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Spatial non-stationarity is a common geological phenomenon, and the formation of ore-
bodies is a typical non-stationary process. Therefore, a quantitative study of the non-sta-
tionary relationships between mineralization and its controlling factors in 3D space is of
great significance for metallogenic prediction. Geographically weighted regression (GWR) is
an effective method for exploring spatial non-stationarity by measuring the nearness be-
tween factors in the data. However, non-stationarity is affected not only by distances but also
by factors related to direction. Traditional GWR cannot address the non-stationarity that
arises from differences in direction. To address this issue, we propose an improved GWR
method to characterize the directional characteristics of non-stationary relationships by
introducing a direction weight to the GWR. The anisotropic influence of factors can be
obtained by comparing the performance of models with different weights on direction terms.
A case study of the Xiadian and Dayingezhuang gold deposits, Jiaodong Peninsula, Eastern
China was carried out to verify the anisotropic nature of ore-controlling factors. First, multi-
collinearity and OLS (ordinary least squares) diagnosis for the variables were performed
and the necessity of the non-stationarity exploration was demonstrated. Second, GWR was
applied to explore the spatial non-stationarity of the relationships among the variables by
comparing the global R2 value with that of OLS, evaluating the local R2, values testing the t-
statistic values, analyzing and comparing the spatial autocorrelation of residuals with that of
OLS, and calculating the spatial stationary index of the parameter estimates of explanatory
variables. Third, the improved GWR method was applied, and the directional characteristics
of the non-stationary relationship were analyzed. Finally, the anisotropic influence of the
controlling factors on mineralization was validated by comparing the performance of the
improved GWR model with different bandwidths and different kernels, and the importance
of the direction of the fault zone to mineralization was further verified.

KEY WORDS: Spatial non-stationarity, Improved geographically, Weighted regression, Anisotropic
pattern, Ore-controlling factors.

INTRODUCTION

Spatial non-stationarity is a common geological
phenomenon (Karpatne et al., 2017). In mineral
exploration, capturing the non-stationary influences
of geological entities, such as faults and rock units,
on mineralization can help locate hidden ore bodies
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(Mao et al., 2016; Zuo, 2020; Zuo & Xiong, 2020).
With the development of deep mineral prospecting
and generation of vast amounts of geoscience data,
revealing the spatial non-stationary relationship of
the ore-controlling factors and mineralization is
becoming an urgent problem.

Various solutions to the spatial heterogeneity
problem have been proposed in metallogenic pre-
dictive models (Zhang et al., 2016, 2018). One con-
tribution is to reduce spatial heterogeneity by
removing spatial trends from predictions (Arpat,
2005; Caers & Zhang, 2002; Cheng, 1997, 1999; Zuo
et al., 2016). Another is to introduce functions of
coordinate variables to express their spatial auto-
correlations (Agterberg, 1964, 1970; Casetti, 1972).
One approach to the spatial non-stationary rela-
tionship is to introduce the geographically weighted
regression (GWR) technique, which allows quanti-
tative exploration and analysis of potential spatial
heterogeneity in processes (Fotheringham et al.,
2001, 2002). There are numerous examples of re-
search and application of GWR in many fields, such
as land use, resource and environment, society and
economy (Andrew et al., 2015; Gilbert & Chakra-
borty, 2011; Nilsson, 2014; Tu & Xia, 2008).
In metallogenic prediction, GWR was applied
mainly in mineral prospectivity mapping (Wang
et al., 2015; Zhang et al., 2018) and spatial non-sta-
tionarity exploration (Liu et al., 2013; Zhao et al.,
2013, 2014). However, these applications are limited
to 2D space. As the depth dimension of real geo-
logical space should not be ignored, Huang et al.
(2020) expanded the GWR to 3D geological space.

GWR is based on Tobler’s First Law (Fother-
ingham et al., 1996; Tobler, 1979), which argues that
‘‘everything is related to everything else, but near
things are more related than distant things’’. While
GWR allows exploring spatial non-stationarity,
defining an appropriate metric that measures near-
ness characteristics are challenging (Li et al., 2006a,
2006b). In 3D geological space, it is generally known
that the association exists between deposits and
geological entities including faults (cf. Carranza &
Hale, 2002; Mao et al., 2016), and, further, this
association is spatially anisotropic. While most of
existing work (Huang et al., 2020; Tobler, 1979) uses
the distance of the homogeneous space to measure
nearness, the influence of directionality is not con-
sidered in GWR. Therefore, carefully considering

the directionality of factors is essential for exploring
the non-stationary relationships in GWR.

