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The optimization method for determining open pit limit is important, as it is crucial to
achieve the most profitable outcome from the limited amount of reserves available. How-
ever, importance must be also given to geotechnical aspects to ensure that safety require-
ments are met. Thus, overall slope angle (OSAs) must be incorporated in the optimization
process. In the conventional methods, there were problems in incorporating various OSAs,
or they were included in the pit design after the completion of the optimization procedure.
To include variable OSAs in the optimization, cone-based method is still considered as one
of the most suitable approaches. To apply this method, a new mathematical model incor-
porating various OSAs into the ultimate pit problem through mixed integer programming
(MIP) and simulated annealing is proposed. Four different cases of change in OSAs in the
pit were included in the algorithm. The proposed method was verified by applying it to five
different cases, and the OSA was achieved with a considerably low difference of 0�–2� while
optimizing the ultimate pit. The comparison between the introduced algorithm and the
Lerchs–Grossman algorithm indicated that an improvement within a range of 8–20% can be
achieved.

KEY WORDS: Pit optimization, Mixed integer programming, Ultimate pit limit, Open pit mining,
Simulated annealing.

INTRODUCTION

According to the guidelines published by
Canadian Institute of Mining (CIM) on resource and
reserve estimation (CIM, 2019), for mineral re-
sources that can be extracted by open pit mining
methods, forecasts for the extraction must include
not only the economical limit but also technical
necessities (such as slope angles). With these limi-
tations, an enquiry is carried out to find out whether
the mineral resource can be qualified as a reserve.
The optimization for the qualification of a mineral

resource as a reserve is performed to determine the
ultimate pit limit. In most of the approaches, nested
pits are generated from the smallest to the largest pit
by changing the economic parameters to form
pushbacks within the final pit limit. Then, annual
production schedule is planned from these push-
backs (Osanloo et al., 2008). In other approaches,
blocks are directly scheduled to form the final pit
contour (Campos et al., 2018; Farmer & Dimi-
trakopoulos, 2018; Johnson, 1968; Souza et al.,
2018). Researchers also investigated the applicabil-
ity of machine learning algorithms to optimize the
integration between mining and mineral processing
by using mine planning block models (Li et al.,
2020). The aim of this article was to generate an
ultimate pit limit for variable overall slope angles
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(OSAs) that can be modified for different azimuth
and depth values.

Researchers developed different algorithms to
solve optimization-related problems in mining.
Some exact, heuristic, metaheuristic, and stochastic
methods such as dynamic programming, graph the-
ory, moving cone method, genetic algorithm, artifi-
cial neural network, imperialist competitive
algorithm, and Markov chain process have been
proposed for the ultimate pit problem. The first
dynamic programming to solve the ultimate pit limit
problem was presented by Lerchs and Grossmann
(1965). Other researchers attempted to improve it
for 3D applications and for smoothing the pit
geometry (Johnson & Sharp, 1971; Koenigsberg,
1982; Shenggui & Starfield, 1985; Wilke & Wright,
1984). The first graph theory algorithm for 3D ulti-
mate pit limit developed by Lerchs and Grossmann
(1965) was revisited by other researchers mainly
focusing on reducing solution time (Barnes &
Johnson, 1982; Chen, 1976; Huttagosol, 1988; Lip-
kewich & Borgman, 1969; Rychkun & Chen, 1979;
Stuart, 1992; Zhao & Kim, 1992). Johnson (1968)
demonstrated the relationship between the ultimate
pit limit problem and the maximum flow. Picard
(1976) mathematically demonstrated that the Lerchs
and Grossmann (LG) algorithm was equivalent to
finding a maximum flow on a graph. Hochbaum and
Chen (2000) conducted efficiency tests to determine
whether the maximum flow algorithm is the most
effective way for resolving this type of problem.
According to the results provided by Hochbaum and
Chen (2000), push–relabel algorithm is considered
to be one of the most promising algorithms. Hoch-
baum (2008) proposed another method called
pseudo-flow algorithm in order to solve maximum
flow problem. It was found that pseudo-flow algo-
rithm is faster than Lerchs and Grossmann�s algo-
rithm (Deutsch et al., 2015). It has been used in
many mining software programs such as Deswik and
Geovia Whittle (Bai et al., 2017; Poniewierski,
2018).

