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Optimized ANN Models for Forecasting Ground Vibration
Due to Quarry Blasting
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An ensemble technique namely gradient boosted tree (GBTs) and several optimized neural
network models were hybridized to predict peak particle velocity (PPV) caused by quarry
blasting. The GBT was employed for choosing the most important input parameters on PPV
results. Therefore, this model selected five input variables, comprising maximum charge per
delay, distance, powder factor, and sub-drilling, and RQD. Once the input assortment was
performed, five neural network models, including a typical artificial neural network (ANN)
and ANNs with weight optimization (forward, backward, particle swarm optimization, PSO,
and evolutionary), were implemented utilizing the inputs picked by the GBT. These models
were assessed by several performance criteria, including the ‘‘correlation coefficient’’, ‘‘root
mean square error’’, ‘‘variance accounted for’’, ‘‘a20-index’’, and a simple ranking system, as
well as optimized weights. The results of hybridization showed that ANN-PSO model out-
performed other models in terms of system error and accuracy. Altogether, this study’s
findings implied that consolidating the ensemble machine learning technique and optimized
ANN models, particularly PSO could result in perfect and straightforward to understand
predictions of PPV caused by quarry blasting.

KEY WORDS: Peak particle velocity, Quarry blasting, Gradient Boosted Trees, Optimized neural
networks.

INTRODUCTION

It is estimated that barely one-third of the en-
ergy generated through an explosion is utilized for
grinding and relocating the rock mass during blast-
ing operations (Khandelwal & Singh, 2009; Monjezi
et al., 2011). The remaining of this energy is
squandered and creates unwanted environmental
effects, including back-break, ground vibration
(GV), fly-rock, and air overpressure (Armaghani
et al., 2014; Hajihassani et al., 2014a; Han et al.,
2020; Hasanipanah et al., 2017; Khandelwal & Singh,
2005; Nguyen et al., 2019, 2020; Shang et al., 2019;
Zhou et al., 2020a). Among all environmental issues
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arising out of blasting, the most serious one is con-
sidered as GV (Siskind et al., 1980). This issue may
crease environmental effects to the surrounding
areas such as vibration and damage to building
structures, slope instability and bench instability in
open-cast mines, bad effects on ground water, and
damage to railways (Singh & Singh, 2005; Standard,
1973). Therefore, literature includes many studies
proposing various experimental, statistical and
computational techniques to predict and control this
environmental issue. Since the most important
component of GV is defined as the peak particle
velocity (PPV), this study focused on this compo-
nent (Siskind, 2005; Siskind et al., 1980).

Several experimental formulas were ascertained
for forecasting PPV produced by blasting (Davies
et al., 1964; Roy, 1993). Nevertheless, these experi-
mental techniques count inadequate parameters for
controlling and predicting PPV (Zhou et al., 2020b).
In fact, PPV values are further influenced by addi-
tional unmanageable factors, e.g., geological and
rock mass properties as well as blasting geometry
(Singh & Singh, 2005). Consequently, experimental
approaches are not reliable adequately in various
circumstances. At the same time, the forecast of the
PPV with an excellent level regarding precision is
essential for evaluating the safety zone of blasting.
Along with the experimental equations, analytical
and statistical techniques, including simple and
multiple regression methods aimed at PPV forecast,
have gained recognition chiefly due to their effi-
ciency of application (Hajihassani et al., 2015;
Hudaverdi, 2012). In addition to the statistical
techniques, soft computing and machine learning
approaches showed a successful ability to estimate
PPV values resulting from blasting (Dindarloo,
2015; Monjezi et al., 2016).

The artificial neural networks (ANNs) were
extensively employed for investigating engineering
issues and were acknowledged as manageable non-
linear function estimates. However, ANNs can
immediately outline the input to output data and use
every critical parameter to forecast PPV values;
some limitations exist, including the learning’s
gradual pace and the probability of catching in local
minima (Momeni et al., 2020; Shi & Eberhart, 1998).
The usage of robust optimization techniques,
including wrapper methods, particle swarm opti-
mization (PSO), and genetic algorithm (GA), is
beneficial to enhance the ANN performance and
remedying the shortcomings mentioned earlier

(Adhikari & Agrawal, 2011; Poli et al., 2007; Ton-
nizam Mohamad et al., 2016).

