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Ground vibrations induced during rock fragmentation by blasting remain a potential source
of hazard for the stability of nearby structures. In this paper, to forecast the effect of blast-
induced ground vibrations, dimensional analysis (DA) is proposed to predict peak particle
velocity (PPV). In conventional predictor equations, the major and critical parameter for the
estimation of PPV is square root scaled distance. The new formula based on DA was
obtained considering various blast design parameters in order to improve the capability of
PPV prediction. After obtaining the new DA equation for the prediction of PPV, 360 data
sets were used to determine the unknown coefficients of the new equation as well as site
constants of different conventional predictor equations. Then, ten additional randomly se-
lected data sets were used to compare the capability of the new model with conventional
predictor equations. The results were compared based on coefficient of determination (R2)
and mean absolute error (MAE) between measured and predicted values of PPV. The
proposed formula with the greatest R2 and the lowest MAE was the better option for
predicting the PPV of induced vibrations for the measured field data.
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INTRODUCTION

Several mining companies encounter blast-in-
duced ground vibration problems in the form of both
social and environmental impacts on nearby resi-
dential areas. Blasting is an essential fragmentation
and displacement process of rock to enable more
efficient excavation in mining operations (Afeni &
Osasan, 2009). Blast vibration levels need to be
accurately monitored and reduced to a level that is
suitable for both the local community and the min-
ing company.

Blasting is a complex phenomenon that is con-
trolled by a multitude of variables. The difficulty in
predicting and controlling the vibration levels is
influenced largely by the nature of rock at different
geological conditions. Several methods are used to
assess the influences of ground vibrations, but peak
particle velocity (PPV) is the most preferred kine-
matic descriptor of ground motion (Saadat et al.,
2014). The determination of PPV is therefore of
particular importance to mining engineers when
designing blasting parameters (Khandelwal, 2012). It
was suggested that the distance between the blast
location and the monitoring point, coupled with the
maximum charge of explosives, are the two main
factors that influence PPV primarily, where the level
of effect can be influenced directly by the quantity of
explosives used (Khandelwal & Singh, 2007).
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There are three factors that influence predom-
inantly the degree of shaking, namely PPV, its fre-
quency and its duration (Saadat et al., 2015). Mining
operations near residential areas are bound by rules
and regulations that prohibit excessive vibration le-
vels (Chen et al., 2015). Altering blast timing se-
quences and parameters, such as size, depth,
orientation, layout, location and number of holes,
can potentially play a major role in controlling PPV
levels. The geology of the surrounding rock also
needs to be taken into account to strengthen con-
clusions made (Simangunsong & Wahyudi, 2015).
However, these geological features constantly
change due to the blast locations, meaning that a
model suited to a general scenario lacks credibility.
Studies undertaken on the predictive capabilities of
various models are required for each new mine
location. It is very challenging to predict the PPV
levels precisely due to the uncertainty of various
factors that affect vibration force.

Several benefits will arise if accurate predictions
of PPV can be made. The effectiveness of blasting
operations will increase as the safety factors set for
predicted vibrations levels can be lowered. This can
increase profit margins for mining companies by
allowing engineers to optimize blasting parameters
to achieve more effective and efficient outcomes,
and at the same time reduce social and environ-
mental impacts (Mohamed, 2009; Khandelwal, 2011;
Khandelwal et al., 2011; Monjezi et al., 2013).

Several models can be used to predict vibration
levels, and the accuracy of each model varies for
different geological conditions. Many conventional
predicting equations have been developed over the
years based on explosive charge used per delay and
distance between blast face to monitoring point, but
in recent times improved models have been used to
reduce the variance in the predicted results. One of
the main reasons for this improvement is largely due
to the increased number of parameters used to
provide a more accurate description of the wave
propagation effect. Many researchers (Monjezi
et al., 2006; Khandelwal & Singh, 2006, 2007, 2009,
2013; Khandelwal, 2010, 2012; Khandelwal et al.,
2010, 2017; Fisne et al., 2011; Álvarez-Vigil et al.,
2012; Bakhshandeh et al., 2012; Mohamadnejad
et al., 2012; Armaghani et al., 2015; Bakhtavar et al.,
2017a, 2017b; Bakhtavar & Yousefi, 2019; Ding
et al., 2020; Fang et al., 2020; Rezaeineshat et al.,
2020; Zhang et al., 2020; Bayat et al., 2021; Bui et al.,
2021; Fattahi et al., 2021; He et al., 2021; Qiu et al.,
2021) have applied various artificial intelligence

techniques, such as artificial neural networks
(ANNs) and support vector machines (SVMs), to
study PPV. It was found that the maximum charge
per delay and distance between the blast face to the
monitoring point are important, but other parame-
ters, such as stemming, hole depth, physical and
mechanical properties of rock mass, burden and
spacing, can also alter the intensity of ground
vibration. It is very strenuous to obtain a PPV
equation based on all the affected parameters using
an ANN, despite its capability in function approxi-
mation and prediction of nonlinear relationships
among various parameters.

Dehghani and Ataee-pour (2011) developed a
PPV predictor equation using dimensional analysis
(DA). It was proposed that empirical methods are
not suitable due to the large number of important
parameters that can affect vibration levels. They
selected various input model parameters based on
an artificial neural network (ANN) approach. The
study established that the effectiveness of the DA
model decreased when parameters have limited
correlations with vibration levels. Therefore,
choosing variables with high correlation effect is
particularly important to the success of any model. It
was found that when ANN was used to remove all
unnecessary variables, the DA model produced
much higher levels of correlation compared to using
any of the conventional predictor equations. DA
was applied successfully by Khandelwal and Saadat
(2015) to approximate the effects of blast-induced
ground vibrations. The Buckingham Pi theorem was
employed to create dimensionless groups. Both lin-
ear and nonlinear regression analysis were used to
relate these groups, but the nonlinear method was
more accurate compared to the linear approach.
They also compared the proposed model to other
conventional models and found that the DA ap-
proach can be suitable for predicting PPV. A similar
DA approach was undertaken by Cheng and Chau
(2015), who established the approach is feasible.
Their aim was to construct a new empirical formula
for a standardized PPV, which is dimensionless. The
used 500 blast vibration data measurements from the
Anderson Road Quarry in Hong Kong to compare
the accuracy of the results using conventional and
new dimensionless formulas. The parameters con-
sidered were explosive energy, duration times and
densities of rock. It was realized that the proposed
approach obtained better PPV estimates with a
correlation coefficient of 0.9509 as opposed to 0.7607
for the conventional methods. Bakhtavar et al.,
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(2017a, 2017b) applied a hybrid DA fuzzy inference
system to study and predict blast-induced flyrock in
a copper mine based on 320 data sets and found that
flyrock predictions by the system were in close
agreement with real measurements. Sanchidrián and
Ouchterlony (2017) developed a DA approach to
study rock fragmentation in bench blasting. Their
model could be used from 5 to 100 percentile sizes
range with an expected error of< 25% at any per-
centile. Bakhtavar et al. (2015) applied a DA ap-
proach along with multivariate nonlinear regression
analysis to study and predict rock fragmentation of
Sungun surface mine. They developed a rock frag-
mentation equation by incorporating various inde-
pendent dimensionless products derived from DA
and compared their fragmentation prediction results
with sieve analysis, image processing technique as
well as the Kuz-Ram model. They found that their
prediction outcome was closer to actual fragmenta-
tion results obtained from sieve analysis compared
to the other models. Thus, DA has been utilized
extensively in the past to analyze complex relation-
ships among various physics-based quantities. The
DA method identifies the base quantities of the
different variables, where different procedures can
be applied to combine certain variables into a form
that has dimensionless units in order to facilitate the
interpretation and extend the range of application of
experimental data (Alhama & Madrid, 2007).

