi-layer perceptron (MLP) methods were applied through two different
workflows. The dimensionality reduction techniques that were involved in the workflows
included cross-plots, neighborhood components analysis (NCA), bagged decision tree, and
Laplacian score (LS). SOM was trained by selected sections and the picked dataset. The
latter elevated its performance and guided the neurons, differentiated salt, and noticeably
reduced the misclassified samples. Learning curves were plotted to show the influences of
different data populations on mean squared error (MSE). The results showed stability of
SVM performance around 0.001 MSE for varying representation set size and fluctuation of
MSE for the MLP method. For training the SVM/MLP, 35% of the pickset data was used.
MLP and SVM with 99.79% and 99.9% accuracy, respectively, on the test dataset were
applied to the sections. The supervised methods exploited the multi-attribute input and
differentiated salt from the background. This study showed the importance of feature
selection procedures and their resultant improvements in ML techniques. The workflows
implemented here can be used in the automatic detection of seismic interpretation targets.

KEY WORDS: Salt dome, attribute, feature selection, self-organizing maps, support vector machine,
multi-layer perceptron.

INTRODUCTION

Pinpointing seismic salt structures and their
distribution is one of the essential steps in seismic
data interpretation, and it has been investigated
through various schemes. For instance, usage of
texture attributes (Berthelot et al., 2013; Shafiq
et al., 2017), resolution enhancement of seismic data

(Soleimani et al., 2018), or accelerating the process
and automatizing the task by implementing unsu-
pervised and supervised machine learning (ML)
workflows (e.g., Buist et al., 2021; Di et al., 2018;
Zhao et al., 2015). In this study, we focused on the
latter methods. Unsupervised learning methods tend
to find unknown patterns in a dataset. These work-
flows are advantageous because they work inde-
pendent of a labeled dataset and unravel any cluster
in data. Supervised learning using interpreter
knowledge increases the accuracy and speed of fa-
cies interpretation by making it possible to gener-
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alize an invariable outlook to an extensive database.
The previous studies mentioned below have several
areas of focus like applying new methods, improving
the involved attributes, and some feature selection
enhancement.

Bagheri and Riahi (2015) performed a multi-
attribute facies classification study on an oilfield of
Iran utilizing five supervised ML methods and four
attributes selected by sequential forward feature
selection (SFS), backward feature selection (SFB),
and covariance matrix. They used well data as their
training samples and the classified seismic lines to
achieve seismic facies on the dataset. The SFS and
SFB results were highly random due to the random
selection of the starting feature. In the salt detection
scheme, with the complexities of the classes, opti-
mum feature selection can better be achieved by
methods noticing all the features. Roden et al.
(2015) concentrated on a methodology to extract
existent patterns in the seismic data using a multi-
attribute approach through principal components
analysis (PCA) and self-organizing map (SOM).
PCA performed dimensionality reduction for the
SOM. They used the SOM for outlining stratigraphy
and hydrocarbon indicators and distinguishing frac-
tures and sweet spots. Zhao et al. (2015) compared
selected supervised (including SVM (support vector
machine)/MLP (multi-layer perceptron)) and unsu-
pervised (including SOM) approaches for multi-at-
tribute facies detection. The SVM as a deterministic
method outperformed MLP. This study concluded
that unsupervised learning with identifying unknown
clusters could be a priori for supervised sample
selection. Qi et al. (2016) stated that although salt is
a chaotic structure, internal salt reflectors show
some coherent noises or migration artifacts, which
can impose a salt-and-pepper (mixed high- and low-
value) look on the salt structure. Thus, they used
Kuwahara median filters to precondition the attri-
butes for the clustering step. By cross-correlation of
their histogram, they selected relevant features.
They performed generative topographic mapping
(GTM) to assign probability density functions
(PDFs) to each interpreted facies and then applied
the trained device to an unlabeled cube. The Bhat-
tacharyya distance between the resultant PDFs and
the PDFs of the interpreted facies was stored in a
probability volume, representing the user-defined
facies. Although their results showed that Kuwahara
filtering improved segmenting chaotic classes,
smoothing results in attributes losing details espe-
cially on edges in seismic image. Di and AlRegib

(2017), employing twelve seismic attributes, tried to
compare the performance of six supervised classifi-
cation techniques in salt detection. They concluded
that the ML methods could segment salt boundaries
with reliable outcomes with a well-selected attribute
set. Roden et al. (2017) studied identifying thin-bed
or below-tuning layers utilizing instantaneous attri-
butes and SOM; they declared that their SOM
workflow recognizes the below-tuning clusters that
are overlooked by other methods. Waldeland and
Solberg (2017) tried to segment salt structures using
convolutional neural net (CNN) and training a
seismic image; they declared that by annotating an
individual in-line as training data, it is possible to
classify facies of a seismic cube. In fact, a CNN
should be familiar with every geometry of possible
pattern of facies in seismic images, and it needs a big
and exhaustive interpreted training dataset and
computational resources.

