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Recent advancement in computing capabilities has brought to light the application of ma-
chine learning methods in estimating geochemical data from well logs. The widely employed
artificial neural network (ANN) has intrinsic problems in its application. Therefore, the
objective of this study was to present a group method of data handling (GMDH) neural
network as an improved alternative in predicting total organic carbon (TOC), S1, and S2
from well logs. The study used bulk density, sonic travel time, deep lateral resistivity log,
gamma-ray, spontaneous potential, neutron porosity well logs as input variables to predict
TOC, S1, and S2 of the Nondwa, Mbuo, and Mihambia Formations in the Triassic to mid-
Jurassic of the Mandawa Basin in southeast Tanzania. The TOC prediction results indicated
that the GMDH model trained well while generalizing better across the testing data than
both ANN and DlogR. Specifically, the GMDH provided TOC testing predictions having the
least errors of 0.40 and 0.45 for mean square error (MSE) and mean absolute error (MAE),
respectively, as compared to 1.27 and 0.81, 0.68 and 0.7, 1.4 and 0.89 obtained by back-
propagation neural network (BPNN), radial basis function neural network (RBFNN), and
DlogR, respectively. For S1 and S2, the ANN models performed excellently during training
but were unable to produce similar results when tested on the completely unseen well data.
This represents a clear case of over-fitting by ANN. During testing, the GMDH avoided
over-fitting and outperformed ANN by obtaining the least MSE of 0.04 and 1.16 and MAE

of 0.07 for S1 and S2, respectively, while BPNN achieved MSE and MAE of 0.08 and 0.17 for
S1, 1.96, and 0.9 for S2, and RBFNN obtained MSE and MAE of 0.15 and 0.25 for S1 and 1.4
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and 0.87 for S2. Hence, the improved generalization performance of the GMDH makes it an
improved form of a neural network for TOC, S1, and S2 prediction. The proposed model was
further adopted to predict the geochemical data and determine the source rock quality for
the East Lika-1 well, which has no core data.

KEY WORDS: Group method of data handling, Total organic carbon, Hydrocarbon potential
distribution, Artificial neural network.

INTRODUCTION

Source rock reservoirs are rapidly growing into
a major energy resource player as conventional
hydrocarbon fields across the world continue to
diminish. To determine accurately the potential of
an unconventional shale reservoir requires in-depth
knowledge of the distribution of the organic geo-
chemical properties. Generally, the geochemical
parameters provide an understanding of the organic
matter content, type, and thermal distribution of the
source rock (Cappuccio et al., 2020; Curiale &
Curtis, 2016; Liu et al., 2020). The fundamental or-
ganic geochemical parameters include total organic
carbon (TOC), which describes the amount of or-
ganic matter. S1 represents the amount of free
hydrocarbon present in the rock sample before
performing the pyrolysis process while S2 is the
hydrocarbon formed during the pyrolysis of the
sample. The S2 values give a general indication of
the prevailing hydrocarbon generating potential.
Rock–Eval pyrolysis is the most commonly used
pyrolysis method for measuring the quantity of
emitted carbon dioxide and hydrocarbons (Carvajal-
Ortiz & Gentzis, 2015; Hakimi et al., 2020; Mani
et al., 2017; Shalaby et al., 2019).

The most reliable method of quantifying the
source rock is by performing organic geochemical
analysis on core samples in the laboratory. However,
coring is an expensive exercise to be conducted on
all wells (Evenick, 2020; Mahmoud et al., 2017). In
cases where there may not be enough core data,
readily available drill cuttings are commonly used to
compensate. The challenges of using drill cuttings
are their difficulty for reconciling with depth and
they can be contaminated (Bai & Tan, 2020). Con-
cerning this, attempts have been made to generate
TOC values from geophysical well logs based on the
knowledge that well log parameters can detect the
presence of organic matter. The two frequently
employed conventional techniques are the Schmo-
ker and DlogR models. The Schmoker model esti-

mates TOC using the reciprocal of bulk density.
However, the Schmoker approach is influenced
heavily by the reservoir or geological characteristics
(Schmoker, 1979; Mahmoud et al., 2019; Xiong
et al., 2019). The widely adopted conventional
method is the DlogR method proposed by Passey
et al. (1990) using a porosity and resistivity log
(Tenaglia et al., 2020). It is well documented that the
shortcoming of the DlogR is the varying log-baseline
in different wells, formations, and depositional
environments (Charsky & Herron, 2013; Mahmoud
et al., 2020). Zhu et al. (2019b) improved the clas-
sical DlogR method by incorporating shale mineral-
ogy to develop the dual difference DlogR
(DDDlogR). The challenge with the implementation
of the DDDlogR is that it requires the mineral
composition of shale rock samples.