Heuristic and metaheuristic methods such as
floating cone, genetic algorithm and artificial neural
network were introduced by researchers to deal with
the drawbacks of the conventional methods used to
determine the ultimate pit limit. The first floating
cone method was proposed by Pana (1965), and
variations of this method were proposed by various
researchers (Elahi et al., 2011; Khalokakaie, 2006;
Wright, 1999). In spite of its ease of application and
comparably fast solution, this technique does not

necessarily provide optimum results. Milani (2016)
proposed a non-standard genetic algorithm with
zooming strategy for 2D and 3D pit layouts. Achir-
eko (1998) proposed an algorithm in which artificial
neural network is used to include stochastic prop-
erties of ore grade and commodity prices in pit limit
optimization. According to Sayadi et al. (2011), the
algorithm requires modifications for 3D pit layouts.
Thus, they proposed a new 3D pit optimization
algorithm, in which artificial neural network is used
to find the ultimate pit limit. Javadzadeh et al. (2019)
presented a new algorithm to solve ultimate pit limit
problem by using imperialist competitive algorithm;
it is based on the social-political process of creating
an empire and enabled comparatively higher con-
vergence speed to reach the ultimate pit in their
application. Jalali et al. (2006) applied Markov chain
process, which depends on a defined probability
density function (pdf), to the ultimate pit limit
problem; they stated that the probability of mining
each block is determined to construct the optimum
pit limits. The methods about incorporating slope
angles in the optimization can be classified as
methods depending on precedency relation between
blocks and cone template method (Khalokakaie,
1999). Generally, in conventional methods, prece-
dency of extraction in forms of patterns such are 1–5
and 1–9 relation between blocks are used. In 1–5/1–9
pattern, 5/9 overlying blocks above the base block
are extracted first to remove the base block. The
main disadvantage of these methods is that desired
slope angle cannot be formed in every cross section,
and slope angle depends on block dimensions.

Instead of precedency pattern, to incorporate
slope angles, the cone template was proposed by
researchers (Giannini, 1990; Lipkewich & Borgman,
1969; Zhao & Kim, 1992). In cone-based methods,
blocks in the cone template are considered as se-
lected. Lipkewich and Borgman (1969) proposed a
pattern to approximate a cone template. In this
pattern, eight blocks from two levels above the base
block and five blocks from one level above the base
block are removed before the base block is extracted
under 45� slope restriction for a cubic block model.
This approach is also insufficient to create the de-
sired variable slope angles due to the similar reasons
as in the approaches of precedency relation. In the
approaches proposed by Chen (1976), Zhao and
Kim (1992) and Dowd and Onur (1993), the cone
template was used for variable slope angles, but only
a single-slope angle was defined. Khalokakaie (1999)
published a study in which variable slopes were
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incorporated in LG algorithm, whereby the orebody
was divided into four principle directions in which
different slopes were formed by using the equation
of an ellipse geometry. In these methods, linear
interpolation and limited number of directions for
the slopes causes non-smooth and impractical pit
outlines. Because of this reason, Sattarvand and
Shisvan (2012) proposed spline interpolation for
modeling variable slope angles. Spline interpolation
methods such as cubic, quadratic and cardinal were
tested, and it was concluded that cubic spline inter-
polation creates more accurate pit outlines. Any
number of slopes in any azimuth can be created with
cubic spline interpolation. According to Gilani and
Sattarvand (2015), cubic spline interpolation also
performs well with multiple number of azimuths.

Meyer (1969) was the first to formulate the
problem of ultimate pit contours as a problem of
linear programming (LP). However, linear and
mixed integer programming (MIP) are mostly used
in production planning (Askari-Nasab et al., 2011;
Blom et al., 2017, 2018; Fu et al., 2019; Kumral, 2012;
L�Heureux et al., 2013; Ramazan & Dimi-
trakopoulos, 2004), which includes the optimum
transition from open pit to underground mining
methods (Soltani Khaboushan & Osanloo, 2020).
Simulated annealing (SA) is also widely applied to
the problem of production planning by many re-
searchers (Albor Consuegra & Dimitrakopoulos,
2009; Kumral, 2013; Kumral & Dowd, 2004; Mousavi
et al., 2016) and as part of the optimization of mining
boundaries for lateritic metal deposits (Dagasan
et al., 2019). In this paper, the SA was used in a
different context to determine the pit bottom as the
starting location for the optimization algorithm,
which in turn also enables a decrease in the solution
time.