Di et al. (2018) implemented a multi-attribute
unsupervised workflow using k-means clustering to
detect 3D salt boundary. Manually picked samples
were used to initiate the center of clusters, and the k-
means clustering was trained to use the interpreter�s
knowledge and to start the clustering process more
efficiently. The trained device was applied to the
seismic volume and led to a probability volume
showing the geometry and depth of each point on
the salt dome. In this study, results were focused
around the salt dome, and the most significant im-
pedance variation was introduced as the salt
boundary, and the attributes picked to focus on
detecting it. Although salt boundary detection
studies focus on finding sharp acoustic impedance
contrasts, this is not always the case in real datasets.
There are different complexities, for instance, the
presence of multiple or no sharp boundaries. In
addition, salt demonstrates various structures con-
sisting of canopies, pillows, sheets, and walls (Fos-
sen, 2016) and similar seismic patterns to mud
volcanos or igneous intrusions. Using attributes that
are sensitive to the chaotic texture of salt can be
beneficial in detecting various structures. Chopra
and Marfurt (2018) applied k-means clustering,
PCA, SOM, and GTM to compare their results with
their previous interactive interpretation on Barents
Sea seismic volume. Although SOM and GTM
provided promising results compared to the other
two, their discrepancies included more smoothed
and detailed channel facies distribution for SOM
and GTM, respectively. Farrokhnia et al. (2018)
started the salt classification process by implement-
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ing a common reflection surface (CRS) on a mi-
grated seismic 2D section to increase the number of
stacked traces and, consequently, enhance the con-
tinuity of reflectors and better differentiation of
them in the seismic image. Then, salt detector at-
tributes were applied to the CRS image, and they
used a mineral exploration approach to weigh them.
A probability for each image pixel was calculated
based on the linear relationship between the
weighted attributes. These probabilities were used
to plot the IGU (intrinsic geological unit) map,
again a mineral exploration approach, to present the
highest probability of salt as a binary output. The
IGU and SVM results of conventionally stacked and
CRS seismic images were compared, and CRS
showed lower misclassified pixels. They stated that
the quality of salt segmentation was directly related
to the quality of the input seismic image. The results
for top salt and marginal boundaries contained
misclassified pixels and displayed dependency of the
procedure on the implemented attributes and could
be enhanced with the contribution of higher per-
formance features.

Di et al. (2019) integrated 14 manually selected
attributes by SVM and MLP in a fault detection
workflow and incorporated edge-detection, geo-
metric, and texture attributes. They also used a 1-
layer CNN to extract 16 attributes automatically and
used them as input to an MLP network to consider
variations in the local pattern of reflections. They
presented SVM/MLP efficiency in incorporating lo-
cal seismic attribute sets in sample level and
inhibiting effects of a less representative or wrong
attribute by multi-attribute classification. In addi-
tion, the MLP outweighed the SVM in detecting
faults due to its smoothing results, and CNN ex-
tracted attributes could reduce the misclassified
samples. La Marca-Molina et al. (2019) employed
five attributes to a horizon for delineating sand-rich
lithofacies and architectures. Using SOM for their
facies classification assists in the integration of the
attributes. They showed that selecting capable at-
tributes, with a powerful learning device such as
SOM, along with using the horizons to follow the
trace of the facies, improves locating the interpre-
tation target. Kim et al. (2019) focused on non-re-
dundant attribute selection methods for supervised
learning based on a labeled dataset. Redundancy of
attributes was examined based on correlation anal-
ysis between couple attributes as well as attributes
and output classes. They concluded that redundant
attributes do not always show a high correlation, and

features should be quantitatively ranked. Their re-
sults showed that attribute selection algorithms re-
duce computational costs and elevate classification
performance by concentrating on a non-redundant
efficient feature set. Qi et al. (2020) worked on
substituting manual labeling the facies by Gaussian
mixture models, determining a feasible number of
features, and combining them for delineating chaotic
structures. The suitable attributes for supervised
chaotic facies delineation noted in this study in-
cluded dip deviation, coherence, GLCM textures. Di
and AlRegib (2020) applied MLP and CNN for salt
boundary delineation and applied the devices to the
synthetic 2D section of the SEAM dataset. MLP was
applied by using nine attributes with different
weights in the classification, and CNN was imple-
mented by extracting patterns from seismic ampli-
tude images. MLP could efficiently incorporate
seismic attributes in salt detection but with higher
false-positive rate (FP). CNN was not influenced by
less illustrative seismic attributes and noise and
artifacts in the dataset. Because CNN uses ampli-
tude images to extract attributes, it needs to be
trained on a big and varied interpreted and anno-
tated seismic image dataset to extract the features.
Furthermore, applying it in 3D data to consider a
lateral structure variation for precise segmentation is
computationally expensive. Buist et al. (2021)
implemented a reservoir characterization process by
a pre-stack time migrated 3D seismic data and cor-
relation of the seismic attributes (structural and
frequency-based) to petrophysical data by SOM,
which detected facies equated to wireline log and
core analysis data to locate porosity and perme-
ability in the seismic sections.