The successful application of artificial intelli-
gence in hydrocarbon exploration and production in
recent years has seen the adoption of machine
learning models in predicting TOC from well log
data. The advantage of machine learning models is
their ability to learn and adapt to the dynamics of
reservoir conditions such as formation and deposi-
tional environment while making use of the entire
suite of well logs for a better TOC prediction
(Mahmoud et al., 2020; Tariq et al., 2020; Wang
et al., 2019a, 2019b; Zhu et al., 2019a). Artificial
neural network (ANN) has been the predominantly
used machine learning method to predict geochem-
ical data in studies such as (Amiri Bakhtiar et al.,
2011; Mahmoud et al., 2020; Shalaby et al., 2020).
From these researches, ANN outperformed con-
ventional methods like DlogR due to its ability to
map out patterns within the suite of input well logs
and geochemical data. However, ANN suffers from
intrinsic shortcomings such as overfitting and low
convergence speed due to the constant manual
tuning of model parameters like the number of
hidden nodes, weights, and biases (Asante-Okyere
et al., 2020; Bai & Tan, 2020; Zhu et al., 2018,
2019a). Several researches have proposed new con-
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cepts and improved machine learning algorithms as
an alternative to the standard ANN. Gaussian pro-
cess regression (GPR) has been implemented for the
prediction of TOC by Yu et al. (2017) and Rui et al.
(2020). However, GPR requires the user to specify
the best kernel function to achieve the optimal
prediction results. Support vector machine (SVM)
and extreme learning machine (ELM) as an im-
proved machine learning techniques have been
proposed in determining TOC values in shale
reservoirs (Shi et al., 2016; Tan et al., 2015; Wang
et al., 2018). Similar to GPR, these machine learning
models require an iterative tuning of training
parameters to obtain the best performance. In
addition to the aforementioned machine learning
methods, deep learning techniques have been pro-
posed to improve the evaluation of TOC (Wang
et al., 2019a, 2019b; Zhu et al., 2019a, 2020).

Based on this, we examined for the first time the
applicability of the group method of data handling
(GMDH) as an improved neural network model in
estimating TOC, S1, and S2 data from geophysical
well logs. The GMDH neural network possesses a
self-organizing nature to automatically tune model
parameters and generate the optimal model struc-
ture during training. Unlike other machine learning
models trained to predict TOC, the GMDH neural
network does not require a manual adjustment of
learning parameters to generate the best outcome as
summarized in Table 1. A polynomial function of
relevant input variables is also generated by GMDH
neural network. To ascertain the performance of the
proposed GMDH neural network in predicting
TOC, S1, and S2, its results were fairly compared
with ANN algorithms of backpropagation, radial
basis function, and Passey�s conventional method of
DlogR.

GEOLOGICAL SETTING AND DATA
DESCRIPTIONS

Geological Setting

The Mandawa Basin is a rift basin situated
within the coastal belt of Tanzania. It extends from
the border of Kenya in the north to the border of
Mozambique in the south. The basin occupies an
area of 16,000 km2 bordered by the Indian ocean
with offshore basins in the east and bounded by the
basement of metamorphic terrain on the west side
(Caracciolo et al., 2020; Hudson & Nicholas, 2014;

Kagya, 1996). It circumscribes the Ruvuma Saddle
to the south, which separates the Ruvuma basin
from the Mandawa basin and by the Rufiji trough to
the north (Fig. 1a). Karoo rifting (Permian–Triassic)
was the major tectonic event that dominated the
development of the Mandawa Basin. The deposi-
tional origin and the Mandawa Basin history are
strongly influenced by the Gondwana break-up
(Delvaux, 2001; Hou, 2015; Nerbråten, 2014).