This study proposes an improved GWR method
by defining a direction-weighted distance to express
the nearness characteristics based on the GWR. For
convenience of subsequent comparison with the
improved GWR, the traditional GWR is called the
standard GWR in this paper. A case study with the
Xiadian (XD) and Dayingezhuang (DYGZ) oro-
genic gold deposits, Jiaodong Peninsula, Eastern
China was carried out to analyze the anisotropy of
the non-stationary relationships between variables
by comparing the performance of the standard and
improved GWR. In this comparison, ore grade was
used as the dependent variable and potential geo-
logical determinants were used as explanatory vari-
ables in the regression.

DATA

Study Area

The Dayingezhuang and Xiadian gold deposits
are located in the northwestern part of the Jiaodong
Peninsula, in the southeastern North China Craton
(Fig. 1a). Both deposits are hosted in the Zhaoping
fault zone, which strikes SW–NE and dips 35�–60� SE
(Mao et al., 2019). The Dayingezhuang gold deposit
(Fig. 1b) is controlled by the middle segment of the
fault zone with a NE strike of 10�–20� and SE dip of
30�–50�. The Xiadian gold deposit (Fig. 1b) is a typi-
cal altered rock type gold deposit, and it is mainly
controlled by the south section of the Zhaoping fault
zone with a NE strike of 45� and SE dip of 45�.

Data and Variables

In this study, gold grade, as a quantitative
measure of mineralization, was used as the depen-
dent variable. Ore-controlling factors extracted from
different geological conditions were used as the
explanatory variables. A summary of all the vari-
ables is given in Table 1, and detailed descriptions
and calculations can be found in Mao et al. (2019).
The 3D spatial distribution of gold grade in the
Xiadian and Dayingezhuang deposits is shown in
Figure 2.
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METHOD

Basics of GWR in 3D Space

GWR can be used to explore potential spatial
non-stationarity in physical processes. It is a local

regression model and it estimates local parameters
through a data-borrowing scheme. It was originally
proposed for 2D space, and Huang et al. (2020)
extended it to 3D space. Given n dependent vari-
ables Y ¼ fy1; y2; _s; yng and m explanatory variables

Figure 1. Geological map showing faults and gold deposits in the study area ( adapted from Mao et al., 2019).

Table 1. Statistical description of variables

Variable Definition Areas Points Minimum Maximum Mean SD

Au Grade of gold ore DYGZ 26,826 2.00 18.72 3.096 1.28

XD 11,458 2.00 43.83 4.10 2.65

dF Shortest distance to the main fault DYGZ 26,826 � 169.19 9.78 � 51.06 37.12

XD 11,458 � 222.54 99.15 � 53.86 37.71

waF Distance from the projection to the

first-degree trend of the main fracture

DYGZ 26,826 � 115.67 62.21 � 6.39 18.42

XD 11,458 � 111.95 48.65 � 8.66 17.31

wbF Distance from the projection to the

second-degree trend of the main fracture

DYGZ 26,826 � 44.63 50.41 � 2.09 11.67

XD 11,458 � 65.07 42.69 � 14.39 13.98

gF Projection slope of the main fracture DYGZ 26,826 5.83 73.95 34.44 9.96

XD 11,458 20.34 69.00 47.59 8.64

fP Transition field of the main fault

from gentle to sharp

DYGZ 26,826 0.50 27.04 5 1.43

XD 11,458 1.77 14.54 5.49 1.38

fV Transition field of the main fault

from sharp to gentle

DYGZ 26,826 � 25.18 � .33 � 5.390 1.43

XD 11,458 � 10.52 � 1.06 � 5.42 1.39

fA The alteration intensity of the

alteration zone

DYGZ 26,826 3.00 195.82 127.61 53.98

XD 11,458 .00 119.75 77.50 24.43

X X coordinate DYGZ 26,826 40,530,691 40,535,375 40,531,746 736.67

XD 11,458 40,528,155 40,530,375 40,529,555 294.01

Y Y coordinate DYGZ 26,826 4,120,415 4,122,815 4,121,794 532.60

XD 11,458 4,108,675 4,110,305 4,109,745 218.50

Z Z coordinate DYGZ 26,826 � 1575.00 28.23 � 508 310.44

XD 11,458 � 1275 195 � 608 244.36
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X ¼ fx11; x12; _s; xnmg, the GWR model can be for-
mulated as:

yi ¼ Xibi
T þ ei ð1Þ

where Xi ¼ fxi1; xi2; _s; ximg represents the m
explanatory variables at regression point i, yi is the
estimated value at regression point i, and bi ¼
fbi1; bi2; _s; bimg denotes the local parameter estimate
at point i, and ei is the error term at point i. The
value of a parameter at a specific point i can be
estimated by weighting the surrounding observa-
tions with a kernel function that decays with dis-
tance, the formula of which is:

bbi ¼ ðXTWiXÞ
�1
XTWiY ð2Þ

where bbi represents an unbiased estimate of bi, and
Wi ¼ fwi1;wi2; _s;wimg is the weight that can be cal-
culated based on a kernel function and bandwidth.
The following two kernels were employed in this
study:

bisquare : wij ¼ ½1� dij=H
� �2�

2
if dij\H ¼ 0

otherwise
ð3Þ

tricube : wij ¼ ½1� dij
2=H2

� �3�
3=2

if dij\H ¼ 0
otherwise

ð4Þ

where dij is distance from observation j to regression

point i, and H is the parameter determined by
bandwidth. In this study, the bandwidth was chosen
to be the number of nearest neighbors and H rep-
resents the distance from point i to its farthest
nearest neighbor within the bandwidth. The band-
width can be either fixed or adaptive. A fixed

bandwidth is a constant and cannot be changed
during the model operation, while an adaptive
bandwidth corresponds to the best model perfor-
mance and can be obtained by model optimization.

Improved GWR in 3D Space

Based on the foregoing discussion, the non-
stationarity of relationships in standard GWR is
assumed to be caused only by distance, and the ef-
fect of directionality is ignored. That is to say, the
influence of explanatory variables on a dependent
variable is assumed to be the same in all directions.
This paper extends the standard GWR in 3D space
by defining a direction-weighted distance to analyze
the anisotropy of the influence of explanatory vari-
ables. In this paper, the dominant influence direction
(main direction) is introduced to represent the most
influential direction, in which the model can achieve
optimal performance. By comparing the perfor-
mance of models with different assignments of the
dominant influence direction, the anisotropy of the
influence can be obtained.

As shown in Fig. 3a, pa is the regression point
that coincides with the coordinate origin o;
U20D1;paq (or U20D1;oq) denotes the dominant
influence direction (main direction) of the ore-con-
trolling factors on mineralization passing through
point paðxa; ya; zaÞ; pbðxb; yb; zbÞ is one of the points
close to the regression point pa within the band-
width; dab is the Euclidean distance between points
pa and pb; the coordinates of vectors U20D1;papb is
ðxb � xa; yb � ya; zb � zaÞ, abbreviated as (
xab; yab; zab); and aab represents the directional dis-

Figure 2. Spatial distributions of gold grade (view from south) in the (a) Xiadian deposit and (b) Dayingezhuang deposit.
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tance between the vectors U20D1;paq and
U20D1;papb.

The measurement of nearness is a function of
the two kinds of distance (i.e., Euclidean distance
dab, and directional distance aab) and can be ex-
pressed as:

sab ¼ Fðdab; aabÞ ð5Þ

where sab represents the spatial proximity of obser-
vation b to point a. This equation reflects the prop-
erty that the closer dab is, the smaller aab is, and the
greater the influence of the observation b on point a.
The nearest neighbors from the regression point
within the same bandwidth selected according to the
two spatial proximity metrics dab and sab are differ-
ent.

Figure 4 shows the diagram of bandwidth
shapes and nearest neighbors determined by the two
metrics. Here, the regression point pa is the coordi-
nate origin o. Figure 4a shows the bandwidth shape
determined by sab, in which oq is assumed to be the
dominant influence direction, while Fig. 4b shows
the bandwidth shape determined by dab. Data points
within the bandwidth can be selected as the nearest
neighbors. In Fig. 4a, the surrounding points are
determined by sab (Eq. 5), in which the points in the
directions close to the dominant influence direction
have higher priority than the points in other direc-
tions with the same Euclidean distance. This causes
more points close to the dominant influence direc-
tion to be selected as the nearest neighbors (Fig. 4a).
In contrast, if the surrounding points are determined
by Euclidean distance dab, then the points in all
directions have the same priority and have the same
chance to be selected as the nearest neighbors
(Fig. 4b).