This study introduced innovative approaches
established on the hybridization of the ANN model
with forward selection, backward selection, PSO,
and evolutionary techniques for forecasting the PPV
generated by blasting. The input parameters were
selected based on an ensemble machine learning
(ML) technique (gradient boosted tree) that reduces
many biases made by weak learners. Then, these
techniques were assessed according to several per-
formance indices and the best one was introduced as
a new and applicable approach in estimating blasting
environmental issues. The combination mentioned
above was employed for the first time to predict the
ground vibration resulting from quarry blasting. The
performance of the models developed showed that
these models are efficiently capable to predict the
PPV values.

LITERATURE REVIEW

PPV Background

The vibration of the ground implies a streaming
movement that progresses continuously of the
explosion toward adjacent regions. Some sizable
quantity from energy is utilized in all GVs. Energy
mentioned earlier is assumed for being used in rock
shattering. The issues made by GV involve massive
influences on the nearby area’s constructions,
groundwater, and environment (Duvall & Fogelson,
1962; Ghasemi et al., 2013). If the explosive explodes
within a blast hole, its biochemical reaction creates a
gas that is high-pressure/temperature. The pressure
of the gas breaks the rock near the explosion hole.
The blast pressure fades or disappears immediately.
A surge movement is produced in the earth through
the strain surges moved to the neighboring stones
(Duvall & Petkof, 1959). Because of many cracking
mechanisms, including radial cracking, crushing, and
reflection breakage in the free face, individual
pressure waves’ grind the rock piece. The gasses
with high-pressure/temperature increase radial
fractures and any discontinuity and crack. The stress
surges develop as elastic surges during the strain
surge strength decreases toward a degree wherein no
continual metamorphosis happens in the rock piece.
Individual surges are known as GV. These vibra-
tions developed from the explosion chamber in all
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ways (Dowding, 1985) and can destroy structures
and other constructions (Siskind et al., 1980).

Multiple parameters, such as blasting pattern
factors, geological and geotechnical factors and dis-
tance of measuring from the blast site, are connected
to GV (Khandelwal & Singh, 2006; Monjezi et al.,
2013; Zhang et al., 2020). The blasting design should
be optimized based upon the rock mass and geo-
logical characteristics for reducing GV values. These
rock mass attributes may incorporate the strength of
rock, density, the velocity of the wave, and discon-
tinuity statuses (Duvall & Petkof, 1959). GV is
typically estimated regarding the frequency and
PPV. In several standards and guidelines (New,
1986; Standard, 1973), the PPV is regarded as a
vibration index, a vital indicator for managing and
measuring the structural damage. Generally, the
PPV relies on two main factors (Ozer et al., 2008):
(a) maximum charge (MC) used per delay and (b)
distance (D) from the free face.

Previous Investigations

In order to evaluate and forecast PPV values,
three general categories of methods exist, namely
(1) empirical/experimental, (2) statistical and
regression-based, and (3) soft computing and ML.
Several studies ascertained experimental vibration
formulas for PPV forecast (Ghosh & Daemen, 1983;
Langefors & Kihlström, 1963; Roy, 1993; Zhou
et al., 2020b). In these formulas, the MC and D are
regarded as the principal substantial inputs for PPV
forecast. However, it is acknowledged that PPV is
affected by other parameters, which are not included
clearly in any of the experimental formulas, includ-
ing (a) blast geometry, (b) rock mass properties, and
(c) discontinuity conditions. Thus, different formulas
return various PPV values for identical blasting
work, and there is no agreement among the conse-
quences foretold by various formulas (Jahed Ar-
maghani et al., 2015).

In addition to empirical methods, statistical and
regression-based techniques have been developed to
predict PPV values using more than four parameters
as inputs (Hajihassani et al., 2014b; Shirani
Faradonbeh et al., 2016; Singh & Singh, 2005). They
mostly use linear and nonlinear relationships be-
tween model inputs and statistical output model
(i.e., PPV). Normally, nonlinear statistical equations
are better than linear equations. However, they are
also weak in PPV evaluation due to their low flexi-

bility against newly used parameters (Khandelwal &
Singh, 2009).