The main template of SA algorithm was de-
signed by Metropolis et al. (1953). SA was first uti-
lized for optimization by Kirkpatrick et al. (1983)
and Cerny (1985). In the 1980s, SA was used for
combinatorial optimization but later continuous
optimization problems were also solved with SA
(Dekkers & Aarts, 1991; Locatelli, 2000; Ozdamar &
Demirhan, 2000). SA was inspired by the annealing
process where a material is heated and then gradu-
ally cooled down to achieve a strong crystalline
structure. Unsuitable initial temperature and/or ra-
pid cooling can result in flawed crystalline structure.
Thus, temperature is slowly decreased to obtain
strong crystals. As the temperature reaches to a
suitable temperature level, the equilibrium state is

reached. SA algorithm simulates this cooling pro-
cess. The equilibrium state and the energy state of
the structure correspond to the optimum solution
and the objective function value, respectively (Talbi,
2009).

In the algorithm proposed in this article, the
cone-based method was utilized to incorporate
multiple OSAs in the optimization. However, the
shape of the pit template is not a cone because
benches are formed and/or OSA is not constant
when forming the pit contour during the design
stage. The pit contour can be constructed for four
situations where OSA is constant or variable with
respect to depth, or azimuth, or with both depth and
azimuth in the algorithm. Cubic spline interpolation
was used in two cases where OSA varies with re-
spect to azimuth. With this interpolation, the points
in the horizontal plane of the pit contour were
interpolated. Incorporating slope angles can provide
more practical pit outlines (Sattarvand & Shisvan,
2012); therefore, the algorithm creating steeper
slopes may result in more profitable pits as the
objective function value increases as the slope angle
increases (Chaves et al., 2020; Madowe, 2016; Malli
et al., 2015). The optimization algorithm introduced
in this study was carried out with MIP and SA,
supported by a geotechnical study that defined the
OSAs required for safe production. Further infor-
mation for geotechnical analysis can be found in the
study carried out by Parra et al. (2018).

ULTIMATE PIT LIMIT OPTIMIZATION
ALGORITHM

In the proposed algorithm, the optimum pit
limit was determined by ensuring that preset OSAs
are obtained considering the geometrical parameters
of the pit template, such as bench height and bench
slope. The solution obtained from the algorithm
gives depth of the pit, maximum radius of the pit,
bench width, and total economic value of blocks.
Input data required for the algorithm are bench
height, bench slope, and parameters used for calcu-
lating economic value of blocks. In the algorithm,
firstly, the maximum number of benches is deter-
mined followed by generating the mathematical
model starting from the first level of bench and
optimization carried out for all levels. The proce-
dure is repeated until reaching the maximum num-
ber of benches and finally selecting the bench levels,
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which provide the maximum result of economic va-
lue.

The incorporation of required slope angles
makes the bench width variable. The bench width is
constant if OSA is kept constant throughout the
orebody. However, different bench widths are
formed if different OSAs are required to be incor-
porated in the design. Bench width is calculated by
utilizing Eq. (1). Then, positions of the blocks are
converted into radii and values of bench width are
inserted in Eq. (2). Radius of the pit template on the
level where the block is located and radius of the
block are calculated by Eqs. (2) and (3), respec-
tively.

w ¼ nb h tan h� tan bð Þ
nb � 1ð Þ tan h tan b ð1Þ

R ¼ L � z

tan h
� w bl � 1ð Þ ð2Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

ð3Þ

where r is distance between a block and the center of
the pit, which is determined by SA algorithm; R is
the distance between the boundary of the pit and the
center of pit; w is bench width; h is bench height; h is
bench slope angle, b is OSA, z is depth of the block
from the top of the model; bl is bench level on which
the block is located; nb is number of benches, and L
is maximum radius of the pit. Equations (1) and (2)
are derived from the pit templates similarly gener-
ated as the templates shown in Figs. 1, 2 and 4.

If a block is inside the pit contour, then it is
considered as selected or extracted. To check whe-
ther the block is inside the pit contour, the radius
from the center of the pit to the block and the radius
of the pit are compared. The center of the pit is
determined by SA algorithm. R and r are used to
express the following condition: if R is greater than
or equal to r, the block is included in the pit; thus,
the block is extracted (Fig. 1a). The center of the
block is considered when checking whether this
condition is satisfied or not. Examples of represen-
tative cross sections of cone templates used for dif-
ferent cases or specific situations are shown in Fig. 1.
The block height can be the same height as the
bench height in the algorithm.

In Fig. 1a, a cross section of a simple template
with one bench is shown, in which parameters and
variables used in Eqs. (1)–(3) are indicated. The
OSA is the same throughout the orebody for this

case. In Fig. 1b, a cross section of the template used
for the cases where the OSA is variable in different
azimuth ranges is given where bn and bn+1 represent
different OSAs and Ln and Ln+1 represent the cor-
responding lateral distances. In Fig. 1b, ‘‘n’’ is the
number of different OSAs, and Ln is the corre-
sponding horizontal distance. ‘‘n’’ is an input vari-
able of the algorithm and has no theoretical limit.
However, the practical condition of designing pits is
expected to be limited also by geotechnical con-
straints.