The Mandawa Basin is divided into the Kilwa,
Mandawa, Pindiro, Mavuji and Songo Songo Groups
(Fig. 2). During Early Cretaceous to Late Jurassic,
the basin was subsiding at a higher rate in which
clastic sediments were major deposits. The pro-
grading of the Mavuji groups and Mandawa groups
were then deposited in alluvial and river deposits
(Emanuel et al., 2020; Fossum et al., 2020). The
coastal Mandawa Basin, under the outer-mid shelf
environment, subsided at a constant stage rate from
Bajocia to Priabonian–Paleogene, which resulted in
the deposition of the Kilwa Group. The Kilwa
Group comprises the Kivinje, Nangurukuru, Maso-
ko, and Pande Formations. The Mavuji Group
consists of the Makonde, Kitiruka, and Kihuluhulu
Formations, which are three time-equivalent for-
mations (Emanuel et al., 2020; Hou, 2015; Hudson,
2011).

The Nondwa Formation in an unconformable
manner overlays the deltaic-fluvial from Upper
Triassic to Lower Jurassic Mihambia and Mbuo
Formations, which underlie the middle Jurassic
Mtumbei Formation separated by the unconformity
stage of the Aelenian-Bajocian. The basin was
occupied with shoreface to offshore fine-grained,
siltstones, mudstones and, sandstones of the Mbuo
Formation (Einvik-Heitmann et al., 2015; Smelror
et al., 2018). The study area consists of four explo-
ration wells, which are Mbate-1, Mbuo-1, Mita
Gamma-1, and East Lika-1 (Fig. 1b). It is important
to remember that Mita Gamma-1 intersected both
the Nondwa Formation and silicic limestones of the
Mihambia Formation; Mbate-1 well is found in the
Kivinje Formation while Mbuo-1 well intersected
both the Nondwa and Mbuo Formations and, lastly,
East Lika-1 intersected the Mbuo and Nondwa se-
quences.

Data Descriptions

Conventional well log suite of bulk density log
(RHOB), sonic travel time (DT), deep lateral
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resistivity log (LLD), gamma-ray (GR), sponta-
neous potential log (SP), neutron porosity (NPHI),
and measured geochemical results of TOC, S1 and S2
values obtained from Mandawa Basin were used in

this study. Three wells namely Mbate-1, Mbuo-1,
and Mita Gamma-1, which have a complete set of
well log suites and core TOC, S1, and S2 data, were
employed to develop the machine learning models.

Table 1. Advantages and limitations of conventional and machine learning models previously used to estimate TOC

Model Merits Limitations

Schmoker’s

model

It is easy to implement because it only requires the density log The results are heavily influenced by the type of

geological formation or reservoir

DlogR It represents the widely used computational model for estimating

TOC from well logs

Baselines used for estimation can vary in different

wells, formation, and depositional environment

DDDlogR An improved form of the DlogR proposed by Zhu et al. (2019b) takes

into consideration large lateral changes in mineral composition

and wellbore size

This method is dependent on the mineral content of

the shale rock sample

ANN ANN is a better TOC predictive model than the DlogR approach

(Amiri Bakhtiar et al., 2011; Mahmoud et al., 2020; Shalaby et al.,

2020)

It requires a constant model parameter adjustment

in order to achieve the optimal results

SVM SVM proved to be a better predictive model than the ANN (Tan

et al., 2015; Wang et al., 2018)

It requires the user to manually adjust the model

training parameters to obtain the best results

GPR GPR outperformed ANN when estimating TOC (Rui et al., 2020; Yu

et al., 2017)

It involves user-defined parameters in the form of

kernel type before the best predictions can be

known

ELM ELM is an improved form of neural network that generates better

results than ANN (Shi et al., 2016)