In the present study, a DA approach was
exercised to study and assess PPV in an under-
ground gold mine in Australia using various blast
design parameters. The novelty of this research
work is that both linear and nonlinear DA ap-
proaches have been applied to predict and assess
blast vibrations in an underground gold mine. Then,
a simple and easy-to-use blast vibration equation is
proposed based on DA. A comparative analysis of
the newly proposed equation and conventional
empirical models was performed to obtain the pre-
diction capability of each model.

DIMENSIONAL ANALYSIS

DA is an engineering problem solving method
that examines complex relationships among a set of
physical quantities (Sharp et al., 1992). The proce-
dure involves manipulating the individual variables
involved in the problem, whereby the relationships
are simplified into an equation that involves a
smaller number of dimensionless parameters. The

Buckingham Pi theorem is a method that is used
when a large number of independent variables is
present (Reddy & Reddy, 2014). This theorem is
one of the many methods that can be used to de-
velop dimensionless variables. In mathematical
terms, the Buckingham Pi theorem states that if a
number of measurable quantities (or variables) form
a complete functional relationship shown in Eq. (1),
then the solution has the form of Eq. (2) (Dehghani
& Ataee-pour, 2011), thus:

u A;B;C; . . .ð Þ ¼ 0 ð1Þ

f p1; p2; p3; . . .ð Þ ¼ 0 ð2Þ

where the terms A, B and C are, in this study, the
various variables that affect vibration levels. The p
terms in Eq. (2) are the dimensionless groups that
represent the products of the A, B and C terms. If
there are enough fundamental units to describe the
magnitude of the quantities considered, then Eq. (2)
can represent a complete relationship.

Dimensional quantities employed in DA are
represented by m and the variables associated with
these quantities are denoted by n. Once the dimen-
sional quantities have been established, they need to
be transformed into a combination of either force,
length or time. The number of p terms is equal to the
difference between the number of measurable vari-
ables and fundamental units. Equation (3) is a
mathematical representation of this definition,
where ‘‘r’’ is the number of p dimensionless terms,
thus:

r ¼ n�m ð3Þ
Once the desired variables have been chosen,

they are placed in matrix form where the funda-
mental quantities make up the rows and each vari-
able forms the columns. The powers of the
fundamental dimensions m corresponding to each
variable n are used to construct the matrix (Eq. (3)).

Among the n variables, a number of so-called
‘‘repeating variables’’ are chosen. The number of
repeating variables chosen is equivalent to the
number of fundamental quantities m. These
repeating variables will appear in all the p terms and
must be chosen based on the following two
restricting rules. First, all repeating variables must
have dimensions; they cannot be dimensionless.
Second, the overall dimensions of each repeating
variable must have different combinations of
dimensions compared to all other variables used in
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the procedure. Once the repeating variables have
been selected, the determinant of their fundamental
dimensions can be calculated. If the determinant of
the square matrix is not equal to zero, then the rows
of the matrix are linearly independent. If the
determinant is found to be zero, then a different set
of repeating variables needs to be considered.

Once all the prerequisite information has been
identified, the dimensionless p variables can be cal-
culated. By selecting one of the non-repeating vari-
ables (D) and assuming there are three repeating
variables (A, B, C), the first p dimensionless group
can be calculated as:

p1 ¼ A½ �a1 � B½ �b1 � C½ �c1 � D½ � ð4Þ
The second dimensionless group can be calcu-

lated by once again multiplying the three repeating
variables by the next non-repeating variable (E),
thus:

p2 ¼ A½ �a2 � B½ �b2 � C½ �c2 � E½ � ð5Þ
Note that the subscript for the a, b, c constants

relates to the subscript for the p groups. The pro-
cedure for Eqs. (4)–(5) is continued for all the
remaining variables. For the p variables to be
dimensionless, the summation of the powers repre-
sented by ‘‘a, b, c’’ in the equations needs to be
eliminated. By doing this, the ‘‘a, b, c’’ constant will
multiply each variable in the group in such a way
that the p group will be dimensionless.

Once each p group has been made dimension-
less, they need to be manipulated to form an equa-
tion. The method chosen to relate these variables is
multiple regression analysis. A typical linear
regression equation has the form:

y ¼ kþ x1 � ðp1Þ þ x2 � ðp2Þ þ � � � þ xr � ðprÞ ð6Þ

where the r subscript is the number of dimensionless
groups determined from Eq. (3) and the x variables
are the site constants. Nonlinear regression analysis
can also be used, thus:

ln yð Þ ¼ kþ x1 � ln p1ð Þ þ x2 � ln p2ð Þ þ � � � þ xr
� ln prð Þ ð7Þ

Linear Regression Analysis

To determine the site constants, a regression
analysis toolpack of Microsoft Excel 2016 was ap-
plied. The recorded data were entered into Excel, as

per the format shown in Table 1. The columns are all
the variables considered and the rows are the iter-
ations of each test.

For linear regression analysis, a new set of
columns needs to be created to the right of the
measured variables. Each new column is a dimen-
sionless p group. For example, if the first p group
was found to have a dimensionless combination of
A 9 B 9 C, then the new column would have this
combination as a result. The formula in Excel used
for this example is shown in Table 2. This process is
completed for all dimensionless groups.

Once Table 2 is completed, the data analysis
tool can be used as it is able to compute a regression
analysis on the dimensionless groups. To run this
regression analysis, two sets of variables are re-
quired. The Y input range comprises the dependent
variables and the X input range comprises all the
other variables that are independent of the Y values.

The problem with Buckingham Pi theorem is
that the dependent variable is typically one of the
variables within one of the dimensionless groups. If
it is assumed that variable B is the dependent vari-
able, then it means that the p1 column needs to be
adjusted to make the B value by itself. This means
that, before the regression can be run, the inde-
pendent dimensionless groups must be modified. If
p1 ¼ A� B� C, where B is the dependent variable,
then the operation to get B by itself is:

f p1 � A� Cð Þ; p2 � A� Cð Þ; . . . ; pr � A� Cð Þð Þ ¼ 0

ð8Þ

Table 1. Recorded data used to determine the site constants for

the DA equation

No A B C …

1 A1 B1 C1 …
2 A2 B2 C2 …
3 A3 B3 C3 …
..
. ..

. ..
. ..

. . .
.