The weighting function of observation b for
regression point a is expressed as:

wab ¼ F pabð Þ ¼ f 1 dabð Þf 2 aabð Þ ð6Þ

where f 1 dabð Þ and f 2 aabð Þ can be separately obtained
according to Eq. 3 or 4. In the calculation of f 2 aabð Þ,
dab is replaced by aab, and the bandwidth is set to p.
The bandwidth of the regression point a in both
improved and standard GWR are shown in Fig. 4, in
which oq

*

is taken to be the dominant influence
direction. The directional distance aab is determined
by the coordinates of vectors paq

*

and papb
*

; it can be
calculated as:

aab ¼ arccos *paq�*papb
*
paqj j papb*j j ð7Þ

In 3D space, a point A in a spherical coordinate
system can be expressed as Aðr; h;uÞ, where r is
distance from point A to the origin, h is angle be-
tween the vector and the positive direction of z axis,
and u is angle between the projection of the vector
on the horizontal plane and the due north direction.
The Cartesian coordinates ( x; y; z) of point A can be
retrieved as:

x ¼ rsinh sinu y ¼ rsinh cosu z ¼ rcosh ð8Þ
In general, a plunging line can be described with

plunge direction and plunge in 3D space. The plunge
direction is the angle between the horizontal pro-
jection of the plunging line in the vertical plane with
the due north direction, and the plunge is the angle
between the plunging line and the horizontal in the
vertical plane. As shown in Fig. 3b, the vector oq

*

is
taken to be the dominant influence direction whose
plunge and plunge direction are hg and ug, respec-

tively. It can be expressed as oq
*

in the spherical
coordinate system, where rq is set to 1 because only

its direction needs to be considered. The relation is:

rq ¼ 1; hq ¼ hg þ 90�;uq ¼ ug ð9Þ

Figure 3. Vectors in 3D space for (a) angles between vectors (b) vector (plunging line) in spherical coordinate.
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Similarly, the vector papb
*

(Fig. 3a) can be ex-
pressed as papb

*

rab; hab;uabð Þ in spherical coordinates
where the radius rab, angles hab and uab can be cal-
culated from the Cartesian coordinates of points pa
and pb. Therefore, the angle aab between vectors oq

*

and papb
*

is only related to rab, hq and uq; and it can

be calculated from the plunge and plunge direction
as:

where hg and ug can be optimized by comparing the

model performance with different segmentations of
plunges and plunge directions. In this study, the
experimental plunge was set from 0� to 90� and the
experimental plunge direction was set from 0� to
360�.

The workflow is shown in Fig. 5. Given n points
with properties in 3D space, the process is described
as follows: (1) divide the plunge range into p1 equal

parts and the plunge direction range into p2 equal
parts; (2) with the combination of each segmentation
of p1 and p2 as the dominant influence direction,
compute the direction weight and perform the im-
proved GWR calculation; and (3) for each segmen-

tation of p1 and p2, compare the R2 values and find
the influence distribution in all directions.

RESULTS

Multi-Collinearity Diagnosis

It is necessary to perform a multi-collinearity
diagnosis for the explanatory variables before mul-
tiple regression analysis. We used the variance
inflation factor (VIF) to test the degree of multi-
collinearity. The VIF measures how much the vari-

Figure 4. Diagrams of bandwidth shapes and nearest neighbors for (a) improved GWR and (b) standard GWR. Red points

represent ore-bearing units, which are commonly distributed unevenly in 3D space. The ellipsoid in (a) with the dominant

influence direction (arrow oqÞ indicates the most influential direction of ore-controlling factors on mineralization, while the

sphere in (b) with the same influence in all directions cannot reflect the direction difference.

aab ¼ arccos
xabsin hg þ 90�

� �

sinug þ yabsin hg þ 90�
� �

cosug þ zabcos hg þ 90�
� �

rab

�

�

�

�

�

�

�

�

�

�

¼ arccos
xabcoshgsinug þ yabcoshgcosug � zabsinhg

rab

�

�

�

�

�

�

�

�

ð10Þ
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ance of an estimated regression coefficient is in-
creased because of collinearity. The collinearity is
very strong if the VIF is> 10 (Chennamaneni e al,
2016; Marquardt, 1970). All the VIF values are< 10
(Table 2), which show that redundancy among the
explanatory variables was acceptable for both de-
posits.