This paper covers: (1) computing dip-steered
3D attributes with qualitative ability to differentiate
salt structures; (2) gathering 3D-picked samples
from the cube; (3) employing feature selection pro-
cedures; (4) application of an unsupervised work-
flow; and (5) application of a supervised workflow.
Finally, we compare the performances, mention the
possibilities for the future of the workflows, and
draw conclusion from the results.

DATASET

In the southern North Sea, salt structures gen-
erate oil traps (Remmelts, 1996). The presence of
Permian Zechstein irregular salt diapirs (with mini-
mum depth at -1500 m and a maximum thickness of
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700 m in the study area) dominates the eastern of
the F3 block (Alaudah et al., 2019). The exposure
region of salt diapirs in the Netherlands F3 seismic
block, which was used in this study, is located be-
tween in-lines 100–750, cross-lines 697–1221, and
time slices 848–1848. We selected some of the 2D
lines of the 3D seismic cube to apply the learning
techniques for illustrating the results and doing the
process with lower computational cost.

Seismic Attributes

Salt structures distort seismic amplitude, and so
attributes with the ability to detect this were em-
ployed, and nine features were selected after
examining various ones based on their qualitative
segmentation ability. The goal was to choose salt
detector attributes that can be evaluated using dip-
steered data cube (Fig. 1) to consider the amplitude
distortions (Tingdahl et al., 2001, 2002), having a
subset of comprehensive features with different
nature (geometric, edge-detector, texture attri-
butes), and calculating them in 3D. This 3D attribute
calculation can allow learning algorithms to be de-
ployed using any 2D line of the cube with one step of
training an ML technique. The dip data are a dip
trajectory that can be involved in attribute evalua-
tions by giving a detailed view of the variations
(Tingdahl, 2003). Positions of a selected phase are
tracked and stored as a local dip and azimuth of

seismic events in the steering cube (Odoh et al.,
2014; Tingdahl, 2003; Tingdahl & De Rooij, 2005)
(Fig. 1). Four geometric attributes (dip, dip vari-
ance, curvature, and curvedness), three edge-detec-
tion attributes (coherence, semblance, similarity),
and two texture attributes (homogeneity, correla-
tion) were calculated and selected qualitatively for
this study.

Curvature is sensitive to differences in fractured
and deformed areas, and salt activity can be a source
of prevalent deformation. Thus, two curvature at-
tributes consisting of curvature (the most positive
curvature) and curvedness were calculated (Barnes,
2016; Roberts, 2001). Curvature facilitates differen-
tiating fractures in the seismic cube and maintaining
their magnitude (Fig. 1). Curvedness values are
positive and have geometrical importance (Fig. 1). It
measures curvature independent from its shape, and
coordinates and, because the measurements are
positive values (Koenderink & Van Doorn, 1992),
results accelerate a comprehensive evaluation of
curved layers (Roberts, 2001).

Calculating true-time dips, polar dip, of time
seismic data (Chopra & Marfurt, 2007; Marfurt,
2006) is a way to measure true geological dip
(Fig. 1). Chaotic patterns like salt-related structures
increase the possibility of dip variation. This can be
evaluated by statistical dip measurements (Tingdahl,
2003), and volumetric seismic dip attributes have a
functional role in the detection of small minor dip
changes. Dip variance magnifies chaotic seismic
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Figure 1. Seismic data, in-line dip-steering cube used to enhance attribute calculation by considering dip trajectories, and the

calculated 3D seismic attributes in the study area.
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features due to consideration of the statistical
directionality of dip variation (Tingdahl, 2003)
(Fig. 1). The input data used for calculating dip
variance were the evaluated polar dip cube (Ting-
dahl & De Rooij, 2005).

Similarity attribute (Fig. 1) is measured by
taking directionality into account through imple-
menting steering cube data (Tingdahl, 2003). The
distance between seismic trace segments at two dif-
ferent positions in hyperspace normalized to their
length results in how similar those segments are. Salt
chaotic patterns and seismic dip fluctuation can be
distinguished by the coherence attribute. Lateral
changes of these patterns in the cross-line and in-line
directions are stored in a gridded coherence 3D
volume (Bahorich & Farmer, 1995) (Fig. 1). The
semblance (Fig. 1) is the ratio of stacked seismic
trace energy to the average energy of each inde-
pendent trace within the considered analysis window
around a local planar event (Marfurt et al., 1998).
Utilizing GLCM texture attributes ((TGH) and
(TGC)) makes a quantitative interpretation of
GLCM statistical figures achievable (Chopra &
Alexeev, 2006; Eichkitz et al., 2015). Homogeneity is
measured by weighted normalized GLCM elements,
and it shows the similarity and differences of
amplitude in neighboring samples (Chopra &
Alexeev, 2006; Gao, 2007). Areas with internal
irregularity (salt domes) are less homogeneous
(Yenugu et al., 2010). Correlation is measured by
the GLCM adjacent matrix’s linear co-dependency,
and the lowest correlations are accompanied by
irregular beddings (Hall-Beyer, 2000).