Table 2. Dimensionless variables added to the Excel sheet

No A B C … p1 … pr

1 A1 B1 C1 … = A1 9 B1 9 C1 … ¼ pr1
2 A2 B2 C2 … = A2 9 B2 9 C2 … ¼ pr2
3 A3 B3 C3 … = A3 9 B3 9 C3 … ¼ pr3
..
. ..

. ..
. ..

.
… ..

.
… ..

.
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This means that the same operation performed
on p1 to get B by itself must also be applied to the
other dimensionless groups. The Excel spreadsheet
can be updated using Eq. (8) (Table 3).

Running the regression analysis produces the
same number of coefficients as the number of
modified independent variables, plus an additional
intercept coefficient k. Using the above example,
Eq. (6) becomes:

y ¼kþ x2 �
p2

A� Cð Þ

� �
þ x3 �

p3
A� Cð Þ

� �
þ � � �

þ xr �
pr

A� Cð Þ

� � ð9Þ

where y is the predicted variable, k is the intercept
coefficient generated by Excel and the x coefficients
are the site constants that relate to each independent
variable selected when running the regression. The
terms in brackets in Eq. (9) are no longer the orig-
inal dimensionless groups. They are now the modi-
fied dimensionless groups. The site constants k and x
are related to the modified groups, not the original
groups. This is true for the predicted variable as
well. Y is not the same as p1, because replacing p1
means that all the site constants are affected as well.

Nonlinear Regression Analysis

Nonlinear regression analysis follows the same
process as the linear one, but the former takes the
natural logarithm of each dimensionless group,
which alters Eq. (2) into:

f lnðp1Þ; ln p2ð Þ; . . . ; ln prð Þð Þ ¼ 0 ð10Þ
Using Eq. (10), Table 2 can be modified into

Table 4.
Again, assuming p1 ¼ A� B� C and B is the

dependent variable, Eq. (10) is modified to get ln(B)
by itself as:

lnðp1Þ ¼ ln A� B� Cð Þ

ln A� B� Cð Þ ¼ ln Að Þ þ ln Bð Þ þ ln cð Þ

ln Bð Þ ¼ lnðp1Þ � ln Að Þ � ln Cð Þ

) f lnðp1Þ � ln Að Þ � ln Cð Þ½ �; ln p2ð Þ � ln Að Þ � ln Cð Þ½ �;ð
. . . ; ln prð Þ � ln Að Þ � ln Cð Þ½ �Þ ¼ 0

Thus, the appropriate columns in Table 4 are
modified as shown in Table 5.

The predicted variable y can be calculated using
Eq. (7), thus:

ln yð Þ ¼kþ x2 � lnðp2Þ � ln Að Þ � ln Cð Þ½ � þ � � �
þ xr � lnðprÞ � ln Að Þ � ln Cð Þ½ �

To get the predicted variable by itself, the
exponential of both sides can be taken as:

y ¼ exp kþ x2 � lnðp2Þ � ln Að Þ � ln Cð Þ½ � þ � � �ð
þxr � lnðprÞ � ln Að Þ � ln Cð Þ½ �Þ

where the y value is the predicted variable, k is the
intercept coefficient generated by Excel, and the x
coefficients are the site constants that relate to each
independent variable selected when running the
regression.

Table 3. Modified Excel spreadsheet to allow linear regression analysis to be run

No A B C … p1 � A� Cð Þ … pr � A� Cð Þ y

1 A1 B1 C1 … ¼ A1�B1�C1
A1�C1ð Þ … ¼ pr1 � A1� C1ð Þ y1

2 A2 B2 C2 … ¼ A2�B2�C2
A2�C2ð Þ … ¼ pr2 � A2� C2ð Þ y2

3 A3 B3 C3 … ¼ A3�B3�C3
A3�C3ð Þ … ¼ pr3 � A3� C3ð Þ y3

..

. ..
. ..

. ..
.

… ..
.

… ..
. ..

.

Table 4. Natural logarithms of the dimensionless groups

No A B C … Ln(p1) … lnðprÞ

1 A1 B1 C1 … = ln(A1 9 B1 9 C1) … ¼ lnðpr1 Þ
2 A2 B2 C2 … = ln(A2 9 B2 9 C2) … ¼ ln pr2ð Þ
3 A3 B3 C3 … = ln(A3 9 B3 9 C3) … ¼ ln pr3ð Þ
..
. ..

. ..
. ..

.
… ..

.
… ..

.
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Conventional Predictors

Conventional predictor equations are all in the
form of a basic power function, thus:

y ¼ a � ðxÞb ð11Þ

where the terms a and b are site constants and x
represents various scaled distance combinations with
respect to total explosives used per delay. Table 6
highlights some of the common conventional pre-
dictor equations proposed by various researchers.

FIELD STUDY

The study was conducted at one of the under-
ground gold mines in Australia. The mineralization
transpires within the lower Ordovician mudstones,
sandstones and siltstones, which have been meta-
morphosed and tightly folded around a north-dip-
ping axis. Of all the known western segments of the
anticlines, the dip is roughly 70�W; the dip in the
eastern sectors range from 85�W to 85�E, and the
folded axial planes dip approximately 80�W. The
regional strike of the bedding is in a northerly
direction. The mineable quartz veins occurring lodes
and stockworks typically located within folded sec-
tions. The lodes and stockworks exist in west-dip-
ping fault zones. The mineralization is characterized
by notable coarse gold contained in the quartz veins.
In some sections, a high nugget effect is found with
grades reaching 50 g/t or higher over a few meters.

Due to the proximity of the mine to the resi-
dential area, the vibration levels and noise produced
from the mine operations have strict licensing con-
ditions. At the higher end of the scale are the blast
vibration levels, where current restrictions prevent
vibration levels from exceeding 10 mm/s at any time
and no more than 5% of blasts are permitted to
exceed 5 mm/s over a 12-month period. In addition,
the maximum blast vibration levels between the
hours of 10:00 pm and 7:00 am are 3 mm/s.

At the mine, the production blasting method is
an open stoping technique that follows the veins of
the gold ore. Once the ore has been mined out the
open stope is backfilled, allowing for the next section
of the vein to be blasted and mined out. The hole
lengths generally range from 10 to 25 m and depend
on local ground conditions and orientations of the
ore lodes. The diameters of the blast holes are
76 mm. Production blast holes use programmable
electronic detonators inserted into a cast primer.
Most of the hole is then filled with either ANFO or
an impact 50/50 blend depending on the required
output. Due to the large sections of rock requiring
fragmentation, production blasts typically produce
much higher PPV than ordinary development blasts.

Development blast holes are typically 3.7 m in
length with 45 mm diameter. These blast holes use
non-electronic development detonators connected
to an electric detonating cord, which sets off each
hole based on the preset delay sequence. Due to the
low quantity of explosives used, development
blasting practices rarely raise cause for concern and
thus are not analyzed for predictions of the PPV.