OLS (Ordinary Least Squares) Diagnosis

The OLS method is the correct starting point
for all spatial regression analyses. OLS diagnosis was
used to evaluate the relationships among variables
(or processes) by establishing a global model for
them. The significance levels can be obtained by
performing various statistical tests on the parameter

Figure. 5. Flowchart for the improved GWR method.

Table 2. Values of VIF for the explanatory variables (see Table 1)

Variable dF waF wbF gF fP fV fA

VIF Xiadian Dayingezhuang 1.136 1.06 1.064 1.021 3.196 3.241 1.056

1.45 1.12 1.121 1.205 3.124 3.223 1.246
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estimates for the OLS model, such as the joint F-
statistic, joint Wald statistic, Koenker (BP) Statistic,
and Jarque–Bera Statistic. Table 3 shows the OLS
model diagnostic results for the Xiadian and Day-
ingezhuang data. The adjusted R2 values were
both< 0.1, which indicate that the OLS models
cannot adequately express the relationship among
the variables. The values of Koenker (BP) statistic
indicate that the models have statistically significant
heteroscedasticity or inequalities. The values of the
Jarque–Bera statistic show that the predictions were
biased and the residuals were not normally dis-
tributed. All these diagnostic results show that the
OLS models need to be expanded to solve the non-
stationary relationship among the variables.

Spatial Non-stationarity Detection

This paper employs the GWR local model to
explore the non-stationary relationship between
gold grade and the ore-controlling factors by com-
paring it with the OLS global model. We tested and
verified four aspects of the spatial non-stationarity:
model performance, local t-statistics, spatial auto-
correlation of residuals, and stationary index for
explanatory variables.

R2 values were adopted to evaluate the model
performance. Table 4 shows the global performance
comparison of GWR and OLS models. All global R2

values of the GWR models were> 0.8, while those
of the OLS models were< 0.1. These reflect that the
GWR models, which consider local differences of
variables, had better performance than the OLS
models. Because the GWR achieved better perfor-
mance when using the bisquare kernel compared to
the tricube kernel (Table 4), the former was adopted
in the following analysis. The local R2 values of the
GWR models are displayed in Fig. 6. We found that
the local R2 values were all> 0.77, which show that

the GWRmodel fits well in the whole region. All the
global and local R2 values of the GWR models
indicate that non-stationarity exists in the relation-
ships among the variables.

The t-statistic values of the local estimates were
calculated to measure the varying relationships be-
tween gold grade and the ore-controlling factors.
Because the sample size was 50 (Table 4), values of
the t-statistic greater than 2.009 or less than � 2.009
were considered significant at the 95% confidence
level. The red and blue points in Fig. 7 shows that
the absolute values of the t-statistic of all the
parameter estimates were greater than 2.09. The
distribution of the t-statistic exhibited obvious spa-
tial variability. This indicates that the ore-controlling
factors were important to the mineralization at these
points and less important at other sites.

We used Moran�s I statistics of model residuals
to measure how much the model reduced the spatial
non-stationarity. In Table 5, the global Moran�s I
values were all< 0.1, which indicate weak positive
spatial autocorrelation. The values of the OLS
models are about 3 9 more than those of the GWR
models, which show that the GWR model can, to
some degree, reduce the spatial autocorrelation
compared to the OLS model.

Global autocorrelation is designed for homo-
geneous space and it is not applicable to heteroge-
neous space. We used local autocorrelation to
express the spatial heterogeneity of the mineraliza-
tion distribution. Figure 8a, b shows the local Mor-
an�s I distributions for the OLS model, and Fig. 8c, d
for the GWR model. We found that the spatial
distributions in Fig. 8c, d are more even than those
in Fig. 8a, b, which indicate that the GWR models
reduced the spatial autocorrelations in residuals
more efficiently than the OLS models did.