Pickset Data

In this study, a database of picked samples was
gathered from the seismic cube. This dataset was
selected from selected lines to avoid including
training samples in the application procedure. The
lines bearing the samples included in the pickset
data were in-lines 394 and 697, cross-lines 1210 and
854, and time slices 1752 and 1810. The pickset data
consist of 10,402 samples, including 5136 salt and
5266 non-salt data points (Fig. 2). The seismic cube
used in this study contained more than 85 million
samples, and the picked dataset was about 0.012%
of this dataset. After selecting the samples, figures of
the nine attributes were obtained at each point.

Sample data of every feature were normalized
before entering the feature selection and training
process. Normalization prevents overshadowing of
features with low magnitudes by larger ones and
contamination of results by outliers (Di et al., 2019).
All the figures were distributed over the range from
0 to 1 (Fig. 3). The normalized dataset was used in
feature selection processes and training the net-
works.

FEATURE SELECTION

ML results rely on training datasets, and a non-
redundant illustrative feature set can enhance the
results and reduce computational costs. In this sec-

Figure 2. Distribution of 10,402 picked training samples.

Red = salt. Blue = non-salt.

0 0.2 0.4 0.6 0.8 1
Normalized training Data

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

Non-Salt
Salt

Figure 3. Histogram of the normalized pickset data sample
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tion, four feature selection methods that were used
in the supervised and unsupervised workflows are
presented.

Cross-plots

Cross-plots, being a clustering technique, are
created to assess redundancy of attributes. The salt
and non-salt samples of each attribute were cross-
plotted to measure the redundancy of each couple of
attributes. Cross-plots with the most considerable
distance between classes show which attributes are
non-redundant (Qi et al., 2020). In contrast, the
decrease in this distance and overlap of samples
happen because of subsurface complex geology and
noise in the dataset (Di et al., 2018) and these cause
misclassification errors when applying classifiers (Di
et al., 2019) and redundant features. In the cross-
plots (Fig. 4), curvature–similarity, TGC–TGH, dip
variance–TGC, and TGH–coherence showed the
lowest overlap among the classes.

Neighborhood Component Analysis (NCA)

NCA is a nearest neighbor-based weighting
algorithm. It learns the weights of a feature set by
eliminating the irrelevant ones to reduce the leave-
one-out cross-validation error with tuning the regu-
larizing parameters using gradient ascent (Yang
et al., 2012). It takes the class labels vector and se-
lects features with better performance, classifying
them starting from a reference random point
determined by a probability distribution in a dataset
and goes on to its nearest neighbor. Higher weights
represent more important features in the classifica-
tion task. Because NCA results have a random
nature, we repeated the weighting method 10 times
and the average of the final results is presented here
(Table 1). According to this method, the weights
showed that curvature and TGC were the top two
attributes for identifying salt.

Figure 4. Cross-plots of nine qualitatively selected attributes. These plots show the capability of attributes in separating salt and non-

salt classes. The greater the distance between classes, the higher is the performance of attributes in ML applications.
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Bagged Decision Tree

Decision trees with a simple arrangement can
grade the importance of features in a hierarchical
structure (Rounds, 1980); they consist of a root that
includes the whole population of features and leaves
that contain predicted responses. Through the tree
and passing from each leaf, the significance of fea-
tures in the classification is checked (Breiman et al.,
1984).

Here, the bagged decision tree was used to
improve the accuracy. The method results in a more
accurate feature set by averaging over random
bootstrap selections of the training data sets and by
applying decision trees over them. An equal amount
of data is used per tree in the bagged version
(Breiman, 2001). Finally, the importance of the
features was estimated by averaging over the
ensemble of trees, and out of bag predictor impor-
tance of the features was evaluated (Table 1). These
indices show that absence of a certain feature can
cause more misclassified samples. The resultant tree
(Fig. 5) shows that dip variance and curvature were
the most influential attributes based on this method.

Laplacian Score (LS)

LS is an unsupervised feature selection tech-
nique introduced by He et al. (2005), and it is
independent of a ML approach or a labeled dataset.
This method relies on the fact that, in a dataset,
close samples belong to similar classes. Where a
dataset (X) consists of n samples and r features ( f ),
the LS is assigned to the features in order to prior-
itize them based on their ability to preserve locality
in the dataset. The method specifies the local

neighborhood for each data point in the dataset X
(= xi, xj, …, xn) by constructing a nearest neighbor
graph G. This graph contains the same number of
nodes (n) as the samples of the dataset. If a node in
this graph (xi) belongs to the k nearest neighbors of
another node (xj) (i.e., they are close to each other),
they are connected, and the distance between them
is calculated; and if nodes are outside the neigh-
borhood, a weight Sij ¼ 0 is assigned to the pair. This

weight allocation results in the neighbor graph’s
weight matrix, also called the similarity matrix ( S).
LS pursues the features to preserve the structure of
this graph. Utilizing the degree matrix (
D ¼ diagðSÞ), each feature ( f r) is centered ( �f r)
and using graph Laplacian matrix ( L ¼ D� S), the
Laplacian score ( Lr) of the rth feature is calculated
as (He et al., 2005):

Lr ¼
�f Tr L�f r

�f Tr D�f r
ð1Þ

The scores for each of the attributes are pre-
sented in Table 3. The higher scores are the more
critical in preserving the structure of the neighbor
graph and in segmenting the classes. Unlike the
NCA, the results in this method are stationary, and
so we applied it to the pickset data used in super-
vised and unsupervised learning.