At the mine, approximately two development
blasts per shift are completed, whereas the number of
production blasts is approximately two per week. In
various locations around the neighboring houses,
monitoring instruments are used to measure blast-
induced ground vibrations. These instruments are
highly sensitive and can on occasion record vibration
levels that are not related to blasting activities such as
a vehicle driving past. For each production blast, a
plethora of variables are recorded, and some of the
important variables are listed in Table 7. In conjunc-
tionwith these variables, the locationswithin themine
and the monitoring site are also recorded. The blast-
ing parameters for production are highly specialized
and are designed to allow for appropriate fragmen-
tation of the surrounding rock. This means that there
is no set design for a production blast. These designs
can incorporate the number of holes, the diameter of
these holes and their lengths, aswell as the burden and
spacing dimensions for these holes.

Table 5. Modified dimensionless groups to allow nonlinear regression analysis to be performed

No A B C … lnðp1Þ � ln Að Þ � ln Cð Þ … lnðprÞ � ln Að Þ � ln Cð Þ

1 A1 B1 C1 … ln A1� B1� C1ð Þ � ln A1ð Þ � ln C1ð Þ … lnðpr1 Þ � ln A1ð Þ � ln C1ð Þ
2 A2 B2 C2 … ln A2� B2� C2ð Þ � ln A2ð Þ � ln C2ð Þ … ln pr2ð Þ � ln A2ð Þ � ln C2ð Þ
3 A3 B3 C3 … ln A3� B3� C3ð Þ � ln A3ð Þ � ln C3ð Þ … ln pr3ð Þ � ln A3ð Þ � ln C3ð Þ
..
. ..

. ..
. ..

.
… ..

.
… ..

.
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The geological characteristics of the surround-
ing rock between the blast location and the moni-
toring site are extremely difficult to analyze. What
can be examined and approximately measured is the
powder factor, which is the amount of force required
to adequately fracture the rock. The total tonnage of
rock that needs to be fragmented can also be re-
corded.

The properties associated with the explosives
can be evaluated, where the total amount of explo-
sives can play an important role in affecting the peak
vibration levels. If all the explosive content used was
detonated at the same time, then the peak vibration
level can be large. For this reason, there is a delay
between sets of holes to prevent excessive vibration
levels. The maximum instantaneous charge is re-
corded, which is the highest charge that can detonate
at any given time. The explosives used are both
ANFO and impact 50/50, which is an explosive
mixture that contains some inert material. The 50/50
impact explosive has a lower explosive force than
ANFO; the latter is employed if a more controlled
fragmentation is required, which is generally within

the perimeters of the blast pattern. This ultimately
reduces unnecessary fragmentation.

For the present study, 419 blast vibration data
sets were acquired from December 31, 2014, to June
5, 2017, of which 360 data sets were examined to
determine the site constants for the various models
analyzed. The DA model was specifically designed
for the mine; therefore, the variables chosen to de-
velop the equation were based on the data that were
previously been recorded (Table 7). To validate the
accuracy of the DA model, another ten sets of data
acquired from June 6, 2017, to August 29, 2017, were
used to predict PPV. These new sets of data were
also examined for the most effective conventional
predictor equations, whereby the results of the two
models were compared to one another.

ERROR ANALYSIS FOR COMPARING
PREDICTOR MODELS

There are many error indices that can be ap-
plied to analyze the effectiveness of a prediction
equation. As mentioned by Cheng et al. (2014), the

Table 6. Conventional predictor equations used for this study

Name Equation

United States Bureau of mines (Duvall et al., 1962)
PPV ¼ K Dffiffiffiffiffiffiffiffiffiffi

MIC
p

� ��B

Langefors–Kihlstrm (1963) PPV ¼ K
ffiffiffiffiffiffiffi
MIC

D
2
3

q� �B

Ambraseys–Hendron (1968) PPV ¼ K D

MIC
1
3

� ��B

Bureau of Indian Standards (1973) PPV ¼ K MIC

D
2
3

� �B

MIC is maximum instantaneous charge per delay. D is distance between blast face to monitoring point. K and B are site constants, which

can be determined by multiple regression

Table 7. Variables used to perform DA

Variable symbol Variable Unit Dimension

PPV Peak particle velocity mm/s LÆT�1

h Number of holes – –

d Number of detonators – –

PF Powder factor kg/m3 FÆT2ÆL�4

ch Total ANFO used kg FÆT2ÆL�1

I Impact 50/50 kg FÆT2ÆL�1

De Duration s T

MIC Maximum instantaneous charge kg FÆT2ÆL�1

D Distance to surface m L

R Amount of rock blasted kg FÆT2ÆL�1

F force. L length. T time
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coefficient of determination (R2) is an error analysis
tool for judging how effective a regression line pre-
dicts the actual results. It aims to show the correla-
tion of predicted value. s against actual measured
values. The value of R2 typically ranges between 0
and 1, where 1 indicates a perfect relationship and 0
no correlation. To calculate R2, the first step is to
determine the correlation coefficient (r):

r ¼ n �
P

x � yð Þ �
P

xð Þ �
P

yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2ð Þ �
P

xð Þ2
h i

� n
P

y2ð Þ �
P

yð Þ2
h ir

ð12Þ

where n is the number of input/output variables, x
represent predicted values and y represent actual
measured values. Then, R2 is computed as:

R2 ¼ n �
P

x � yð Þ �
P

xð Þ �
P

yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2ð Þ �
P

xð Þ2
h i

� n
P

y2ð Þ �
P

yð Þ2
h ir

0
BB@

1
CCA

2

ð13Þ
Expressing R2 as a percentage shows what

percentage of data points fall on the regression line.
This value is an indicator of the likelihood a pre-
dicted value will fall on the regression line. How-
ever, the R2 does not necessarily determine
causality, even if the relationship is high. For this
reason, another error analysis measurements can be
applied. The mean absolute error (MAE) and root
mean squared error (RMSE) can both be used in
conjunction with the R2 to provide a more accurate
interpretation of the relationship between the pre-
dicted and actual variables. MAE and RMSE are
calculated, respectively, as:

MAE ¼ 1

n

X
yj � ŷj
		 		 ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
yj � ŷj

 �2r

ð15Þ

where n is the number of data points analyzed, yj
represents actual values and ŷj represents predicted

values. The MAE and RMSE are two of the most
commonly considered accuracy measures for con-
tinuous variables. The MAE indicates the average
magnitude of errors between the predictions made
and the actual results. The RMSE also measures the
average magnitude of the error. However, but the

benefit of RMSE is that it squares the errors before
they are averaged, which allows for the RMSE to
assign a high weighting to large errors. This is highly
desirable for this study as large errors need to be
negated as much as possible. Because the MAE and
RMSE are both negatively orientated, the lower
their values, the better. In other words, if RMSE or
MAE is zero, it means a perfect relationship.

RESULTS

Dimensional Analysis

The choice of variables used to develop the
dimensionless groups was based on variables the
gold mine had previously measured. These variables,
with their common dimensions as well as their basic
fundamental units, are shown in Table 7. Using
Eq. (1), the functional relationships of these vari-
ables must therefore satisfy the following relation-
ship:

u PPV; h; d;PF; ch; I;De;MIC;D;Rð Þ ¼ 0

The matrix of these variables is presented in
Table 8.