PPV is broadly predicted and analyzed utilizing
soft computing and ML methods. Singh and Singh
(2005) applied ANN and regression-based predictive
models to forecast PPV. They considered several
inputs, including hole diameter, burden, D, number
of holes, spacing, and hole depth. They also con-
firmed that ANN is a more objective method than
regression analysis to forecast GV. Another study by
Khandelwal and Singh (2006) examined four
broadly applied experimental predictors of PPV
using a blast dataset with 150 data. In addition, they
analyzed the calculated outcomes and real data ob-
tained from the field. Afterward, they applied an
ANN with two inputs, including (MC and D) and
one output (i.e., PPV). Besides, Khandelwal and
Singh (2006) discovered that ANN outcomes are
more precise than empirical predictors. A different
study by Iphar et al. (2008) employed two distinct
approaches, including simple regression and neuro-
fuzzy, for predicting PPV values. Their study re-
vealed that the neuro-fuzzy technique generated
more reliable consequences compared to the
regression analysis. Another ANN model using
multiple inputs, including MC, stemming length, D,
and hole depth, was proposed by Monjezi et al.
(2011) for PPV forecast. They proved that ANN is a
practical approach to forecast PPV values. A fuzzy
logic method and standard regression analysis were
used by Fisne et al. (2011) for PPV forecast
employing a dataset from the Akdaglar mine in
Turkey with 33 data samples. Their investigation
used D and MC as inputs for PPV prediction. They
determined that the forecasted PPV values attained
from the fuzzy logic model were significantly more
similar to the estimated PPVs than the forecasted
values with an analytical technique.

Hajihassani et al. (2014b) conducted a different
study on PPV prediction and adopted a competitive
imperialism algorithm (ICA)-ANN for predicting
PPV values. They applied this model to some inputs,
including D, the burden-to-spacing ratio, MC, p-
wave velocity, stemming length, as well as Young�s
modulus. They determined that their approach
could forecast PPV with greater precision compared
to experimental equations. There are some other
interesting and effective techniques in the field of
PPV prediction such as support vector regres-
sion—firefly algorithm, feature selection—random
forest, autonomous groups PSO—extreme learning
machine, Gaussian process regression, fuzzy C-
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means clustering—quantile regression neural net-
work (Arthur et al., 2020; Bui et al., 2020; Yang
et al., 2020a; Zhou et al., 2020b). It seems that these
soft computing and ML techniques are able to solve
PPV problems more efficiently compared to other
available approaches. It should be noted that there
are many successful reports of these techniques for
solving problems in science and engineering (Azizi
et al., 2014; Armaghani et al., 2017; Azizi, 2018;
Ghafoorpoor Yazdi et al., 2019; Huang et al., 2020,
2021a, b, c, d, e; Kardani et al., 2020, 2021; Huang &
Wang, 2021; Yang et al., 2020b; Zhou et al., 2012;
Asteris et al., 2021). Thus, we decided to use these
techniques to introduce a new procedure and model
for PPV prediction.

METHODOLOGY

This research employed a hybrid approach to
predict PPV produced by mine blasting. Initially, we
used a ML technique namely gradient boosted tree
(GBT) as a process for input selection. An ANN
technique was then applied to the selected inputs.
Finally, this hybrid model was optimized with a
series of optimization techniques to achieve the
most suitable ANN model for PPV prediction. Fig-
ure 1 shows the flowchart of this study and all steps
involved to attain the study objectives.

Input and Target Variables

Ascertaining the input variable is a start for
generating a forecast model for PPV. It is critical to
identify the most significant factors of PPV for
proposing a comprehensive and perfect model. In
learning the critical factors, it is necessary to
acknowledge that the chosen factors need to render
the site circumstances, and the explosion design
factors need to be assessable and should be
straightforward to collect concurrently. There is a
close association between the blast design factors
and the PPV outcomes in blasting. Accordingly, this
study considered many parameters in the modeling
process, such as MC, stemming length, sub-drilling,
burden-to-spacing ratio, rock quality designation
(RQD) and powder factor. PPV values may rise if
the design of specific factors is conducted poorly.
The values of PPV drop as the interval between the
free face and the monitoring spot increase. Conse-
quently, as an essential factor, it was utilized in the

process of modeling. The data collected from quarry
site with some more information about the data are
presented in Table 1. In the following section, the
procedure of the ML technique (i.e., GBT) used to
select input variables is described.