In Fig. 1c, tangent of b is equal to the following
Proof-1:

tan b ¼ 4 � h

3w þ 4�h
tan h

which can be generalized as:

tan b ¼ nb � h

w nb � 1ð Þ þ nb�h
tan h

The following algebraic manipulations enable to
obtain the equation of w (bench width):

w � nb � 1ð Þ tan bþ nb � h � tan b
tan h

¼ nb � h

w � nb � 1ð Þ tan b ¼ nb � h � nb � h � tan b
tan h

w � nb � 1ð Þ tan b ¼ nb � h 1� tan b
tan h

� �

w � nb � 1ð Þ tan b ¼ nb � h
tan h� tan b

tan h

� �

w ¼ nb � h tan h� tan bð Þ
nb � 1ð Þ tan h tan b

which is equal to Eq. (1).
In Fig. 1d, using the parameters indicated, R is

found as Proof-2:

R ¼ L � h

tan h
� w � h

tan h
� w � z � 2hð Þ

tan h
¼ L � z

tan h
� 2w

For the block in Fig. 1d, where bl = 3 (the block is
on the 3rd bench), R is found using Eq. (2) as:

R ¼ L � z

tan h
� w bl � 1ð Þ ¼ L � z

tan h
� 2w
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Then, Ln (Eq. 11) and Hl [Eqs. (12) and (13)]
are used to generate the mathematical model for
MIP. In the cross section given in Fig. 2, the OSA is
not the same in different zones with respect to
depth. By using the parameters Lt and Ld shown in
Fig. 2, Eqs. (10)–(13) are formed for MIP. A
mathematical model is also generated for cases
where OSA changes with respect to depth and azi-
muth and the pit template used is similar to the
geometry given in Fig. 2.

Mathematical Model for MIP in the Algorithm

MIP was used in the algorithm because there
are binary and continuous decision variables in the
problem. The objective function consisted of eco-
nomic block values and binary values of the blocks

[Eq. (4)]. The constraints provided results in accor-
dance with OSAs and ensured restriction on maxi-
mum and minimum magnitude of the pit radius
[Eqs. (5)–(8)]. The software for solving MIP is a
default solver called CBC in PuLP package in Py-
thon programming language.

Maximize
X

i2I

BEVibi ð4Þ

subject to

nb h

tan b
� L � max

r
þ nb h

tan b
ð5Þ

Ri � ri � �M 1� bið Þ ð6Þ

Ri � ri � M bi ð7Þ

β

θ

L

z
r

R

h

w
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y

x

-z

L nL

βn βn
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-z
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z
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(b)

β

θ

4h

wh/tan θ
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w
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Figure 1. Pit templates in cross-sectional views for a constant OSA and b variable OSAs changing with respect to azimuth. Pit

templates used for c proof of Eq. (1) and b proof of Eq. (2). ‘‘z’’ represents the depth from an arbitrary block measured from the top

level.
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bi 2 0; 1f g; 8i 2 I ð8Þ

where BEVi is economic block value, I is set of all
blocks, bi is binary decision variable, i is block, M is
a large constant, and maxr is maximum of radii of all
blocks.

In the defined set of constraints given in
Eqs. (6) and (7), any constant number large enough
to produce an optimum result can be used for M.
These equations were created to implement the
following model conditions:

Condition 1 If block bi is included in the pit, Ri–ri

must be greater than or equal to 0 and bi is 1.

Condition 2 If block bi is not included in the pit, Ri–
ri must be less than 0 and bi is 0.
The main objective function used for constant OSA
is given in Eqs. (4)–(8). The equation of Ri depends
on the location of the block and variation of OSA.
For example, if the OSA changes as the azimuth
varies, instead of Eqs. (5) and (2), Eqs. (9) and (11)
are used, respectively. If OSA changes in the dif-
ferent ranges of depth, for constraint L and equation
Ri, Eqs. (10) and (12) are used, respectively. Equa-
tions (9) and (13) are used for cases where the OSA
varies with both depth and azimuth. In Fig. 3, the
algorithm�s steps at which these equations are used

are shown where ‘‘N’’ is defined to be equal to the
depth of the block model divided by the bench
height, making it a unitless integer value.