The spatial stationary index was introduced to
measure the significance of geographical variability
(Brunsdon et al., 1996, 2002; Huang et al., 2020);

Table 3. OLS diagnostics

Item Xiadian Dayingezhuang item Xiadian Dayingezhuang

Number of Observations: 11,458 26,826 Akaike’s Information Criterion (AIC): 53,945.98 88,753.90

Multiple R-Squared: 0.076 0.027 Adjusted R-Squared: 0.076 0.027

Joint F-Statistic: 134.73 107.95 Prob(>F), (8,10,800) degrees of freedom: 0.000000* 0.000000*

Joint Wald Statistic: 992.59 671.40 Prob(> chi-squared), (8) degrees of freedom: 0.000000* 0.000000*

Koenker (BP) Statistic: 157.75 353.18 Prob(> chi-squared), (8) degrees of freedom: 0.000000* 0.000000*

Jarque–Bera Statistic: 301,784.00 321,316.09 Prob(> chi-squared), (2) degrees of freedom: 0.000000* 0.000000*

*Statistically significant p-value (p< 0.01)
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values of> 1 mean non-stationary. Table 6 shows
the spatial stationary index values of the parameter
estimates, indicating that the relationships between
gold grade and the seven ore-controlling factors
were not uniform across space and, therefore, the
relationships were non-stationary.

Anisotropic Analysis of Non-stationary
Relationships

The preceding analysis of the standard GWR
results proved that the relationships between gold
grade and the ore-controlling factors were non-sta-
tionary, and so we used the improved GWR model
to analyze further their directional difference. In this
study, the anisotropy was obtained by observing the
changes of R2 values of the GWR models with dif-
ferent values of plunge direction and plunge.

Figures 9 and 10 show the performance change
of the improved GWR models under adaptive
bandwidth and fixed bandwidth, respectively. The
series of concentric circles represents the plunge
angles from 0� to 90�, which increased from the in-

side out. The plunge directions were expressed as
beams ranging from 0� to 360�, which began from
due north and increased clockwise. The black bold
line represents the strike of the Zhaoping fault zone
and the black bold line with arrow shows the dip
direction of the fault. The influence patterns gener-
ated by the improved GWR models with adaptive
and fixed bandwidths were strongly similar (Figs. 9
and 10), which indicate that the performance was
unrelated to bandwidth.

Figures 9a and 10a show the influence patterns
for the Xiadian gold deposit, from which we found
that the NE and NW plunge trends had the best
performance, especially those with bearings of 285�–
65� with angles of 25�–65�, respectively, which were
the dominant influence directions. The NE domi-
nant influence direction followed the NE 45� strike
of the south part of the Zhaoping fault zone or is
rotated by a small angle, indicating that the fault had
a great effect on the mineralization along its strike.
The NW dominant influence direction was opposite
to the SE dip direction of the fault and had better
performance than along the fault dip direction. The
blue area located at plunge bearings of 105�–225�

Table 4. Performance comparison between standard GWR and OLS

Data MODEL Min_NN Max_NN Step R2 Adjusted R2 Number of NNs

Xiadian OLS 0.076 0.076

GWR ðbisquareÞ 30 300 10 0.914 0.914 50

GWR ðtricubeÞ 30 300 10 0.800 0.800 50

Dayingezhuang OLS 0.027 0.027

GWR ðbisquareÞ 30 300 10 0.964 0.964 50

GWR ðtricubeÞ 30 300 10 0.904 0.904 50

Figure 6. Local R2 of GWR models for the (a) Xiadian deposit and (b) Dayingezhuang deposit.
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and plunge angles of 30�–50� had the weakest
influence direction, which roughly followed the dip
directions and dips of the fault zone controlling the
deposit. The great difference between the two sides
perpendicular to the strike of the Zhaoping fault was
consistent with not only the direction of migration of
ore-forming hydrothermal fluid but also with the
change tendency of the shortest distance to the fault.
These suggest that the controlling factor dF (Ta-
ble 1), namely the shortest distance to the fault,
contributed greatly to the gold grade.

Figures 9b and 10b illustrate the influence pat-
terns of the Dayingezhuang gold deposit, in which
the dominant directions corresponded to the N and
the S plunge directions. The N dominant direction
roughly followed the NNE 20� strike of the middle
section of the Zhaoping fault zone or differed by a
small angle, indicating that the fault had a great ef-
fect on the gold grade along its strike. The S domi-
nant direction was along the SSW 20� fault strike
with slight W deviation, which can be considered to
be the combination of the SSW strike of the
Zhaoping fault and the 100� strike of the Day-
ingezhuang fault. These suggest that the dominant
influence direction of the Dayingezhuang gold de-
posit was the result of the combined activity of the
two faults, indicating further that the Day-
ingezhuang fault either participated actively in the
deposition of gold as a pre-existing fault or it offset
the orebodies as a post-ore fault. The lowest-influ-
ence areas, which are shown in blue, were mainly
located at the dip directions of 45�–125� and dips of

Figure 7. t-statistic of parameter estimates for variables (a) dF, (b) fA, (c) fP, (d) fV, (e) gF, (f) waF and (g) wbF. See Table for

explanations of variables.