Input Selection Technique

In this part, the method of input selection,
namely GBT, was applied to identify the most effec-
tive input parameters. GBT is among the most rig-
orous ensemble models, which combine several
consecutive simple regression trees into amore robust
model (Fig. 2). In general, fixed size trees are em-
ployed as base learners. To make straightforward the
process, regression trees are designated as base (or
weak) learners, and the gradient descent system is
utilized to lessen the loss function. Friedman (2001)
made some amendments in this algorithm and
according to these changes, the algorithm selects a
distinct optimal weight value for every leaf in the tree,
rather than a single weight for the entire tree, where
the weight is carefully chosen as to decrease the loss
function merely on the training data falling in a leaf.

Predictive and Optimized ANN Models

ANN is a variety of artificial intelligence that
copies an individual�s mind functions. Ordinarily, the
ANN leads to assort experiential information (Ka-
mavisdar et al., 2013). This technique incorporates a
set of layers, and an individual layer comprises a chain
of neurons. Weighted links attach these neurons to
neurons in each layer on the preceding and following
layers (Liu et al., 2003). A positive weight exhibits an
excitatory connection, whereas a negative weight
shows an inhibitory relationship. A standard ANN
incorporates three layers, i.e., input layer, hidden
layer, and an output layer (Fig. 3). These elements
require to be described as a primary set of weights and
demonstrate how weights must be changed through
training to improve the achievement and based on the
problem (Monjezi & Dehghani, 2008).

Weight Optimization Techniques

The weight optimization step is of intense
interest because the body of literature acknowledges
that the performance of ANNs is affected by pri-
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Figure 1. Flowchart of this study for PPV prediction.
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mary weights assignment. Thus, this research study
employed four techniques, including forward, evo-
lutionary, backward, and PSO to optimize the
weights of the attributes. Attribute weighting is a
method for estimating the optimal degree of indi-
vidual attributes’ impact employing a training data-
set. If successfully applied, related attributes are
associated with a significant weight value, whereas
unrelated attributes are assigned a weight value near
zero. The forward weight optimization technique
achieves the weighting following the naive theory
that the attributes are independent. Every attribute
is weighted with a linear quest. This method may
give excellent outcomes following a short period if
the attributes are not profoundly correlated. In fact,
forward optimization selects a subset of the attri-
butes for the final model. Different from forward
optimization, the backward technique starts with the
full least squares model comprising all attributes and
then iteratively eliminates the most insignificant at-
tribute, one after the other. These two methods,
respectively, assign 1�s and 0�s as primary weights.

The evolutionary weight optimization measures
the weights of the provided dataset attributes uti-
lizing a GA. The greater the weight of an attribute,
the more suitable it is viewed. GA is an exploration
heuristic that imitates the method of natural devel-
opment. This heuristic technique is commonly em-
ployed to create beneficial clarifications to
optimization and search queries (Armaghani et al.,
2020; Khandelwal et al., 2017). GAs relate to the
more general category of evolutionary algorithms,
which create answers to optimization difficulties
utilizing natural evolution methods, such as inheri-
tance, mutation, selection, and crossover (Fig. 4). It
is worth noting that, in GA, ‘‘mutation’’ implies
changing features on and off, and ‘‘crossover’’ indi-
cates interchanging used features (Koopialipoor
et al., 2019). In the process of ANN optimization

using GA, primary weights of the encoded modality
are produced randomly in the GA method and
optimized by the crossover and mutation operation.

The PSO-based optimization approach initial-
izes the learning process through the production of
an assortment of arbitrary particles. Every particle
denotes a single collection of weights/importance
and biases in the model. This model is then trained
by utilizing the primary weights and biases. The
PSO-based optimization technique then updates the
particle’s velocity and position by employing the
PSO equations (Hajihassani et al., 2018). Finally, the
weights and biases of the model are modified in
every repetition. The system errors amid the real
and predicted values are measured in every repeti-
tion. Additionally, the errors are decreased by
modifying the particles’ positions. The process
mentioned above is maintained to obtain the most
desirable weights and biases to minimize the error
function.

For optimizing the architecture of ANN using
the PSO, first, the algorithm generates the N posi-
tion vectors, randomly, then executes the neural
network using these vector parameters, and finally,
considers error resulting from each run as the fitness
condition of that network variable vector. This
process is repeated until the ultimate convergence is
achieved wherein the training error is the least
(Fig. 5).