0 � L � max
r

ð9Þ

Lt � L � max
r

þLt ð10Þ

Ri ¼ L þ Ln �
z

tan h
� wn bl � 1ð Þ ð11Þ

Ri ¼ L �
X

D�1

l¼0

Ll �
z �

PD�1
l¼0 Hl

tan h
� wd bld � 1ð Þ

ð12Þ

Ri ¼ L þ Lt �
X

D�1

l¼0

Ll �
z �

PD�1
l¼0 Hl

tan h

� wa;d bld � 1ð Þ ð13Þ

where bld is bench level on which the block is lo-
cated in one depth range, d is number of ranges of
depth, D is order of the depth range from the top of
the block model, wd is bench width in one depth
range, wn is bench width in one azimuth range, wa,d

is bench width in one range of azimuth and depth,
and L0 and H0 are parameters that equal to zero. To

.   .   . 

                  .
            . 
       .  

LdL2L1

βd

β2

β1

L

.   .   . 

βd

β2

β1

   .         
       . 
           .      

R

r

z

Lt

H1

Figure 2. Pit template in cross-sectional view for variable OSAs that change with depth.
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explain further the constraints and the Conditions 1
and 2, the following examples are given. If the
equation Ri (Eq. (2)) is substituted in Eqs. (6) and
(7), the following inequalities are obtained:

L � z

tan h
� w bl � 1ð Þ � ri � �M 1� bið Þ ð14Þ

L � z

tanh
� w bl � 1ð Þ � ri � M bi ð15Þ

For parameters nb = 4, h ¼ 60�, and b ¼ 45�, w is
found as 5.635 m by using Eq. (1). Then, w = 5.635,

bl = 3, z = 25, h ¼ 60�, M = 10,000, ri = 50 m are
substituted in Eqs. (14) and (15). For the block bi,
the constraints will be as follows:

L � 75:704 � �10;000 1� bið Þ ð16Þ

L � 75:704 � 10;000bi ð17Þ

If L is equal to 150 at the end of the optimization
process, then Eqs. (16) and (17) will become,
respectively, as:

74:296 � �10;000 1� bið Þ ð18Þ

N=Depth of the block model / Bench 

height

nb=1

nb ≤ N

Overall slope angle changes with azimuth

N

Y

N Y

Use the function of cubic spline 

interpolation and Eq. (9) for constraint L
Overall slope angle changes with depth

Overall slope angle changes with depthUse Eq. (2) for Ri

and Eq. (5) for 

constraint L

Use Eq. (12) for Ri

and Eq. (10) for 

constraint L

Use Eq. (13) for 

Ri

Generate MIP mathematical model

Find solution 

N Y

Y N

Use Eq. (11) for 

Ri

Select the value of nb
which gives the 

maximum value of the 

objective function

nb=nb+1

Figure 3. Flowsheet of the optimization algorithm.
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74:296 � 10;000bi ð19Þ

� For bi = 0, the constraint [Eq. (17)] will not
be satisfied:

74.296 ‡ � 10,000
74.296 £ 0

� For bi = 1, the constraints [Eqs. (16) and (17)]
will be satisfied:

74.296 ‡ 0
74.296 £ 10,000

Thus, if L is equal to 150 m, for this specific
block, bi is 1. If L is equal to 10 at the end of the
optimization procedure, the constraints will be
as follows:

�65:704 � �10;000 1� bið Þ ð20Þ

�65:704 � 10;000bi ð21Þ

� For bi = 0, the constraints [Eqs. (20) and (21)]
will be satisfied:

� 65.704 ‡ � 10,000
� 65.704 £ 0

� For bi = 1, the constraint [Eq. (20)] will not
be satisfied:

� 65.704 ‡ 0
� 65.704 £ 10,000

Thus, if L is equal to 10 m, for this specific
block, bi is 0.

SA in the Algorithm

The SA algorithm was used to decrease the
solution time in the proposed algorithm. The center
of the pit, which gives the maximum profit, was
determined from the solutions generated by the SA
algorithm. After a solution was found, the ultimate
pit limit problem was solved with MIP to achieve the
exact solution. The main steps of the SA algorithm
modified for the open pit problem are given in
Algorithm 2.

Neighborhood solutions were created with
consideration of pit geometry constraints (bench
height, bench slope, OSA). The constraints were
similar to the ones in the MIP problem. However,
the equations were changed so that they can be
suitable for the SA algorithm. The starting temper-

ature was chosen as 106 so that the probability of
accepting a worse move was initially high. According
to the SA theory, the final temperature was equal to
0 (Talbi, 2009). For this reason, the finishing tem-
perature was selected as 1.87 9 10–8 so that it can be
close to 0 as much as possible. The number of
neighborhood solutions was 60. These parameters
were problem-specific, and multiple trials must be
carried out to determine the right parameters for
reaching an optimum solution.