MACHINE LEARNING METHODS

In this study, one unsupervised and two super-
vised learning techniques were implemented in
specific workflows. The learning devices and their
workflows are discussed in this section.

Unsupervised Learning

Unsupervised ML techniques can be beneficial
while investigating natural unknown patterns in a

Table 1. Results of the NCA and bagged decision tree feature

selection methods

Attributes NCA OBPI*

Polar dip 1.53 0.41

Curvedness 1.94 0.58

TGC 2.87 0.42

TGH 2.31 0.28

Semblance 1.49 0.24

DipVariance 2.12 0.95
Similarity 1.73 0.32

Coherence 1.34 0.33

Curvature 3.04 0.59

The highest values are in bold
*Out of bag predictor importance

-1 1 1 1

Curvature < 0.161861

DipVariance<0.0685 DipVariance<0.0627

>= 0.161861Curvature

DipVariance>= 0.0685 Dip Variance>= 0.0627

Figure 5. Final result of bagged decision tree applied on the

sample set (1: salt, � 1: non-salt). Each branch classifies the

data by contribution of the most dominant features; here, dip

variance and curvature.
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seismic interpretation practice. The detected pat-
terns are justified with geologic data of a study area
such as well logs, and the justified patterns can be
generalized in a supervised learning scheme. In this

regard, and to show the applicability of unsupervised
learning in automatic seismic interpretation work-
flow and comparing the results with supervised
learning, we implemented SOM due to its sensitivity

Figure 6. Unsupervised workflow of training SOM and the datasets and feature selection process applied.

Figure 7. Weight plot maps of applying SOM for the feature selection process: (a) 2D lines; (b) pickset data. These plots show the

hexagonal (8 9 8) geometry of the lattice and the weights associated with each of the features. The darker the shade of a hexagon,

the larger the weight.
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to geometries in a dataset to identify clusters in our
data.

SOM is a clustering neural network algorithm
introduced by Kohonen (2001). SOM is an
arrangement of neurons placed on nodes of a 2D
lattice (n 9 m), which is a low dimension grid map
connecting the neurons. Each of the neurons con-
tains a vector of initial weights (which are set to
random values) and has the same dimension as the
input dataset (Roy et al., 2010). The lattice overlays
every feature vector (attributes) and changes its
geometry to match its structure to the input vector
aiming at separating clusters of the data as much as
possible. The neurons compete to match the weights
to the feature vector, and the winner neuron is the
one with weights that best match to it and the other
competitive neurons cooperate with the winner and
adjust the lattice structure for better definition of the
centers of clusters (Ramirez et al., 2012). As a result,
weights are allocated to every feature vectors
according to their separation capabilities and a fea-
ture with larger weights is more capable of sepa-
rating the clusters.

Supervised Learning

In this study, we used two capable learning
devices, SVM and MLP neural networks, to exploit
the ability of the selected features in salt detection.
We designed them through MATLAB software. A
tenfold cross-validation was used to choose the best
performance by the contribution of the whole ran-
domly selected data set in training the network
(Priddy & Keller, 2005; Van Der Heijden et al.,
2005).

Kernel-based SVM methods are wildly popular
in pattern classifications and the training process of a
linearly inseparable data set. The m-dimensional
(here four-dimensional, one for each selected attri-
bute) input space (x) changes to l-dimensional fea-
ture space (z). In the z-space, the algorithm can find
implicitly the optimum hyperplane by applying ra-
dial basis kernel function for delineating classes
(Abe, 2010). SVM uses some of the selected vectors
in the feature space to obtain the optimal hyper-
plane, and they are called support vectors (Zhao
et al., 2015).

The MLP neural network we used here is a
feedforward pattern recognition network that maps
the n input neurons (sample data of the four attri-
butes) to the output space. This algorithm uses the
whole data set for training as input neurons. Four
hidden layers (50, 30, 20, and 10 neurons in each
layer) and one output layer are applied to achieve
the binary classification output of salt and non-salt.
Each neuron implements an activation function in
the four hidden and output layers on the data, and
this process is optimized with a backpropagation
algorithm to attain the lowest classification error.
The tangent sigmoid used as activation function for
the neurons and resilient backpropagation was the
employed train function.

APPLICATION AND WORKFLOWS

In this section, the function of the feature
selection procedures and the implementation of the
learning devices is presented in unsupervised and
supervised workflows.