However, it needs a manual tuning of training

parameters to obtain the best model structure

Figure 1. a Location of the Mandawa Basin. b Locations of exploration wells used in this study (Hudson, 2011).
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Figure 2. The Mandawa Basin stratigraphical chart (from Fossum et al., 2019).
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Mbate-1 and Mbuo-1 wells consisted of 33 sample
data for TOC, and 25 sample data for both S1 and S2,
which were used to train the models. The developed
models were tested on the Mita Gamma-1 well,
which consisted of 20 sample data of TOC, S1, and
S2. The well log suite and geochemical results of
Mbate-1, Mbuo-1, and Mita Gamma-1 wells are
illustrated in Figures 3, 4 and 5. The input data of
well logs and output data of TOC, S1, and S2 were
normalized within the range of [0, 1] to avoid a case
of bias treatment during the model development.

METHODS

DlogR Technique

Passey et al. (1990) introduced the method
known as D logR for obtaining TOC from wireline
data. The proper scaling of both the sonic transit
time log and resistivity curve is a crucial initial step
in the application of this technique, utilizing gamma-
ray logs, fine-grained, organic-poor, non-source rock
intervals to define baselines for the sonic and resis-

tivity logs. Except in the case of an organic-rich
source or a hydrocarbon reservoir interval, these two
curves should be parallel and should be overlap
(Passey et al., 1990, 2010). The curve of resistivity
will react and respond to fluid formation and the
sonic curve will react to the presence of kerogens of
low velocity/density. At each depth, the corre-
sponding separation of the two curves, i.e., D logR
[Eq. (1)], can be estimated and used to evaluate
organic-rich intervals. As long as the quantity of
organic maturity (LOM) of an interval is defined or
can be measured, the value of D logR at a specified
depth can now be explicitly used in the TOC esti-
mation [Eq. (2)]. The LOM is a typical numerical
scale that reflects a whole petroleum generation
thermal spectrum (Hood et al., 1975).

D logR ¼ log10
R

Rbaseline

� �
þ n � Dt þ Dtbaselineð Þ ð1Þ

TOC ¼ ðD logRÞ � 10ð2:2970�0:1688�LOMÞ ð2Þ

where the curve separation expressed in logarithmic
cycles of resistivity is D logR, R is the resistivity

Figure 3. Well log suite and measured TOC, S1 and, S2 for Mbuo-1 well used for training.

3610 A. K. Mulashani et al.



measured in Vm by the logging tool, Dt is the time
taken during the transition, Rbaseline is resistivity
equivalent to the Dtbaseline value during non-source
rocks reached the curved baseline, and n is created
on the ratio of quantity of transition time cycle to
one resistivity cycle usually given as 0.02. The
baseline values are derived when 1 logarithmic deep
resistivity value equivalent to 50 sonic overlaid with
the DT log scaling on the deep resistivity log. An
overlap between the high deep resistivity log and
high sonic DT log in the lithology indicates the
presence of a potential area in the zone in the
crossover.

Artificial Neural Network (ANN)

An ANN is a computational model that mimics
the human brain’s role to learn from instances and

discover solutions to complex problems in decision-
making and classification challenges (Shanmu-
ganathan, 2016). An ANN uses nonlinear and com-
plex types of hypotheses hw;bðxÞ to describe and
interpret the predictions of new instances, provided
the training dataset xi with a vector of dimension m
function feature, thus:

hw;bðxÞ ¼ f ðwTxþ bÞ ¼ 1

1þ expð�ðwTxþ bÞÞ ð3Þ

where xi is the input, w is weight allocated to each
input xi, b is the feature bias, and the output is
hw;bðxÞ. The inputs used in this study were the well
logs of DT, RHOB, LLD, GR, SP, and NPHI. To
determine the output network values of TOC, S1,
and S2, forward propagation is carried out based on:

zlþ1 ¼ wlal þ bl ð4Þ

Figure 4. Well log suite and measured TOC, S1 and, S2 for Mbate-1 well used for training.
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alþ1 ¼ f ðzlþ1Þ ð5Þ

where l denotes the neural network layer, zli denotes
the cumulative weighted number of inputs in layer l

for neuron i, and ali signifies the output after the

activation function of zli. The sigmoid activation
function for every neuron is represented by f ðzÞ.
Depending on the activation functions and, model
weights a hypothesis hw;bðxÞ is determined after the
forward propagation step. The error function