From the matrix in Table 8, there are three
basic fundamental units, namely force, length and
time. From Eq. (3), the total number of dimension-
less p groups can be calculated as:

r ¼ n�m

)r ¼ 10� 3 ¼ 7

where n is number of variables and m is number of
basic fundamental units. Therefore, Eq. (2) is mod-
ified as:

f p1; p2; p3; p4; p5; p6; p7ð Þ ¼ 0 ð16Þ
Only three of the variables in Table 8 satisfy the

rules for choosing the repeating variables that will
appear in each dimensionless group. These variables

Table 8. Matrix of fundamental dimensions of the chosen

variables for DA

PPV h d PF ch I De MIC D R

F 0 0 0 1 1 1 0 1 0 1

L 1 0 0 � 4 � 1 � 1 0 � 1 1 � 1

T � 1 0 0 2 2 2 1 2 0 2
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are powder factor (PF), distance (D) and duration
(De). The determinant of the matrix for these vari-
ables was found to be 1, thus:

det
1 0 0
�4 1 0
2 0 1

						
						 ¼ 1

Therefore, the rows of the matrix are linearly
independent. Developing the dimensionless groups
was thus undertaken as displayed in Table 9:

From Table 9, the dimensions for p2; p3; p4; p5
are all equal. This means that all the power constants
a, b and c will be the same. p6 and p7 are dimen-
sionless; therefore, the number of dimensionless
groups is equal to the number of variables.

The power constants for p1 is calculated as
follows:

For force (F): a1 ¼ 0.
For time (T): 2 � a1 þ c1 � 1 ¼ 0.
For length (L): �4 � a1 þ b1 þ 1 ¼ 0.
By solving these system of equations, the power

constants were found to be:
a1 ¼ 0; b1 ¼ �1; c1 ¼ 1.
Substituting these constant into the equation

yields:

p1 ¼ PF½ �0� D½ ��1� De½ �1� PPV½ �

)p1 ¼ PPV �De

D

The power constants for p2 is calculated as
follows:

For force (F): a2 þ 1 ¼ 0.
For time (T): 2 � a2 þ c2 þ 2 ¼ 0.
For length (L): �4 � a2 þ b2 � 1 ¼ 0.
By solving these system of equations, the power

constants were found to be:
a2 ¼ �1; b2 ¼ �3; c2 ¼ 0.
Substituting these constants back into the

equation yields:

p2 ¼ PF½ ��1� D½ ��3� De½ �0� MIC½ �

)p2 ¼
MIC

PF �D3

Therefore, the dimensionless groups were:

p1 ¼PPV �De

D

p2 ¼
MIC

PF �D3

p3 ¼
R

PF �D3

p4 ¼
ch

PF �D3

p5 ¼
I

PF �D3

p6 ¼h

p7 ¼d

From Eq. (6), the linear regression equation
used to relate the dimensionless groups was:

PPV �De

D
¼kþ x2 �

MIC

PF �D3

� �
þ x3 �

R

PF �D3

� �

þ x4 �
ch

PF �D3

� �
þ x5 �

I

PF �D3

� �

þ x6 � hð Þ þ x7 � dð Þ
ð17Þ

Equation (17) is the linear DA equation.
From Eq. (7), the nonlinear regression equation

used to relate the dimensionless groups was:

ln PPV �De

D

� �
¼kþ x2 � ln

MIC

PF �D3

� �
þ x3 � ln

R

PF �D3

� �

þ x4 � ln
ch

PF �D3

� �

þ x5 � ln
I

PF �D3

� �
þ x6 � ln h½ � þ x7 � ln d½ �

ð18Þ
Equation 18 is the nonlinear DA equation.
Equations (17) and (18) were modified to

Eqs. (19) and (20), respectively, for PPV determi-
nation; thus:

PPV ¼k� x2 �
MIC

PF �D2 �De

� �
� x3 �

R

PF �D2 �De

� �

þ x4 �
ch

PF �D2 �De

� �
þ x5 �

I

PF �D2 �De

� �
� x6 �

h �D
De

� �

þ x7 �
d �D
De

� �

ð19Þ
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ln PPVð Þ ¼k� x2 � ln
MIC

PF �D2 �De

� �
þ x3 � ln

R

PF �D2 �De

� �

þ x4 � ln
ch

PF �D2 �De

� �
þ x5 � ln

I

PF �D2 �De

� �

� x6 � ln
h �D
De

� �
þ x7 � ln

d �D
De

� �

ð20Þ

Linear and Nonlinear Regression Analyses
Considering All Blasting Data sets

Multiple regression analysis in Microsoft Excel
2016 was used to develop the site constants for
Eqs. (19) and (20) and is given in Table 10.

Therefore, the DA equations using the site
constants generated in Excel (Table 10) are:

PPV ¼1:02� 1158:2 � MIC

PF �D2 �De

� �
� 67:64 � R

PF �D2 �De

� �

þ 455:36 � ch

PF �D2 �De

� �
þ 401:5 � I

PF �D2 �De

� �

� 6:99� 10�5 � h �D
De

� �
þ 5:95� 10�5 � d �D

De

� �

ð21Þ

ln PPVð Þ ¼2:33� 0:18 � ln MIC

PF �D2 �De

� �
þ 0:003 � ln R

PF �D2 �De

� �

þ 0:47 � ln ch

PF �D2 �De

� �

þ 0:007 � ln I

PF �D2 �De

� �
� 0:59 � ln h �D

De

� �

þ 0:53 � ln d �D
De

� �

ð22Þ
The predicted values PPV, by using Eqs. (21)

and (22), were then compared to the actual mea-
sured variables (Figs. 1, 2).

The R2 for the linear DA regression was 0.2542,
whereas for the nonlinear DA regression it was
0.2915. The linear DA regression showed higher
MAE and RMSE compared to non-linear DA
regression. The errors associated with the linear and
nonlinear predictions are reported in Table 11.