Unsupervised Workflow

One of the advantages of SOM is that they
learn classes and patterns without the need for a

Table 2. Features with similar weight plots (Fig. 7)

2D lines Pickset data

Polar dip—Dip variance Polar dip—Dip variance

TGC – TGH TGC – TGH

Similarity – Coherence Similarity – Semblance

Curvedness Curvedness—Curvature

Curvature Coherence

Semblance

The selected features are in bold

Table 3. LS scores of the nine features

Attributes Pickset LS 2D Lines LS

Polar dip 0.984 0.992

Curvedness 0.968 0.539

TGC 0.985 0.992

TGH 0.979 0.996

Semblance 0.987 0.996

DipVariance 0.976 0.984

Similarity 0.989 0.984

Coherence 0.974 0.982

Curvature 0.950 1.000

The highest scores are in bold
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labeled picked dataset. Here, two training datasets
were used. The first dataset consists of the three
randomly selected lines in each direction, namely
from the cube in-line 394, line 891, and time slice
1800. The second dataset (pickset data) was selected
to test the feasibility of using unlabeled pickset data
in the unsupervised method and improving the final
results.

A lattice with 8 � 8 dimension and hexagonal
geometry was employed. The lattice size is influen-
tial in the number of classes the SOM can detect;
thus, it should be assigned with more nodes to save
the possibility of seeing unknown classes in the data.
The inherent feature weighting of SOM was used in
the unsupervised workflow (Fig. 6) to select non-
redundant features. Each of the datasets was trained
with the nine features, and the weight plot maps
were plotted (Fig. 7). These maps display the
geometry of the lattice and weights connecting the
inputs and the neurons. Because redundant features

represent similar weight plots (Table 2) and because
just one of them is enough for the training process,
the results of LS (Table 3) were used to complement
these weights and pick the features with matching
weights to be involved in classification. The selected
attributes are displayed in bold in Table 2. After
finalizing the training features, the 2D lines and the
pickset data input in the training process resulted in
two SOM networks with capability of mapping
clusters in a new dataset with similar input vectors.

Supervised Workflow

Based on the feature selection results, four at-
tributes (dip variance, similarity, curvature, and
TGC) were selected and entered into the learning
process. Although Qi et al. (2020) denoted that
curvature does not perform well in salt detection,
bagged decision trees and NCA prioritized it for the

Input features

Seismic Attributes

Qualitative
Attribute Selection Gathered and Normalized

Sample Data

Quantitati ve
feature selection

Scatter Plots

Bagged Decision Tree

Neighborhood Component
Analysis

Laplacian score
ranking

Random Sample
Selection

SVM/MLP Viable performance?

Final salt
identification

No

Yes

9 Selected Features

Figure 8. The implemented workflow for supervised salt identification. Qualitative attribute selection followed

by four quantitative feature selection is applied before entering the learning process.
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salt classification. The classification was continued
by designing SVM/MLP devices, which were applied
to the selected seismic lines (Fig. 8).

Learning curves were plotted to assess the two
learning algorithms’ performances with increasing
the data set population. The plot shows MSE by a
five percent increase in the tenfold cross-validated

representation sample size in each step (Fig. 9). It
shows the influence of the data set population in
enhancing the performance of MLP and the limited
error fluctuation of SVM due to the classification
algorithm based on support vectors. These plots are
useful selecting a training set with minimum possible
training time and computational costs.

For a fair comparison of training time and
accuracy results of the SVM/MLP trained networks,
we chose the lowest data population compatible with
both of them, and 35% of the pickset data was ap-
plied for training the networks. The remaining
samples of the data set were used for testing the
networks and for creating the confusion matrix. The
designed SVM and MLP networks showed high-
performance based on the training test data set, with
99.9% accuracy for SVM and 99.79% for MLP
(Table 4).

The run time is presented in Table 5 to compare
the computational costs of training and testing the
networks. Although the MLP training time was
about one-fifth of SVM with the same dataset, the
test data set classified with SVM used half of the
MLP test time. Besides, SVM had a more straight-
forward network design compared to MLP. The
promising results (total accuracy and test time) of
SVM were achieved at a higher computational cost
(Zhao et al., 2015).

RESULTS

In this section, the results of applying the
trained networks based on the selected features are
presented. Two seismic lines, including cross-line
1200 and time slice 1832 from the cube, were used to
display the classification results. The highest proba-
bility of salt presence was annotated on the seismic
lines (Fig. 10). The Zechstein salt in these sections
does not show a smoothed and homogeneous weak
reflection. There were deviated reflectors and
heterogeneities that influenced the smoothness of
the outputs of the attributes. As displayed in Fig-
ure 10a, the marginal layers over the salt dome with
distorted amplitudes and the weak continuity of
amplitude at the left side are sources of artifacts and
can affect facies segmentation. Samples of the se-
lected lines were not included in the training pro-
cess, and the features were also normalized in the
range 0–1.

The first method applied to the lines was the
SOM. This clustering algorithm was trained with two
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Figure 9. Learning curves showing MSE by stepwise 5%

increase in the representative sample size. On the one hand,

SVM showed low fluctuation growing the population, and it

changed around 0.0025. On the other hand, the training data

population affected MLP and its error decreased more than 10

times at the end of the graph.