J x; bð Þ � 1
2 hx;b xð Þ � y
�� ��2 is then determined with

the purpose of decreasing the loss (error) function
for the network training. The loss function is a
technique of assessing how well the specific algo-
rithm models the dataset given. Since the error

function Jðw; bÞ is given as a non-convex function,
Adaptive Moment Estimation (Adam) or Stochastic
Gradient Descent (SGD) as the optimization algo-
rithms may be utilized to modify the weights from
each neuron to minimize the local error (Zhang
et al., 2019). The SGD updates weight (w) and bias
(b), where a is the learning rate, as seen in Eqs. (6)
and (7).

wl
ij ¼ wl

ij � a
@

@wl
ij

Jðw; bÞ ð6Þ

blij ¼ wl
ij � a

@

@wl
ij

Jðw; bÞ ð7Þ

The efficient method to calculate the partial
derivatives to adjust the weights (w) can be given by

Figure 5. Well log suite and measured TOC, S1, and S2 for Mita gama-1 well used for testing.
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the backpropagation algorithm [Eq. (8)]. The partial
derivatives of the hidden layer can also be calculated
and used to update weights j ¼ l � 1; j[¼ 2; j��
thus:

dl ¼
@

@zli

1

2
hw;bðxÞ � yk

�� 2¼ �ðyi � aliÞf 0ðzliÞ ð8Þ

dj ¼ ððwlÞTdjþ1Þf 0ðzjÞ ð9Þ

The neurons throughout the previous layer are as-

signed a penalty dj, for the weights, and the local
error of each layer j is modified based on the penalty

dj. According to Qian (1999), the momentum coef-
ficient is used to enhance the SGD mostly in the
proper path to avoid becoming local minimum stuck
during optimization; this is achieved by adding a
fraction number of the updated layer of the past step
time to the updated current layer. Proper weight
adjustment results in lower error rates and hence,
increasing its generalization, makes the model more
efficient.

The present study employed the radial basis
function neural network (RBFNN) and back-prop-
agation neural network (BPNN). The optimal model
structure for BPNN and RBFNN models was
achieved based on the trial-and-error method by
tuning the number of hidden neurons and the spread
parameter, respectively, in order to achieve the least
error margin. The gradient descent approach was
adopted for RBFNN. The model learning process
for BPNN was achieved for 1000 epochs with a
learning rate of 0.03 and a momentum coefficient of
0.7. The ANN models were developed, coded, and
implemented in MATLAB software R2019b.

Group Method of Data Handling (GMDH)
Network

The objective of the GMDH model is to find a

function, f̂ , which is used as an approximation rather
than a real function, f, to estimate the output, t, for a
defined input vector U = (u1, u2, u3, …, un), close to
its real output, p (TOC, S1, S2). Therefore, given
single output with n multi-input data pair of obser-
vations, so that:

ti ¼ f ui1; ui2; ui3; . . . ; uinð Þ i ¼ 1; 2; 3; . . . ;Mð Þ ð10Þ

With any given input vector U ¼ ui1; ui2; ui3; . . . ; uin,
the GMDH network can then be trained to estimate
the output values t, meaning:

ti ¼ f̂ ui1; ui2; ui3; . . . ; uinð Þ i ¼ 1; 2; 3; . . . ;Mð Þ ð11Þ

The GMDH builds the general relationship in the
context of a mathematical description between out-
put and input parameters called the reference to
solve this problem. The problem here is to deter-
mine the GMDH network so that the square dif-
ference between the predicted and the actual output
is minimized as:

XM
i¼1

f̂ ui1; ui2; ui3; . . . ; uinð Þ � pi

h i2
! min ð12Þ

The polynomial series known as the Kol-
mogorov–Gabor polynomial, which is the complex
discrete form of the Volterra function (Anastasakis
& Mort, 2001; Najafzadeh & Azamathulla, 2013),
can express the general link between input param-
eters and output parameter in the mode of:

p¼ ao þ
XN
i¼1

aiuiþ
XN
i¼1

XN
j¼1

aijuiujþ
XN
i¼1

XN
j¼1

XN
k¼1

aijkuiujuk þ � � �

ð13Þ

Equation (12) can be simplified using the simplified
GMDH network’s partial quadratic polynomial
equation as (Shen et al., 2019):

t ¼ W ui; uj
� �

¼ ao þ a1ui þ a2uj þ a3u
2
i þ a4u

2
j þ a5uiuj ð14Þ

The mathematical relationship between the vari-
ables of input–output specified in Eq. (13) is gener-
ated by this network of connected neurons. The
coefficients of weighting (Eq. (14)) are computed
using techniques of regression to minimize the
variation between an actual (p) and predicted (t)
output, as for each variable pair of ui and uj input is
minimized (Armaghani et al., 2020). The schematic
type of the GMDH network architecture is shown in
Figure 6.

Using the quadratic equation [Eq. (14)], a tree
of polynomials is created in which the coefficients of
weighting can be found by employing the least
square approach technique. The quadratic function
of weighting coefficients Wi is obtained to match the
output optimally in the complete set of output–input
data pairs as:
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E ¼
PM

i¼1 ðpi �WiðÞÞ2

M
! min ð15Þ

The possibilities for dual independent variables
among the overall n input parameters are drawn to
fit the general form of GMDH algorithms to build
the regression polynomial defined in the form of
Eq. (13), which suits better in the least-square sense
of the dependent observations ðpi; i ¼ 1; 2; 3 . . .MÞ.
Consequently C2

n ¼ n n� 1ð Þ=2, quadratic polyno-
mial neurons can be constructed from observations

ðpi; uxi; uyiÞ; ði ¼ 1; 2; 3 . . .MÞ
� �

for various x; y 2
1; 2; 3; . . . nf g in the feed-forward network�s first

layer. Triples of M data can now be built

ðpi; uxi; uyiÞ; ði ¼ 1; 2; 3 . . .MÞ
� �

, using those x; y 2
1; 2; 3; . . . nf g in the form of:

u1x u1y : p1
u2x x2y : p2
. . . . . . : . . .
umx umy : pm

2
664

3
775 ð16Þ

For every row of the m data triples, using the
quadratic sub-expression shown in the form of
Eq. (14), the following matrix expression can be
found directly as:

Aa ¼ P ð17Þ

where a represents an undefined vector of quadratic
polynomial weighting coefficients in Eq. (14):

a ¼ a0; a;1 a2; a3; a4; a5½ �T ð18Þ

where T indicates matrix transposition:

P ¼ p1; p2; p3; . . . pM½ �T ð19Þ

Equation (16) represents a vector of outputs’
observation written as:

A ¼

1 u1x u1y u1xu1y u21x u21y
1 u2x u2y u2xu2y u22x u22y
. . . . . . . . . . . . . . . . . .
1 umx umy umxumy u2mx u2my

2
664

3
775 ð20Þ

The least-square approach derived from the tech-
nique of multiple-regression analysis results in nor-
mal equations being solved, which is in the form of:

a ¼ ATA
� ��1

ATP ð21Þ

For the whole set of triples of m data, Eq. (21)
specifies the vector for the best quadratic weighting
coefficients given in Eq. (10). The GMDH model
was also coded and implemented in MATLAB
software R2019b.

Figure 6. Type of the GMDH network architecture.
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RESULTS AND DISCUSSIONS

The GMDH and ANN models were developed
using MATLAB R2019b. The results from the ma-
chine learning predictive models were compared
fairly using mean square error (MSE) and mean
absolute error (MAE) as statistical indices. The
differences between the predictions and the mea-
sured TOC, S1, and S2 values were highlighted by
MSE and MAE. For comparison of the models,
MSE and MAE approaching zero proves that a
model is an accepted predictor. The mathematical
expressions for MSE and MAE are given, respec-
tively, as:

MSE ¼ 1

n

Xn
i¼1

ti � pið Þ2 ð22Þ

MAE ¼ 1

n

Xn
i¼1

ti � pij j ð23Þ

where p is the predicted outcome, t is the measured
value, and n is the total number of observations.
During training, MSE and MAE approaching zero
mean that a model trained well. However, more
emphasis is placed on the ability of the trained
model to perform well when tried on the withheld
testing data. Therefore, testing results (MSE and
MAE) approaching zero signify the best performing
model with an improved generalization capacity.