DA—Segregation of Site Constants for Comparable
Conditions

The gold mine has four different sections within
the mine. It also has nine different monitoring
locations. Different combinations of monitoring
locations with different mine sections were observed
in the data. Therefore, the data were segregated to
compare constant characteristics relating to distance
between the blast location and the monitoring site.
This generated a set of site constants for each
comparison, thus, creating a variety of predictor
equations. Comparisons of the predicted PPV re-
sults against the actual PPV results using these site
constants are shown in Figures 3 and 4. From these
figures, it can be said that the nonlinear DA
regression showed higher R2 compared to the linear
DA regression. The MAE and RMSE were also
lower for the nonlinear DA regression compared to

Table 9. Dimensionless groups with their respective dimensional quantities

Equation Equation dimensions

p1 ¼ PF½ �a1 � D½ �b1 � De½ �c1 � PPV½ � p1 ¼ F � T2 � L�4
� a1 � L½ �b1 � T½ �c1 � L � T�1

� 
p2 ¼ PF½ �a2 � D½ �b2 � De½ �c2 � MIC½ � p2 ¼ F � T2 � L�4

� a2 � L½ �b2 � T½ �c2 � F � T2 � L�1
� 

p3 ¼ PF½ �a3 � D½ �b3 � De½ �c3 � R½ � p3 ¼ F � T2 � L�4
� a3 � L½ �b3 � T½ �c3 � F � T2 � L�1

� 
p4 ¼ PF½ �a4 � D½ �b4 � De½ �c4 � ch½ � p4 ¼ F � T2 � L�4

� a4 � L½ �b4 � T½ �c4 � F � T2 � L�1
� 

p5 ¼ PF½ �a5 � D½ �b5 � De½ �c5 � I½ � p5 ¼ F � T2 � L�4
� a5 � L½ �b5 � T½ �c5 � F � T2 � L�1

� 
p6 ¼ PF½ �a6 � D½ �b6 � De½ �c6 � h½ � p6
p7 ¼ PF½ �a7 � D½ �b7 � De½ �c7 � d½ � p7

Table 10. Site constants for the linear and nonlinear equations

when all the data sets are considered

Constants Linear Nonlinear

k 1.016236426 2.333314519

x2 � 1158.210237 � 0.176676485

x3 � 67.63676108 0.003085455

x4 455.358002 0.470737454

x5 401.5024263 0.00682024

x6 � 6.99488E-05 � 0.591729356

x7 5.95367E-05 0.532142557
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the linear DA regression. The errors associated with
the linear and nonlinear predictions are listed in
Table 12.

Conventional Predictors

The blast monitoring data from the gold mine
were used to determine site constants for the four

R² = 0.2542
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Figure 1. Actual PPV versus predicted PPV by DA using linear regression analysis.
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Figure 2. Actual PPV versus predicted PPV by DA using nonlinear regression analysis.

Table 11. Errors between predicted and actual PPV values when

a single set of site constants is used

Error index Linear Nonlinear

R2 25.42% 29.15%

MAE 0.4953 0.4802

RMSE 0.6345 0.6321
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conventional predictor models depicted in Table 6.
The site constants of these four conventional pre-
dictor equations are shown in Table 13.

Figures 5, 6, 7, 8 illustrate the relationships
between predicted PPV values and actual PPV val-
ues for each of the equations in Table 13. Table 14
shows the errors in terms of R2, MAE and RMSE
between the predicted and actual PPV levels for the
four conventional equations. It can be seen that the
R2ranged from 0.1116 to 0.1611, and the Am-
braseys–Hendron predictor equation showed the
highest R2and lowest errors among all the four
conventional predictor equations.

R² = 0.641
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Figure 3. Actual PPV versus predicted PPV by DA using linear regression considering location

characteristics.

R² = 0.6569
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Figure 4. Actual PPV versus predicted PPV by DA using nonlinear regression considering

location characteristics.

Table 12. Comparison of actual with predicted PPV values

considering location characteristics

Error index Linear regression Nonlinear regression

R2 63.99% 65.69%

MAE 0.3296 0.3111

RMSE 0.4428 0.4362
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Conventional Predictors—Segregation of Site
Constants for Comparable Conditions

Because, among the four conventional predictor
equations, the Ambraseys–Hendron predictor
equation got the highest R2 and with least MAPE
and RMSE for the predicted PPV compared to ac-
tual PPV, it was employed further using segregated
data to compare constant characteristics relating to

Table 13. Site constants for the conventional predictor equations

Conventional predictor Site constant K Site constant B

PPV ¼ K Dffiffiffiffiffiffiffiffiffiffi
MIC

p
� ��B e5:4146 ¼ 224:663 � 1.1304

PPV ¼ K
ffiffiffiffiffiffiffi
MIC

D
2
3

q� �B

e0:5561 ¼ 1:744 1.0136

PPV ¼ K D

MIC
1
3

� ��B

e8:9243 ¼ 7512:323 � 1.6761

PPV ¼ K MIC

D
2
3

� �B

e0:5561 ¼ 1:744 0.5068

R² = 0.1488
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Figure 5. Actual PPV versus predicted PPV by the USBM equation.
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Figure 6. Actual PPV versus predicted PPV by the Langefors-Kihlström equation.
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distance between the blast location and the moni-
toring site. Figure 9 shows a plot of actual PPV
versus predicted PPV by the Ambraseys–Hendron
equation considering location characteristics. The R2

was 0.4098, MAE 0.4145 and RMSE 0.5762 (Ta-
ble 15).

Validation of Effectiveness of DA vs Conventional
Models

A new set of ten data points was used to com-
pare the effectiveness of the segregated nonlinear
DA equation and the Ambraseys–Hendron equa-
tion (Tables 16, 17, 18, 19).
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Figure 7. Actual PPV versus predicted PPV by the Ambraseys–Hendron equation.
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Figure 8. Actual PPV versus predicted PPV by the BIS equation.
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Figure 10 depicts the comparison of the non-
linear DA model and the Ambraseys–Hendron
model. Table 20 shows the errors in terms of R2,
MAE and RMSE between the predicted and actual
PPV levels for the nonlinear DA equation and the
Ambraseys–Hendron equation. From Figure 10, it
can be said that nonlinear DA model yielded higher
R2 and less errors.

DISCUSSION

Effectiveness of Conventional Predictors

The test conducted at the gold mine supports
the claim that no single conventional predictor
equation is accurate to predict PPV. If conventional
predictor equations are used at a mine location, all
of them need to be analyzed and compared to one
another to determine the most appropriate model.

On examining the recorded data at the mine, it
was found that, of the four conventional predictor
equations analyzed, the Ambraseys–Hendron equa-
tion was the most accurate. It had a 16.11% R2

whereas the USBM equation had a lower R2of
14.88% (Table 14). This means that, compared to
the USBM equation, the Ambraseys–Hendron
equation has a slightly higher chance of predicted
PPV values falling on the regression line. The Am-
braseys–Hendron equation also had slightly lower
RMSE and MAE compared to the USBM equation,
meaning that the average errors between the actual

Table 14. Comparison of actual PPV and predicted PPV using the conventional predictor equations

Error index USBM Langefors-Kihlstrm Ambraseys-Hendron BIS

R2 14.88% 11.16% 16.11% 11.16%

MAE 0.53 0.55 0.53 0.55

RMSE 0.71 0.72 0.70 0.72

R² = 0.4098
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Figure 9. Actual PPV versus predicted PPV using the Ambraseys–Hendron equation

considering location characteristics.

Table 15. Comparison between the predicted and actual PPV�s
for the Ambraseys–Hendron equation when site constants based

on location characteristics are considered

Error index Ambraseys–Hendron

R2 40.98%

MAE 0.4145

RMSE 0.5762
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PPV and the predicted PPV using the Ambraseys–
Hendron equation were lower than those using the
USBM equation.