The parameter alpha, representing the temper-
ature decreasing constant, was selected as 0.9 in the
algorithm because it is suggested to be between 0.50
and 0.99 (Aarts & Laarhoven, 1987). This value
generates various inputs of the temperature chang-
ing from the highest to the lowest, and at each value
of the temperature, the x and y coordinates of the
center of the pit are randomly chosen from the set of
integer numbers. With the coordinates, the pit con-
tour was formed without violating the slope con-
straints, and neighborhood solutions were obtained;
the pit size increased or decreased depending on the
acceptance criteria.

Cubic Spline Interpolation in the Algorithm

In the algorithm, cubic spline interpolation was
used for two cases in which OSA changes with re-
spect to azimuth. Cubic spline interpolation provides
smoother pit shapes by converting angles into
points. A curve between the points is created by the
interpolation. Then, the points on the curve were
converted into azimuth and OSAs. The detailed
steps of the cubic spline interpolation for variable
slope angles were as follows (Sattarvand & Shisvan,
2012):

� Slope angles and azimuth were converted
into points of x and y coordinates by using
Eqs. (22) and (23), which were obtained by
geometrical relationships and demonstrated
in Fig. 4.

� Polynomial functions of a variable t
[Eq. (25)] were created for both x and y
coordinates with points obtained in the pre-
vious step. ‘‘t’’ was the variable of the poly-
nomial function of a curve segment. By
substituting x and y coordinates into the
right-hand side of Eq. (24), Pk

t values were
found for x and y separately. Then, Pk (x and
y coordinates) and Pk

t values are substituted
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into Eq. (25). For k points given, (k � 1)
number of polynomial functions for x and
(k � 1) number of polynomial functions for y
were obtained. Equations (24) and (25) are
provided in the paper published by Sattar-
vand & Shisvan, 2012, and further explana-
tion is given by Salomon (2006).

� Values incremented by 0.1 in the range of 0
and 1 were given to the parameter t for all
polynomial functions in order to determine a
set of points on the curve segment.

� Cubic spline interpolation was performed on
each horizontal level. Points on the curve on
each level were obtained, and the corre-
sponding OSAs are used for Eqs. (11) and
(13).

x ¼ h

tan b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cot2 a
p ð22Þ

y ¼ x cot a ð23Þ

where a is azimuth

1 4 1 � � � 0 � � � 0
0 1 4 1 � � � � � � 0

. .
. . .

. ..
.

0 � � � � � � � � � 1 4 1
1 � � � � � � � � � 0 1 4
4 1 0 � � � 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

n�nð Þ

Pt
1

Pt
2

Pt
3

..

.

Pt
n�1

Pt
n

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

¼

3 P3 � P1ð Þ
3 P4 � P2ð Þ

..

.

3 Pnþ1 � Pn�1ð Þ
3 Pnþ2 � Pnð Þ

2

6

6

6

6
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The mathematical model, SA, and cubic spline
interpolation components of the algorithm were
validated for different case studies representing
various surface mining operations.

RESULTS AND DISCUSSION

The ultimate pit limit problem of a block model
with cubic blocks was solved with the proposed
algorithm and the LG algorithm to demonstrate the
difference between pit contours. The proposed
algorithm was also implemented on case studies with
different number of blocks. An optimal solution of
the MIP problem was reached in approximately 90,
350, 410, and 730 s when the algorithm was applied
to block models with 81,600, 107,916 and 118,096
blocks. In these block models, block dimensions
were 10 m, 10 m, and 2 m in x, y, and z directions,
respectively. Block dimensions of 10 m, 10 m, 2 m
were used to investigate the accuracy of the algo-
rithm by following the desired slope angle in detail.

r
x

yz

r East (x)

North (y)

α

β

r

h

z
(a) (b) (c)

Figure 4. Pit template�s a isometric view, b top view, and c side

view.

Figure 5. Cross sections of extracted blocks generated by a the

proposed algorithm and b the LG algorithm.

Table 1. Comparison of MIP and LG algorithm

Scenario # of Extracted blocks Improvement in solution (%)

LG MIP MIP

1 295,240 324,588 10.0

2 321,030 8.7

3 353,300 19.7

4 317,574 7.5
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Figure 6. Input window for the economic block value parameters, the bench parameters, and the selection of OSA.

Figure 7. Extracted blocks for Case Study 1 (a), 2 (b), 3 (c), and 4 (d).
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OSAs that were used as inputs were compared to the
measured OSAs obtained from the results in order
to check the validity of the proposed mathematical
model and algorithm. In addition, the solutions of
the pit with variable and uniform slope angles were
compared as the final limit of a pit will be different if
a conventional method such as LG algorithm was
used (Fig. 5).