TOC Prediction

The baseline for the resistivity and sonic well
logs when estimating TOC using DlogR were ob-
served at 335.83 ls/m and 0.866 Xm for Mbuo-1,
52.30 ls/m and 42.47 Xm for Mbate-1, 68.77 ls/m
and 38.84 Xm for Mita Gamma-1. The estimates
from DlogR generated MSE and MAE of 8.795 and
1.66, respectively, for Mbate-1 and Mbuo-1; for Mita
Gamma-1, the MSE and MAE were 1.418 and 0.890,
respectively (Table 1). However, the ANN models
of BPNN and RBFNN performed better than the
conventional DlogR approach. The optimal BPNN
model structure observed after training the TOC
data was 6 inputs, a hidden layer with 12 neurons,
while 6 inputs and a hidden layer with a spread
parameter of 0.07 were identified for RBFNN. From
Table 1, BPNN provided predictions having MSE
and MAE of 0.606 and 0.56, respectively, for train-

ing; for testing, MSE and MAE were 1.269 and
0.819, respectively. It can be seen from Table 2 that
RBFNN trained well with MSE and MAE of 0.0064
and 0.019 but failed to generate similar results when
the model was tested on the Mita Gamma-1 well
data as its predictions had MSE and MAE of 0.681
and 0.70, respectively. The best performing model
was the GMDH, which trained well with its outcome
having MSE and MAE of 0.018 and 0.098, respec-
tively, while generalizing better than DlogR and
ANN on Mita Gamma-1. The GMDH provided
MSE and MAE of 0.4 and 0.455, respectively, for
TOC during testing as expressed in Table 2. The
performance of the TOC models is compared in
Figure 7.

S1 and S2 Prediction

For the hydrocarbon potential distribution
parameters, S1 and S2, the results from RBFNN
when training with Mbuo-1 and Mbate-1 data were
excellent. RBFNN had MSE and MAE of 8 * 10–6

and 0.0008, respectively, for S1 while generating
0.0012 and 0.299, respectively, for S2 (Table 3). The
optimal model structure of the S1 RBFNN model
was 6 inputs, a hidden layer with a parameter spread
of 0.03. The S2 RBFNN model that generated the
best outcome had 6 inputs and a hidden layer with
spread parameter of 0.01. Unsurprisingly, RBFNN
was unable to generate similar results for the Mita
Gamma 1 data during testing. During testing,
RBFNN achieved relatively high MSE and MAE of
0.15 and 0.245, respectively, for S1, 1.14, and 0.87,
respectively, for S2. On the other hand, the best
BPNN model structure that produced the least error
rate for S1 was 6 input, a hidden layer with 6 neu-
rons. The S2 BPNN that had the optimal architec-
ture was 6 inputs and a hidden layer with 2 neurons.
From Table 3, the S1 BPNN model achieved MSE

Table 2. Statistical parameters of TOC predictive models during

training and testing

Model MSE MAE

Train Test Train Test

GMDH 0.0184 0.4042 0.0988 0.455

BPNN 0.606 1.2689 0.5634 0.8195

RBFNN 0.0064 0.6813 0.0197 0.704

Log R 8.795 1.418 1.6643 0.8904
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and MAE of 0.0102 0.056, respectively, for training.
During testing, it generated predictions scoring 0.085
and 0.167 forMSE andMAE, respectively (Table 3).
The BPNN for predicting S2 data produced com-
paratively the worst estimates with MSE and MAE
of 5.52 and 1.33, respectively, and 1.96 and 0.9,
respectively, for testing (Table 4). The BPNN out-
come for the testing data of the Mita Gamma-1 well
is illustrated in Figure 8.

The prediction from the GMDH gave an error
values of 0.0011 and 0.024 for S1, and 0.007 and 0.049
during training in the case of S2 (Tables 3 and 4).
Looking at the generalization performance, the
GMDH tested better than BPNN and RBFNN when
it produced testing results with MSE and MAE of
0.04, 0.0702, respectively, for S1, and 1.16 and 0.07
for S2, respectively. This makes the GMDH the best
performing model compared to ANN. Figure 9 de-
scribes the predictions of the GMDH, BPNN, and
RBFNN.