Effectiveness of DA Predictors

It was theorized that, to increase the accuracy of
predictions, a variety of variables that influence
predictions need to be incorporated into the pre-
diction model. Dropping a pebble into a pond cre-
ates waves that can be measured accurately. The

Table 16. Set of results used to compare the accuracy of the segregated DA model against the Ambraseys–Hendron model

Monitor site Mine section D h d PF ch I De R MIC PPV

A BRT 599 56 56 0.46 960 191 1.70 2,501 39.2 1.38

B LLB 747 38 56 2.05 1,200 234 4.70 700 70.0 0.84

B LLB 747 24 45 1.12 993 219 5.59 1,087 73.3 1.08

C BRT 599 32 30 1.20 876 129 4.55 1,000 42.0 1.44

C BRT 599 91 103 0.98 2,391 276 6.30 2,713 62.8 0.93

B LLB 747 39 81 2.29 2,437 409 8.49 1,242 129.3 1.28

C LLB 712 24 41 4.05 760 160 4.45 227 52.6 0.97

C LLB 712 28 41 1.25 810 70 4.17 674 47.4 0.37

D LLB 747 24 41 1.09 950 185 5.60 1,046 70.4 0.97

C BRT 576 63 113 0.83 2,800 310 6.80 3,646 82.3 2.20

Table 17. DA by using the log of modified dimensionless variables in Eq. 20

ln PPVð Þ ln MIC
PF�D2 �De

� �
ln R

PF�D2 �De

� �
ln ch

PF�D2 �De

� �
ln I

PF�D2 �De

� �
ln h�D

De

� �
ln d�D

De

� �

0.32 � 8.88 � 4.72 � 5.68 � 7.29 9.89 9.89

� 0.17 � 11.25 � 8.95 � 8.41 � 10.04 8.71 9.09

0.08 � 10.77 � 8.08 � 8.17 � 9.68 8.07 8.70

0.36 � 10.75 � 7.58 � 7.71 � 9.63 8.35 8.28

� 0.07 � 10.92 � 7.45 � 7.53 � 9.05 9.08 9.08

0.25 � 11.34 � 9.08 � 8.40 � 10.19 8.14 8.87

� 0.03 � 12.07 � 10.60 � 9.39 � 10.95 8.25 8.79

� 0.99 � 10.93 � 8.27 � 8.09 � 10.54 8.47 8.85

� 0.03 � 10.79 � 8.09 � 8.18 � 9.82 8.07 8.61

0.79 � 10.03 � 6.24 � 6.51 � 8.71 8.58 9.17

Table 18. DA by using site constants relating to relevant field in Eq. 20

Monitor site k x2 x3 x4 x5 x6 x7 Predicted PPV

C BRT 6.15 � 0.20 � 0.22 0.95 0.03 � 0.20 � 0.08 1.81

B LLB � 2.54 � 0.41 0.26 0.15 � 0.01 � 0.49 0.63 1.13

B LLB � 2.54 � 0.41 0.26 0.15 � 0.01 � 0.49 0.63 1.27

C BRT 6.15 � 0.20 � 0.22 0.95 0.03 � 0.20 � 0.08 1.04

C BRT 6.15 � 0.20 � 0.22 0.95 0.03 � 0.20 � 0.08 1.02

B LLB � 2.54 � 0.41 0.26 0.15 � 0.01 � 0.49 0.63 1.30

C LLB 3.72 0.24 � 0.55 0.94 0.09 � 0.84 1.11 0.66

C LLB 3.72 0.24 � 0.55 0.94 0.09 � 0.84 1.11 0.75

D LLB � 11.13 � 0.72 0.09 0.38 � 0.04 � 0.34 1.10 0.93

C BRT 6.15 � 0.20 � 0.22 0.95 0.03 � 0.20 � 0.08 1.91
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reason for this is that enough information to fully
describe the phenomenon is known. Water as a

medium is uniform and the characteristics of the
force impacting this medium can be calculated.
Blasting can be compared to this analogy, where the
medium is the surrounding rock, which is highly
variable making vibration waves challenging to
measure. The location of the blast is never in the
same spot, meaning that relationships between
variables are problematic to analyze. However,
including more factors that describe wave propaga-
tion will increase the accuracy of future predictions.
For this reason, a DA approach was used to relate
the influencing factors to increase the accuracy of

Table 19. Relevant variable results required to predict PPV using the Ambraseys–Hendron equation

Monitor site Mine section D

MIC
1
3

K B PPV ¼ K D

MIC
1
3

� ��B

C BRT 176.332 134,014 � 2.283 1.00

B LLB 181.254 66.933 � 0.764 1.26

B LLB 178.492 66.933 � 0.764 1.27

C BRT 172.323 134,014 � 2.283 1.05

C BRT 191.508 134,014 � 2.283 0.83

B LLB 147.725 66.933 � 0.764 1.47

C LLB 190.028 75,109 � 2.151 0.94

C LLB 196.738 75,109 � 2.151 0.87

D LLB 180.91 676.25 � 1.194 1.36

C BRT 132.421 134,014 � 2.283 1.92

R² = 0.6247

R² = 0.5083
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Figure 10. Plots to compare the nonlinear DA model and the Ambraseys–Hendron model.

Dotted line represents the perfect relationship between actual and predicted values.

Table 20. Comparison of the nonlinear DA and the Ambraseys–

Hendron models

Error index Nonlinear DA Ambraseys–Hendron

R2 62.47% 50.83%

MAE 0.24 0.29

RMSE 0.28 0.32
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the predictions made at the mine. The equation
developed also needed to be usable, whereby the
variables chosen to construct the equation are based
on variables that the mine already measured and
recorded. This means that if a model was to replace
the current system, no additional measurements that
were not already recorded should be used.

In this study, all the variables were used except
for the diameters and lengths of blast holes. The
diameters of the blast holes are the same for all
blasts, which effectively means that it will not affect
the results, and so adding this variable serves no real
purpose. There is no consistency to the lengths of
the blast holes, whereby most of them have differing
lengths for each blast. If the relationship on how a
set of blast hole lengths affects PPV were to be
analyzed, all holes for a single blast must the same.
Another approach to analyzing this relationship is to
use the longest blast hole for a given blast, because
the longer the hole, the more explosive will be set
off when the hole is detonated. Instead, the MIC can
be employed. It can be suggested that the greater the
hole lengths, the higher the MIC, because there will
be more explosives in a given hole. Therefore, the
MIC makes the effects of altering the hole lengths
redundant.

To inspect the dimensionless groups, both lin-
ear and nonlinear multiple regression analyses was
used. When comparing the predicted PPV values
against the actual PPV values, it was found that the
nonlinear regression model proved to be dominant.
It had a stronger relationship with an R2 of 29.15%
compared to linear model�s R2 of 25.42% (Table 11).
Additionally, the nonlinear regression model had a
lower RMSE of 0.632 compared to linear regression
model�s 0.635. Moreover, the MAE of nonlinear
regression model was lower than the linear regres-
sion model�s 0.480. For the data collected, it was
found that some predicted PPV values of the linear
regression model were negative, which is theoreti-
cally impossible. To negate this issue, an absolute
function on the predicted PPV was taken.