Collection of Data

We carried out this investigation in the area of
Penang state, Malaysia. A view of the site is pre-
sented in Figure 6. This mine exploits granitic rocks
with the potential to produce quantities of mass
between 40,000 and 60,000 tons per month. All
blasting works are administered utilizing two blast

Table 1. Data collected from quarry site

Factor Unit Symbol Range Average

Burden to spacing – BS 0.62–0.97 0.78

Maximum charge per delay kg MC 56.3–101 75.6

Distance m D 255–670 520.3

Peak particle velocity mm/s PPV 1.4–9.9 3.22

Powder factor kg/m3 PF 0.4–1.16 0.65

Rock quality designation % RQD 39–79 60

Stemming length m St 1.5–37 2.51

Sub-drilling cm SD 24–48 38.1
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hole diameters, i.e., 89 mm and 76 mm. As for
explosive substance and the start, ANFO and
dynamite were primarily employed. The excavation
team graveled the blast holes utilizing fine gravels.
As mentioned before, several parameters related to
blasting pattern design together with some geologi-
cal and geotechnical parameters were measured for
the purpose of PPV estimation. For every blast, a
VibraZEB seismograph was used to record PPV

values. In total, 93 blasting operations were moni-
tored and the relevant parameters, given in Table 1,
were collected and used in the modeling of this
study.

The scaled distance (SD) is a standard tech-
nique to empirically forecast PPV values. According
to Duvall and Petkof (1959), the relation between
SD and the two most influential factors (i.e., D in
meters and MC in kilogram) is a form of

Figure 2. Schematic of GBT.
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SD ¼ D MC�0:5
� �

. Then, PPV values can be esti-

mated as PPV ¼ LðSDÞN , where L and N are con-
sidered as site constants. After all calculations using
the data of this paper, the following equation was
proposed as a practical empirical technique:

PPV ¼ 373:21ðSDÞ�1:195 ð1Þ

The logarithmic diagram of the estimated PPV
values versus their SDs is presented in Figure 7. The
coefficient of determination (R2) corresponding to
0.637 for PPV forecast implies that the suggested
formulas forecast them reasonably. It is important to
mention that the obtained result and its R2 are
higher than in some other studies that proposed
empirical equation for PPV prediction (e.g., Haji-
hassani et al., 2015).

Figure 3. Standard three-layer neural network.

Figure 4. Essential steps of GA in optimization problems.
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RESULTS AND DISCUSSION

Selection of Inputs

As discussed earlier, this study employed a
GBT method for selecting the most relevant input
variables for predicting the PPV. To apply this
model to the candidate inputs of this study, the value

of many parameters were set. Thus, the number of
trees, maximal depth, min rows, number of bins, and
learning rate were set as 50, 5, 10, 20, and 0.01,
respectively. The GBT model achieved a correlation
value of 0.931. In addition, the results of this model
showed that MC, D, sub-drilling, powder factor, and
RQD were the most important and relevant factors
for predicting the PPV. The normalized importance

Figure 5. Optimization of ANN architecture utilizing the PSO algorithm for PPV prediction.

Figure 6. A view of the quarry site.
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value of each factor is shown in Figure 8. These
variables were then used for applying a series of
optimized ANN models to forecast PPV values in-
duced by blasting.

Model Development and Evaluation

In this paper, five ANN models were developed
after the input selection stage. As mentioned pre-
viously, the GBT selected five inputs as the most
important and relevant among all collected variables
as predictors. We then applied a simple ANN model.
The parameters and settings used included (1)
training cycle of 500, (2) learning rate of 0.3, (3)
momentum of 0.2, and (4) error epsilon of 1.0E�5
(Fig. 9). The attributes’ weights of the ANN model
were optimized using the PSO, GA, backward, and
forward approaches. Thus, five models were created
in total. The optimized weights of the attributes are
shown in Figure 10. The highest weight (1.00) for D
was achieved in three models, including ANN-PSO,
ANN-GA, and ANN-backward. In addition, sub-
drilling achieved the highest possible weight (1.00)
in three models, including ANN-PSO, ANN-back-
ward, and ANN-forward.

The models were developed and validated using
tenfold cross-validation. We used root mean squared
error (RMSE), correlation coefficient (R), variance
accounted for (VAF), and a20-index as the main
criteria to evaluate the ANN models’ performances.
The following are the formulas of these indices.

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 yim � yip

� �2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yim ��yimð Þ2

q ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yim � yip

� �2
s

ð3Þ

VAF ¼ 1�
var yim � yip

� �

var yimð Þ

2

4

3

5 ð4Þ

a20� index ¼ m20

n
ð5Þ

where yim, yip, and ýip indicate measured, predicted
and mean of measured values, respectively; n rep-
resents total number of data, m20 denotes samples
with measured value/predicted values between 0.8
and 1.20.