The cross sections of extracted blocks generated
by LG and the proposed algorithm (Fig. 5) were
different, as the contour of the pit geometry was
formed including bench width and bench height in
the proposed algorithm. The pit contour consisting
of 60� bench slope and about 6-m bench width cre-
ated a different pit contour. The proposed algorithm
was compared with the LG algorithm using a block
model with 1,238,400 cubic blocks. MIP was applied

on four scenarios. Scenario-1 was defined for a
constant slope angle, and Scenario-2 was defined for
the slope angle changed for different azimuth values.
Scenario-3 was the variance of slope angle with
depth levels, and Scenario-4 was the implementation
of slope angle changes according to azimuth values
and depth levels together. Because the generated
slope angles depend on the block dimensions in LG
algorithm, only one pit shape with 45� and 35.26�
slopes in two cross sections was formed. With the

proposed method, steeper angles between 55� and
58� can be formed, and the proposed algorithm
generated more profitable pits than the LG algo-
rithm (Table 1). The result of the proposed algo-
rithm was more profitable, as the constraints that
were defined for specific problems were different.
The constraints used for LG were different from
those of the proposed algorithm. With MIP, a stee-
per slope can be achieved without the influence of
block dimensions; in the LG method, a lower slope
angle can only be formed by changing the block
dimensions. Thus, in some cases, this algorithm can
still provide better results, especially for cases where
slope angles are varied for different bearing angles
or different depth levels, as preferred commonly
within the life time of the mine.

Figure 8. N 40� E cross sections of the extracted blocks for

Case Study 1 (a), 2 (b), 3 (c), and 4 (d).

Table 2. Comparison of OSAs (Case Study 1 and Case Study 2)

Cross sec-

tion

Input value (�) Measured value

(�)
Difference

(�)
Input value (�) Measured value

(�)
Difference

(�)

Case Study 1 N–S 51 51.340 0.340 51 51.340 0.340

Case Study 2 N 40 E 33 32.604 0.396 45 45.007 0.007

S 25 W 40 38.773 1.227 36 34.883 1.117

Table 3. OSAs in different azimuth ranges (Case Study 2)

OSA (�) Azimuth range (�)

35 0–20

33 35–45

37 100–120

40 150–160

43 160–180

45 215–225

40 265–285

36 330–350
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The parameters required for the optimization
are entered in the graphical user interface (GUI) as

shown in Fig. 6. The economic block value and the
bench parameters are the same for all cases. Bench
height and bench face angle are entered as 10 m and
60�, respectively. Four choices of overall slope
change are available in the GUI given in Fig. 6.

For Case Study 1, the OSA of 51� was defined
as constant, and so spline interpolation was not used
for this condition. The extracted blocks and a sample
cross section are shown in Figs. 7a and 8a. In these
figures, OSA is constant, and the measured slope
angles obtained from the result of the optimization
were compared to the angle. The difference between
OSA taken from input and output data was 0.340�
on N–S and W–E cross sections in Case Study 1
(Table 2).

Figure 9. Curves created by cubic spline interpolation for (a) Case Study 2 and (b) Case Study 4.

Table 4. Comparison of OSAs (Case Study 3 and Case Study 4)

Cross sec-

tions

Depth range

(m)

OSA

Input value

(�)
Measured value

(�)
Difference

(�)
Input value

(�)
Measured value

(�)
Difference

(�)

Case

Study 3

N 45 E 0–50 45 49.684 4.684 45 49.684 4.684

50–100 20 21.447 1.447 20 21.447 1.447

W–E 0–50 45 45.000 0 45 45.000 0

50–100 20 21.038 1.038 20 21.038 1.038

Case

Study 4

N 45 E 0–60 40 40.316 0.316 46 46.686 0.686

60–120 45 46.686 1.686 39 40.316 1.316

S 45 E 0–60 37 35.264 1.736 36 40.316 4.316

60–120 33 31.220 1.780 32 31.220 0.780

Table 5. OSA in different azimuth and depth ranges (Case Study

4)

Depth range (m) OSA (�) Azimuth range (�)

0–60 40 0–80

37 100–170

46 190–260

36 280–350

60–120 45 0–90

33 90–180

39 180–270

32 270–360

4058 F. K. Altuntov, M. Erkayaoğlu



For the cross sections given in Table 2, the
average difference between OSAs taken from input
and output data was 0.687� for Case Study 2. The
second example was provided to check the validity
of the algorithm for the case in which OSA changes
with respect to azimuth and spline interpolation is
used. Number of zones entered as 8 in the GUI are
given in Table 3, although any number of zones can
be entered in the algorithm. The plan view of the pit
template for a unit height created by spline inter-

polation and the extracted blocks for Case Study 2
are shown in Figs. 9a and 7b, respectively. It can be
seen that OSA was not constant with respect to
azimuth in Figs. 7b and 8b.