Segregating Site Constants Based on Location
Characteristics

The distance used in the analysis using both the
conventional predictors and the DA models is the
vertical depth of the blast. If the monitoring site was
directly above the blast location, then this distance
would be an accurate representation of the distance

traveled by the blast vibrations. The straight-line
diagonal distance between the blast location and the
monitoring site (Fig. 11) would be a more accurate
representation of the distance. This diagonal dis-
tance is not recorded, however, which would mean
that the horizontal distance between the monitoring
site and the blast location is required to work out
this diagonal distance. The gold mine records the
section of the mine where the blast is undertaken, as
well as the monitoring site used to measure the PPV.
However, not all blasts for a section of the mine are
recorded at the same monitoring station. Within
each mine section, the vertical depth is recorded as
depicted in Figure 11. Section A for example, can
use any of the monitoring stations, where it is clear
that the distance between section A and M2 is less
than the distance between A and M4. The issue is
that the results are being analyzed on the assump-
tion that differences in horizontal distance between
mine sections and monitoring stations do not affect
the distance traveled by the blast waves. However,
this is an important factor that needs to be ad-
dressed.

To overcome the above problems, the results
were grouped into their respective mine sections and
then again for each monitoring station. This is al-
lowed for the vertical depth to provide a more
accurate distance measure, as it can essentially ne-
gate the effect of the horizontal distance. The ver-
tical distances would then become beneficial for
comparing how the depth within each mine section
would affect the PPV at the same monitoring sta-
tions. Analysis of the blast monitoring data showed
that there were 15 combinations between the various
sections of the mines and the monitoring sites. A set
of site constants was generated for each of these
combinations for the most accurate DA model,
which was by nonlinear regression, and the most
accurate conventional predictor, which was the
Ambraseys–Hendron equation. From Figure 4,
which presents the plots of the predicted PPV versus
actual PPV, it was found that, by segregating the
data into comparable conditions, the MAE was re-
duced from 0.480 to 0.311 and the RMSE was re-
duced from 0.632 to 0.436. In addition, the R2

increased from 29.15% to 65.69%. For the Am-
braseys–Hendron equation, similar outcomes were
achieved when the adjusted distance traveled by the
vibrations was considered (Fig. 9), improved accu-
racy scores of MAE = 0.415, RMSE = 0.576 and
R2 = 40.98% (Table 15).
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Comparison between DA and Conventional
Predictors

By analyzing the accuracy scores, it was deter-
mined that the DA approach was more accurate
than the conventional predictors, but the latter were
easier to use. The most effective conventional pre-
dictor had a R2 of 16.11% whereas the nonlinear DA
equation had a R2 of 29.15%. The RMSE and MAE
for the nonlinear DA equation were also lower than
the most effective conventional predictor. These
results support the hypothesis that more variables
that affect PPV are required to improve the accu-
racy of the predictions made. While it is important
to incorporate a range of parameters, not all
parameters necessarily improve the quality of the
DA model. Many researchers (Dehghani & Ataee-
pour, 2011; Khandelwal & Saadat, 2015) came up
with the same conclusions. Only using quantity of
explosives and distance does not incorporate enough
variables to model PPV, whereas the only benefit to
using the conventional predictors is that they can be
used as a quick measure to predict PPV roughly.

To further demonstrate the concept of including
more variables that affect PPV, the vertical distance
measure was modified to incorporate variations in
horizontal distance. This was done for the most
effective DA model as well as the most effective

conventional predictor. A new set of data was re-
trieved to analyze the effectiveness of each of these
two models. Comparing the regression lines to the
perfect regression line in figure, it is evident that the
DA model was more effective. It is clear that,
compared to the Ambraseys–Hendron equation
with R2 of 50.87%, the nonlinear DA equation with
R2 of 62.47% resembles more closely the perfect
regression line. It is evident further that the average
errors of regression lines were higher for the Am-
braseys–Hendron equation than for the nonlinear
DA equation.

The model for predicting PPV in the gold mine
depends, therefore, on what the users of the model
wish to achieve. If a quick and rough estimate is
required, the Ambraseys–Hendron equation with
one set of site constants can be used, thus:

PPV ¼ 7512:323
D

MIC
1
3

� ��1:6761

Using this equation is immensely simple once a
computing program has been set up to calculate
PPV automatically. This model can be the suggested
method for many mining operations located near
residential areas, because to be able to predict PPV
effectively can improve business performance. For
example, increasing the PPV prediction capability

Figure 11. Representation of the monitoring site locations in respect to the mine sections.
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reduces the need to incorporate unnecessarily high
safety factors.

CONCLUSIONS

Dimensional analysis (DA) and conventional
predictors were used to study the blast vibration
levels at one of the underground gold mines in
Australia. For the study, a DA approach was em-
ployed to develop an equation that can increase
PPV prediction accuracy at the mine site. The cur-
rent model used at the mine is the United States
Bureau of Mines (USBM) equation, which is one of
the many conventional predictors that have been
developed in the past. Conventional predictors
incorporate the maximum explosive charge at any
given time and the distance from the monitoring
point to the blast location. However, DA includes
other parameters that provide additional effect on
wave propagation.

Most of the conventional predictors are based
on only two to three parameters (i.e., explosive
charge per delay, distance between blast face to
monitoring point, attenuation factor), whereas it is a
well-known fact that blast vibrations are influenced
by various blast designs, explosives and rock
parameters. Thus, here, a greater number of blast
design parameters were taken into consideration
with the help of DA to assess and evaluate blast
vibrations due to underground mining and a new,
simple and easy-to-use blast vibrations equation was
proposed to evaluate and predict underground blast
vibrations in an effective and efficient manner.

It was found that the DA equation obtained by
nonlinear multiple regression had the highest accu-
racy scores. The data also showed that of the four
conventional predictors, the Ambraseys–Hendron
equation was the most effective at the gold mine.
These two models were compared directly to one
another to validate the effectiveness of the DA
model. Before the models were compared, the ver-
tical depth used as the distance for the two equations
was modified by grouping data with similar hori-
zontal distances between blasts and monitoring sites.
This process reduced the effect of the horizontal
variance, which proved to greatly increase the
accuracy of prediction. To validate the results, ten
new sets of blast data were obtained and used in
where equations predict PPV. The R2 of the non-
linear DA equation was found to be 0.62 as opposed
to 0.51 for the Ambraseys–Hendron equation (Ta-

ble 20), and the RMSE for the DA model was 0.28
compared to 0.32 for the Ambraseys–Hendron
equation.

By analyzing all the data, it was suggested that
the DA model is used when a higher degree of
accuracy between predicted and actual PPV is re-
quired. The advantage of a DA model is that there
are little restrictions on the selection of important
variables, and its predictive capability increases
when more of these important variables are added to
the model. The only main drawback of the DA ap-
proach compared to the conventional predictors is
that it can take longer to set up. However, adding
irrelevant parameters that show no relationship can
taint the results. In future, a greater number of
appropriate blast design, explosive and rock
parameters can be taken into consideration to de-
velop a more generalized blast vibration equation.
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