Table 4. Confusion matrix for the application of the designed

SVM to the test data

SVM Total accuracy: 99.91%

MSE: 0.0008

Prediction

Salt Non-salt

FP rate: 0.00029

F1 score:0.0657

Actual Salt 3308 1

Non-salt 5 3447

MLP Total accuracy: 99.79%

MSE: 0.002

Prediction

Salt Non-salt

FP rate: 0.00145

F1 score: 0.0656

Actual Salt 3304 5

Non-salt 9 3443

Table 5. Training and test datasets run time by SVM/MLP

networks

Parameter SVM MLP

Train time (sec) 137.17 25.74

Train data population 3641 3641

Test time (sec) 0.0162 0.035

Test data population 6761 6761
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training data, three seismic lines (Fig. 11a, b), the
pickset data (Fig. 11c, d), and their specific feature
set to see if a picked dataset can improve SOM re-
sults. The SOM classifier detects clusters in a dataset
without defining the class or assigning exact proba-
bilities. We normalized the class indices to the range
of 0–1 and mapped the results (Fig. 11). Similar
ranges in these plots characterize data clusters, and
an analogous colormap with SVM/MLP results was
allocated for comparison.

The dominant classes in the selected attributes
were salt and non-salt, and the goal in the classifi-
cation was to segment the data to these classes and
generalize the patterns to the entire cube. Here, the
SOM trained by the selected seismic lines could not
segregate the salt in the data and only a general
pattern was extracted. The same network trained by
a collected unlabeled sample of the two classes re-
sulted in noticeably improved results in the same
seismic lines. Although the background was clus-
tered to two classes, and this can complicate the
facies detection problem, the salt structures were
differentiated and the presence of a prominent facies
was revealed. The cross-line and time slice were
classified by the trained, supervised networks, and
the assigned salt probabilities are plotted in Fig-
ure 12. The MLP evaluated every sample; however,
SVM used class boundary samples (support vectors)
to classify the data, and this resulted in fewer false-

positive (FP) samples in results of the latter com-
pared to results of the former. These are consistent
with the confusion matrix (Table 4). In MLP sec-
tions, the results were smooth salt exposures
(Fig. 12a, b), whereas there was better precision in
the classes segmented by SVM (Fig. 12c, d). In re-
gions like salt boundaries, the smoothness of MLP
made it hard to follow exact salt edges. In contrast,
although SVM performed better in the boundaries it
resulted in salt-and-pepper pattern (Fig. 12c).

The seismic lines (in-line 233, cross-line 891,
1836 time slice) and the results of the applied
methods in 3D are presented in Figure 13. These
plots show the applicability of a multi-attribute
method in segmenting salt with any geometry in all
directions in a cube. The results of the SOM network
trained by the pickset data (Fig. 13a) and the
resulting clusters are overlaid on the seismic data
with the same colormap as SVM/MLP. The SOM
did not cluster the data to two binary classes, and so
the overlaid clusters in the salt and non-salt regions
included middle colors. The MLP sections (Fig. 13b)
show smooth results, whereas the SVM results
(Fig. 13c) display more restricted salt probability
regions, the lowest amounts of artifacts, and the
sharpest boundaries.
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Figure 10. Seismic lines used for deploying the methods and demonstrating the results: (a) cross-line 1200; (b) 1832 time slice. The

locations with highest probability of salt exposure are annotated and shaded ( modified from Alaudah et al., 2019).
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DISCUSSION

This study employed (a) nine seismic attributes
with sensitivity to chaotic features but relatively
insensitive to seismic facies boundaries, and (b)
SOM, SVM, and MLP techniques. In calculating the
attributes, full dip-steered data were used to con-
sider dip changes in the final outputs. Utilizing the
attributes of different nature reduces the chances of
misclassification of a weak feature (Di et al., 2019)
and, considering diverse characteristics, results in an
adequately classified output. By using different ML

methods on a common dataset, it is possible to
compare the benefits and deficiencies of the methods
(Chopra & Marfurt, 2018).

Suitable attributes for interactive interpretation
may not work well in ML procedures (Infante-Paez
& Marfurt, 2019). Additionally, due to the large
scale of seismic volumes, attributes dimensionality
reduction was employed to accelerate multi-at-
tributes ML workflows, reduce memory demand
(Kim et al., 2019; Roden et al., 2015), prevent mis-
classification, and raise interpretability of the results.
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Figure 11. Lines clustered by the SOM: (a) and (c) cross-line 1200; (b) and (d) 1832 time slice. Top row: SOM results trained by seismic

lines. Bottom row: SOM results trained by unlabeled pickset and the improved classification results.
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SVM and MLP can efficiently incorporate
multi-attribute sets and perform supervised classifi-
cations. The MLP with 0.00145 false-positive rates
had an acceptable performance on the test dataset
and was applied for salt classification (Fig. 13b). The
results of MLP are smooth and, in the boundary
regions, show some misclassified samples and
smoothed patterns for the marginal layers. Despite
this, the same effect on the internal salt resulted in
mitigation of the salt-and-pepper outputs that were
probable by other classifiers. Although SVM re-
duced the false-positive rate to 0.00029, the salt-and-