Table 5. Spatial autocorrelation of residuals

Data object Global Moran�s I value Z-score

XD Residuals of OLS 0.076 5.683

Residuals of GWR 0.026 1.916

DYGZ Residuals of ols 0.098 7.625

Residuals of GWR 0.020 1.564
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0�–35�, which followed the ESE dip direction of the
Zhaoping fault zone with dips of 0�–35�. The direc-
tion perpendicular to the strike with plunges of 0�–
45� was a relatively low-influence area but the up-
dip direction of the fault had greater influence than
the down-dip direction, and the influence followed
the change tendency of the shortest distance to the
fault. This indicates that the controlling factor dF
(Table 1), namely the shortest distance to the fault,
had a great effect on the gold grade.

Therefore, the ore-controlling factors of the
Xiadian and Dayingezhuang gold deposits had an

anisotropic influence on mineralization. The domi-
nant influence directions of both deposits were
roughly along the strike of the Zhaoping fault,
indicating that the Zhaoping fault zone had great
control on mineralization of both deposits. On the
one hand, the common result that the up-dip direc-
tion of the fault had higher influence than the down-
dip direction makes it clear that the ore-controlling
factor dF (Table 1), which represents the shortest
distance to the Zhaoping fault, contributed strongly
to mineralization of both deposits. On the other
hand, a difference was discovered between the two

Figure 8. Local Moran�s I for (a) OLS and (c) GWR in the Xiadian deposit and for (b) OLS and (d) GWR in the

Dayingezhuang deposit.

Table 6. Stationarity index of explanatory variables (see Table 1)

dF waF wbF gF fP fV fA

Xiadian 100.739 117.769 176.648 26.155 142.853 138.240 17.526

Dayingezhuang 89.326 189.608 243.653 33.939 142.758 128.537 25.988
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deposits. That is, the Xiadian gold deposit was
controlled only by the Zhaoping fault, but the
Dayingezhuang gold deposit was the result of the
activity of both the Zhaoping and Dayingezhuang
faults, which demonstrates the positive effect of the
Dayingezhuang fault on the metallogenesis of the
Dayingezhuang gold deposit.

DISCUSSION

From the above analysis, we found that the
standard GWR can be used to detect non-station-
arity of relationships among variables caused by
distance, while the improved GWR can be used
further to analyze the anisotropic pattern of non-
stationary relationships.

Figure 9. Anisotropic pattern of improved GWR with adaptive bandwidth in the (a) Xiadian deposit and (b)

Dayingezhuang deposit.

Figure 10. Anisotropic pattern of improved GWR with fixed bandwidth in the (a) Xiadian deposit and (b) Dayingezhuang

deposit.
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Comparison of Model Performance of the Improved
and Standard GWR

It can be seen that most of the R2 values of the
improved GWR calculated with an adaptive band-
width in Fig. 9 are less than those of the standard
GWR, while most of the R2 values of the improved
GWR with a fixed bandwidth in Fig. 10 are greater
than those of the standard GWR. This happened
because the calibration process of bandwidth is a
tradeoff between bias and standard error. The model
performance should be compared at the same
bandwidth.

Using the Xiadian and Dayingezhuang gold
deposits as examples, we analyzed how the R2 values

changed with the same fixed bandwidth to evaluate
the performance of the improved GWR model
(Fig. 11). Each curve in Fig. 11 represents the
dependence of model on different plunge directions
with a certain plunge, which is an element in the set
{5 15 25 35 45 55 65 75}. Different curves represent
different plunge angles. The red lines in Fig. 11
represents the R2 values of the standard GWR.
Figure 11a, c shows the results for the improved
GWR for the Xiadian gold deposit, and Fig. 11b, d
for the Dayingezhuang gold deposit. To test further
the accuracy and robustness of the algorithm, the
model performance with different kernel functions
was compared. Figure 11a, b demonstrates the im-
proved GWR results with the bisquare kernel, and