Figure 7. Correlation between estimated SD and PPV values.
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Figure 8. Importance of input variables achieved by the developed GBT model.

Figure 9. Structure of simple ANN model.

4667A Novel Combination of Gradient Boosted Tree



In addition, a simple ranking system was used to
assess the performance of the models applied com-
prehensively (Zorlu et al., 2008). In this system, a
ranking is assigned to RMSE and R, VAF, and a20-
index�s values. Thus, the highest values of R, VAF,
a20-index and the lowest values of RMSE receive
the highest rank. It is worth noting that the highest
rank was 5 because five models were used and the
lowest rank was 1. Moreover, the same ranking was
given to equal RMSE, R, VAF, and a20-index val-
ues. A cumulative ranking is proposed for each
model, which is the sum of each model’s RMSE, R,
VAF, and a20-index rankings, thus:

Cummulative ranking of model ¼
X

aþ bþ dþ cð Þ
ð6Þ

where a denotes the ranking of RMSE, b the ranking
of R, d the ranking of VAF, and c the ranking of a20-
index. The values and rankings achieved for the
RMSE, R, VAF, and a20-index, and the cumulative
rankings of individual models are presented in Ta-
ble 2. The highest rank of RMSE belongs to ANN-
PSO, while the lowest RMSE ranking belongs to
ANN-backward model. In addition, ANN-PSO ob-
tained the highest R ranking; however, the ANN
model achieved the lowest ranking for R.

The highest VAF ranking belonged to ANN-
PSO, and the ANN model (without optimization)

had lowest ranking for VAF. Concerning a20-index,
the ANN-PSO model also had the greatest ranking,
while the ANN possessed the lowest ranking.
Overall, the highest cumulative ranking belongs to
ANN-PSO; the lowest cumulative ranking belongs
to ANN model.

It was expected that the advanced optimization
techniques such as PSO showed better performance
compared to the forward and backward optimization
techniques. This result can stem from the various
advantages of PSO. These advantages include the
requirement for a small number of input variables,
flexibility in scaling of design search, straightfor-
wardness of application, and great effectiveness in
global optimum search.

This research considered an ensemble approach
and reduced the risk of choosing less critical inputs
for the PPV forecast. To the best of our knowledge,
studies in the field of environmental issues of blast-
ing that used the GBT in selecting the input
parameters are a few only. Our study’s findings of
the input parameters selected are useful for PPV
forecasting because they consolidate various learn-
ers� prediction and ANN optimized models. Conse-
quently, this study suggests employing only five
input parameters, i.e., MD, D, sub-drilling, powder
factor, and RQD, together with the ANN-PSO to
produce a more eminent performance in forecasting
PPV produced by blasting. The blast safety area can

Figure 10. Optimized attributes� weights for four models.
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also be discovered in exploding sites using the
optimized models developed in this research.

CONCLUSIONS

This study was set to (1) combine an ensemble
technique with an optimized ANN model, and (2)
identify the best-hybridized model for solving PPV
problem induced by mine blasting. To that effect, we
first adopted a GBT technique for input selection.
Next, an ANN method was applied to the chosen
input variables. Eventually, the model was opti-
mized with a set of optimization techniques includ-
ing forward, backward, PSO, and evolutionary, to
obtain the most suitable ANN model for PPV
forecast. Our study’s findings proved that ANN-PSO
achieved the highest cumulative ranking, and con-
sequently, this model was the most reliable one to
predict PPV. According to the obtained results, R
values of 0.879, 0.945, 0.934, 0.927, and 0.941 were
provided by ANN, ANN-PSO, ANN-GA, ANN-
Forward, and ANN-Backward, respectively, which
confirmed the higher prediction capability of the
developed ANN-PSO model compared to the other
proposed models. In addition, the RMSE, VAF, and
A20-index values achieved verified that the PSO
method that optimized the weight of the ANN had
improved the performance of the algorithm and had
resulted in superior RMSE, VAF, and A20-index
values compared to other ANN models. Mining
engineers can use this technique before blasting
operations to predict PPV values with high level of
accuracy. As for future work, testing some newer
optimization algorithms such as gray wolf opti-
mization and moth flame optimization to combine
with ANN are needed to evaluate their performance
capacities in predicting PPV.
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