It was recognized that the performance of the
GMDH in estimating S2 was generally low com-
pared to the TOC and S1 results. This is due to the

fact that the Mita Gamma-1 well, which was used as
the testing data, had a high variation of S2 values.
The high variation in S2 values of the testing data
generated an imbalance distribution of the training
and testing observations. However, the GMDH
generalized better than ANN when handling the
high variation of S2 values. Consequently, ANN
models failed to account for the changes in S2 values
of Mita-Gamma 1 well as observed in Figure 9.

Quality of Organic Matter and Hydrocarbon
Generation Potential for East Lika 1

The constructed GMDH prediction model in
this paper was further used to estimate the TOC, S2,
and S1 for the East Lika-1 well, which had no core
geochemical data. Figure 10 shows the well logs
from East Lika-1 and the GMDH predicted values
for TOC, S1, and S2. The TOC prediction showed a
generally constant value across the entire depth of
the well. According to the generated results from
GMDH, we can confirm that East Lika-1 well has a
low-quality source rock due to the near-constant
TOC values across the entire depth of the well.
Based on the relatively high S1 values compared to
S2 from depths of 2060 m to 2140 m, it can be as-
sumed that there exists evidence of hydrocarbon
migration.

CONCLUSIONS

The application of machine learning methods in
evaluating geochemical data such as TOC from well
log parameters has revealed the shortcomings of
artificial neural networks (ANN). Therefore, this
study proposed a group method of data handling
(GMDH) neural network as a means of offering an
improved performance when predicting TOC, S1,
and S2. In line with this, Mbuo-1 and Mbate-1 wells
were considered as training data, while the predic-
tive capability of the models was judged on the Mita-
Gamma-1 well.

When estimating TOC, the ANN models of
radial basis function neural network (RBFNN) and
backpropagation neural network (BPNN) trained
well but failed to generate similar results when the
developed models were tested on Mita-Gamma-1
well. The conventional DlogR model obtained the

bFigure 7. Plots of GMDH, ANN, and DlogR predictions and

measured TOC.

Table 3. Statistical parameters of S1 predictive models during

training and testing

Model MSE MAE

Train Test Train Test

GMDH 0.0011 0.04327 0.0243 0.0702

BPNN 0.0102 0.0846 0.0555 0.1669

RBFNN 0.000006 0.1511 0.0008 0.245

Table 4. Statistical parameters of S2 predictive models during

training and testing

Model MSE MAE

Train Test Train Test

GMDH 0.0069 1.1597 0.0489 0.0702

BPNN 5.52 1.9615 1.3281 0.8988

RBFNN 0.0012 1.4144 0.2994 0.87
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Figure 8. Plots of GMDH, BPNN, and RBFNN predictions and measured S1.
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Figure 9. Plots of GMDH, BPNN, and RBFNN predictions and measured S2.
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highest error rate from its estimates. However, the
GMDH performed well during training and further
produced the least error margin compared to ANN
and DlogR during testing.

A similar scenario was observed when estimat-
ing the hydrocarbon potential parameters of S1 and
S2. RBFNN and BPNN generated close to perfect
training results for both S1 and S2 but failed to
generate similar results when tested on the Mita-
Gamma well data. The GMDH provided the least

error margins despite its excellent training capabil-
ities. Based on the outcomes, we suggest GMDH as
an improved machine learning method as an alter-
native to the ANN algorithms for estimating geo-
chemical results like TOC, S1, and S2. The proposed
GMDH was further used to determine the TOC, S1
and S2 results for East Lika-1 well, which has no core
geochemical data. The predictions revealed a low-
quality source rock for East Lika-1 well and a pos-

Figure 10. Well logs from East Lika-1 and GMDH predicted values for TOC, S1, and S2.

3620 A. K. Mulashani et al.



sible hydrocarbon migration occurring between the
depths of 2060 m and 2140 m.
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