pepper view reduced the smoothness of internal salt
structures (Fig. 13c). However, along the salt bor-
der, the exact probability allocation property of
SVM detected more patterns. By projecting the data
into a higher-dimensional space, SVM builds a lin-
early separable dataset. This causes the increased
accuracy, obtained at the cost of increased compu-
tational cost (Zhao et al., 2015). In a small training
dataset, there is a possibility of over-fitting MLP and
reducing generalization quality. Thus, this network
must be trained with proper data samples and tested
accurately to assess its quality. MLP results are not
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Figure 12. Salt probability assigned by supervised methods with 1 being the highest (salt): (a) and (c) cross-line 1200; (b) and (d) 1832

time slice. Top row: MLP. Bottom row: SVM. The ellipsoid area in (a) shows the misclassified samples (false positives) at the left side

of the salt dome. In (c), the differentiated salt dome from the marginal layers shows similar amplitude patterns.
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stationary, and every training with the same dataset
changes the weights, confusion matrix, and network
performance. The SVM does not over-fit and, with a
deterministic algorithm, results in an invariable
network (Bagheri & Riahi, 2015).

The extraction of the chaotic feature is com-
plicated by complex subsurface geology, intrusion of
salt through different tectonic processes, hetero-
geneities of salt texture, and distorted and highly
dipping reflectors on its flanks. Thus, attributes may
fail in differentiating samples precisely and pre-
senting a solid presence of a chaotic structure, and
misclassified samples are observed in the sections.
The SVM classifier can distinguish these samples
and assign sharper probabilities, but at the expense
of showing crisper results.

Overall, the salt trace could be followed in all of
the sections in the cube (in-line, cross-line, time
slice) with one step of training (Fig. 13) due to the
geometry of the picked samples. In these sections,
the results are in good agreement with the salt dis-
tribution of the F3 Block presented by different
methods (Shafiq et al., 2017; Di et al., 2018; Alaudah
et al., 2019). The in-lines and cross-lines display
concentrated salt distribution. They are slightly dif-
ferent from the highest amplitude contrast, which
can help pick the salt with any geometry or indefi-
nite boundary.

Some studies focused on improving the pro-
cessing step (Alaei et al., 2018; Farrokhnia et al.,
2018) or filtering methods to enhance salt segmen-
tation (Qi et al., 2016). As asserted by Qi et al.
(2016), using smoothing filters on the attributes
helps to define chaotic features in a scale that can be
seen by interpreters and solve the salt-and-pepper
view of the target facies. Although this pre-condi-
tioning increases the smoothness of the results for
the SVM classifier, this filtering of attributes raises
MLP and SOM misclassification errors. Thus, in this
paper, we presented the results without smoothing

the attributes to compare the classifiers� potential in
reducing the salt-and-pepper observations.

Because subsurface geology is local, variant and
the seismic surveys have different acquisition
parameters, it is challenging to use the same attri-
butes and repeat an interpretation workflow. How-
ever, these workflows can be repeated with various
datasets or new features to enhance the detection of
chaotic facies.

CONCLUSION

Supervised learning teaches a machine to rec-
ognize the schemes introduced by the interpreter. It
is helpful for interpreting subtle patterns and for
certifying and accelerating the results of analyzing
big data sets. The multi-attribute approach helps the
classifier differentiate classes, and using attributes of
different natures (e.g., geometric, texture, and edge
detector attributes) is a feasible approach. When-
ever an attribute is not responding, the classifier can
refer to other features in each sample. This study
employed three supervised and unsupervised tech-
niques to elevate the realization of details in seismic
sections. The results showed that the performance of
SOM is noticeably enhanced by using an unlabeled
dataset, and it could detect all the classes of the data
with higher precision. MLP with shorter training
time and good accuracy resulted in more smoothed
inner salt results. This makes it even a good choice
for seismic features with continuity as one of their
characteristics (faults and channels). Along bound-
aries, SVM showed more distinct classes and re-
duced the misclassification error to more than two
times than that of MLP but with higher computa-
tional costs. Overall, none of the implemented
methods outperformed the others in every aspect,
and each of them has its own benefits and usage. The
balance between the network selection and the
classification or clustering goal is vital. Computa-
tional cost, target feature, feature selection algo-
rithms, and network design are to be considered in
every ML application. Sampling and processing 2D
sections in 3D helps overcome computational re-
source limitations, making it possible to follow a
facies distribution in a cube. Furthermore, the
workflows can fit any facies detection task and can
be updated by adding more representative attri-
butes.

bFigure 13. 3D views of salt exposures in F3 block including in-line

233, cross-line 891, 1836 time slice: (a) SOM trained by pickset

data; (b) SVM result; (c) MLP result. Inset in every plot shows the

underlying seismic data. The background colormap is the seismic

amplitude, and an overlay of the classes is plotted with similar

colormap for comparison; along with transparency are colors

representing less than 0.5 figures.
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