Figure 11. Performance changes with plunge and plunge direction in the Xiadian deposit using the (a) bisquare kernel and

the (c) tricube kernel, and in the Dayingezhuang deposit using the (b) bisquare kernel and (d) tricube kernel.
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Fig. 11c, d with the tricube kernel. The R2 values
with the bisquare kernel (Fig. 11a, b) were greater
than those with the tricube kernel (Fig. 11c, d) in the
same directions, which illustrate that the improved
GWR model with the bisquare kernel performed
better than the model with the tricube kernel. The
similar trends in Fig. 11a, b, c, d indicates that the
directional performance of the improved GWR
model was not affected strongly by the choice of
kernel function. All the R2 values of the improved
GWR models with their optimal direction angles
were greater than those of the standard GWR
models. This demonstrates that the improved GWR
model with the optimal direction weight performed
better than the standard GWR model.

Analysis of Anisotropic Patterns

The anisotropic patterns from the improved
GWR model using the tricube kernel with fixed
bandwidth are illustrated in Fig. 12 for both depos-
its. Comparing the anisotropic patterns for the de-
posits in Figures. 9 and 10, the dependence of
performance on direction was almost the same, and
optimal values were located in the same directions.
It can be concluded that similar anisotropic patterns
of the relationships between gold grade and the ore-
controlling factors can be obtained with the im-
proved GWR model, using either fixed or adaptive
bandwidth with the bisquare or tricube kernel.

Apparently, the improved GWR model can help
discover the common cause of the anisotropic rela-
tionships between the ore-controlling factors and
gold grade. At the same time, from the consistency
of the optimal directions with the strike of the
Zhaoping fault zone in both the Xiadian and Day-
ingezhuang gold deposits, we further demonstrated
the influence of the fault zone on gold grade and the
role of the ore-controlling factor dF on mineraliza-
tion. All these results provide powerful support for
the applicability of these parameters in predictive
modeling and they can be used to improve the
accuracy of predictions. Moreover, the results pro-
vide evidence that the Dayingezhuang fault played
an active role in mineralization in the Day-
ingezhuang gold deposit.

Exploration of Fluid Migration

Based on Fig. 11, we also found that the per-
formance changed with plunge direction from steep
to gentle. The transition of plunge from steep to
gentle was about 55� in the Xiadian gold deposit and
45� in the Dayingezhuang gold deposit. These angles
are basically consistent with the dip angle of the
Zhaoping fault zone. This result suggests that the
influence of the controlling factors on mineralization
was relatively stable for all azimuths when the
plunge was greater than the fault dip angle, while the
influence depended more strongly on the azimuth

Figure 12. Anisotropic pattern of improved GWR using the tricube kernel with fixed bandwidth in the (a) Xiadian deposit

and (b) Dayingezhuang deposit.
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when the plunge was less than the fault dip angle.
This indicates that, to some extent, fluid flow below
the fracture surface was isotropic and was domi-
nated by infiltration, whereas fluid flow above the
fracture surface was affected by the dip angle of the
fault and by other factors.

CONCLUSIONS

In this study, we described an improved GWR
method to analyze the anisotropy of non-stationary
relationships between ore-controlling factors and
ore grade by optimizing and comparing the R2 val-
ues of models with different direction weights. The
results from the case studies for the Xiadian and
Dayingezhuang gold deposits revealed that the im-
proved GWR method can be used to discover ani-
sotropy hidden in spatial correlations, and the
important influence of the Zhaoping fault zone on
mineralization was confirmed for these two deposits.
Comparison with the standard GWR showed that
the improved GWR with proper weighting function
in the dominant influence direction performed bet-
ter than the standard GWR. With different settings
of bandwidths, the results exhibit the same aniso-
tropic pattern using the same data, which further
validates the stability of the improved GWR for
exploring anisotropy of relationships between min-
eralization and its determinants. These findings can
provide useful insight for research on metallogenic
mechanisms and exploration targeting. The exis-
tence of non-stationarity and anisotropy of rela-
tionships between mineralization and its
determinants is expected to open up a new method
of 3D quantitative prediction modeling. The im-
proved GWR can also be applied in the prevention
and mitigation of geological disasters in 3D space,
3D oil and gas exploration and productivity, and
other areas.
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