The algorithm was applied to Case Study 3, in
which OSA variation with depth was evaluated
without using spline interpolation. Different OSA
values were entered for the two zones with depths of
0–50 m and 50–100 m and slope angles of 45� and
20�, respectively. The slope angle of 20� was used to

Table 6. Comparison of case studies in SA runs

Case study # of blocks (size of the block model) Average difference of angles (�) Solution time (s)

1 81,600 0.340 732.6

2 81,600 0.687 91.8

3 107,916 1.792 348.0

4 118,096 1.577 411.8

30

32
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36

38
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42

44

46

48

0 1 2 3 4 5 6 7 8 9 10 11 12

Interpolation

Block model with large-sized blocks

Block model with small-sized blocks

A
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s 
( 

⁰ 
)

Cross-sections

Figure 10. Comparison between input and output values of OSA of the block models with large-sized and small-

sized blocks.
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show the accuracy of the algorithm to follow the
abrupt slope change as the depth increases. Al-
though a geotechnical analysis was not performed
within the scope of this study, it might be the case
that a discontinuity set or any other weakness plane
might limit the pit geometry to reduce the slope
angles according to the orientation and strength
parameters of the discontinuity. Extracted blocks
are shown in Fig. 7c, and a cross section is shown in
Fig. 8c where the two different zones based on depth
can be identified distinctly at about 50 m. For Case
Study 3, the average difference between OSA taken
from input and output data was 1.792� (Table 4).

Case Study 4 was a scenario where OSA chan-
ges with respect to both depth and azimuth. Spline
interpolation was used to generate the angles for this
case, and eight different OSA were entered in the
GUI for two zones of depth and four zones of azi-
muth (Table 5). One of the spline curves was used
for depth range of 0–60 m, and the other one was
utilized for depth range of 60–120 m. Extracted
blocks in Case Study 4 are shown in Fig. 7d, and the
varying OSA with respect to azimuth is shown in
Fig. 8d. The change in slope angle with respect to
depth in Fig. 7d is not as apparent as it is in Fig. 7c
because the difference between angles for the two
depth ranges was 25� for the extracted blocks in
Fig. 7c and 4–7� for the extracted blocks in Fig. 7d.
The SA algorithm was run for 30 times to determine
center of the pit bottom prior to MIP, and the results
for each case were evaluated to select the highest
value. The results given in Table 6 summarize the
solutions of the case studies.

The pit shape generated by the algorithm be-
comes more accurate and similar to the actual pit
shape with the desired OSA as the number of blocks
increases or block dimension decreases. This was
evaluated by Case Study 2 compared to another
example with the same input but smaller-sized
blocks. The economical parameters for these two
cases were different from those in the other cases. In
Fig. 10, OSAs calculated by interpolation and mea-
sured angles from the extracted blocks are given.
The average differences of OSA were 0.985� and
2.190� for the models with small-sized and large-
sized blocks, respectively, and the small-sized block
model had a better conformance to the angle gen-
erated by interpolation (Fig. 10).

CONCLUSIONS

The proposed algorithm coded in Python pro-
gramming language was applied on block models
consisting of 81,600; 107,916; 118,096, and 494,900
blocks to verify the mathematical model. The input
data for OSA based on geotechnical studies are
compared to OSA obtained from the optimization as
output data. It was found that the angles are either
same or close to each other within a range of 0� to
4.9�. However, the difference between required an-
gles and generated angles by the algorithm becomes
smaller as the number of the blocks increases. It can
be concluded that the proposed algorithm can be a
useful option for incorporation of various OSA into
the optimization of the ultimate pit limit. The main
advantage of the proposed algorithm is that the pit
shape with desired OSA and maximum economic
value is simultaneously obtained. A comparison with
LG algorithm for different case studies indicated
that an improvement within a range of 8–20% could
be achieved by means of economic value. The pit
layout with the required OSA is not formed after the
optimization is finished, and the resultant pit values
are greater for the pit contour with variable OSA.
Some aspects can be considered so that the proposed
approach can be improved further. It is planned to
incorporate the topography for a more realistic de-
sign, whereas geotechnical aspects are also planned
to be defined as constraints of the solution in the
algorithm.
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