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The quality of surface waters plays a key role in the sustainability of ecological systems.
Measuring water quality parameters (WQPs) is of high importance in the management of
surface water resources. In this paper, contemporary-developed regression analysis was
proposed to estimate the hard-to-measure parameters from those that can be measured
easily. To this end, we proposed a novel modification of support vector regression (SVR),
known as multiple-kernel support vector regression (MKSVR) algorithm. The MKSVR
learns an optimal data representation for regression analysis by either linear or nonlinear
combination of some precomputed kernels. For solving the optimization problem of the
MKSVR, the particle swarm optimization (PSO) algorithm was used. The proposed algo-
rithm was assessed using WQPs taken from Karun River, Iran. MKSVR was used to esti-
mate chemical oxygen demand (COD) and biochemical oxygen demand (BOD) using nine
WQPs as the input variables, namely electrical conductivity, sodium, calcium, magnesium,
phosphate, nitrite, nitrate nitrogen, turbidity, and pH. The results of the proposed MKSVR
were compared with those obtained using the SVR and Random Forest regression (RFR).
The results showed that the MKSVR algorithm (correlation coefficient [R] = 0.8 and root
mean squared error [RMSE] = 4.76 mg/l) increased the accuracy level of BOD prediction
when compared with SVR (R = 0.68 and RMSE = 5.15 mg/l) and RFR (R = 0.77 and
RMSE = 5.15 mg/l). In the case of COD estimation, the performance of a developed sup-
port vector machine (SVM) technique was satisfying. Overall, the use of MKSVR along with
the PSO algorithm could demonstrate the superiority of the newly developed SVM tech-
nique for the WQPs estimation in the natural streams.

KEY WORDS: Multi-kernel learning, Support vector regression, Water quality parameters, Natural
water resources, Regression analysis, Kernel learning.

INTRODUCTION

Measuring water quality parameters (WQPs)
plays a significant role in environmental monitoring.
As water quality stands at a poor state, it has a
negative influence on the life of living organisms in
various aquatic ecosystems and water bodies such as
natural rivers, lakes, dam reservoirs, confined and
unconfined aquifers. Several parameters that char-
acterize physical, chemical, and biological (or bio-
chemical) characteristics of water are considered as
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WQP in the literature, among which the most used
ones are chemical oxygen demand (COD), and
biochemical oxygen demand (BOD), phosphate,
turbidity, and electrical conductivity.

The accurate measurement of WQPs is at the
mercy of taking a lot of time and difficult-to-carry
out procedures. Measuring some of these WQPs
such as BOD and COD is more complicated than
the others. To obtain a reasonable estimation of
BOD concentration, two types of measurement
should be considered: first, the amount of oxygen,
required to perform oxidization process for all the
organic elements in a specific water volume, and
second, the amount of oxygen, absorbed by other
living creatures. Thus, the performance of fields and
experimental investigations may result in inaccura-
cies because the volume of absorbed oxygen is not
taken into account. Similarly, in accordance with
COD measurement, the results of experimental
studies are distorted in the presence of different
inorganic radicals (Verma & Singh, 2013).

To eradicate these difficulties, many researchers
proposed to estimate the WQPs (for example,
chemical oxygen demand, biochemical oxygen de-
mand, dissolved oxygen demand) as a function of
other common WQPs (for instance, nitrate, turbid-
ity, electrical conductivity, pH) instead of measuring
them. To this end, different regression models have
been considered. From previous investigations,
artificial neural networks (ANNs) (Ay & Kisi, 2011;
Emamgholizadeh et al., 2014; Singh et al., 2009),
adaptive neuro-fuzzy inference system (ANFIS)
(Emamgholizadeh et al., 2014; Soltani et al., 2010),
and support vector machine (SVM) (Bozorg-Had-
dad et al., 2017; Li et al., 2017) have been employed
frequently to estimate the WQPs in various water
bodies through the world. Furthermore, along with
the use of these techniques, some other techniques
such as gene-expression programming (GEP), evo-
lutionary polynomial regression (EPR), M5 model
tree (Najafzadeh et al., 2018), multivariate adaptive
regression spline (MARS) (Heddam & Kisi, 2018;
Najafzadeh & Ghaemi, 2019), and linear genetic
programming (LGP) proved to be efficient for esti-
mation of WQPs. In addition, wavelet decomposi-
tion techniques, locally weighted linear regression
model and multigene genetic programming, have
been applied recently to estimate accurately differ-
ent WQPs in natural streams (Ahmadianfar et al.,
2020; Jamei et al., 2020).

One of the most successful ones of these
regression algorithms is the support vector regres-

sion (SVR), which is a support vector machine
algorithm (SVM) developed for regression analyses
(Cortes & Vapnik, 1995; Smola & Schölkopf, 2004).
This algorithm has been used widely and proved
efficient in different fields for parameter estimation
and time-series analysis and forecasting (Mukherjee
et al., 1997; Niazmardi et al., 2013; Tuia et al., 2011;
Wu et al., 2004; Yu et al., 2006). However, the SVR
suffers from the same shortcomings as the other
members of the SVM family, i.e., its performance is
highly tied with the proper selection of its kernel
function (Abbasnejad et al., 2012). Selection (or
construction of) an optimal kernel function for a
learning problem is not a straightforward task. Thus,
in the last decades, several kernel learning ap-
proaches have been proposed (Abbasnejad et al.,
2012). Multiple-kernel learning (MKL) algorithms
are one of the categories of kernel learning ap-
proach which, due to their sound theoretical back-
ground and outstanding results, gained the attention
of many researchers (e.g., Bucak et al., 2014; Gönen
& Alpaydın, 2011; Niazmardi et al., 2016, 2018).

One of the main issues of the SVM algorithm is
that its performance depends highly on the choice of
kernel function and fine-tuning the parameters of
the selected kernel. During the last decade, several
techniques have been proposed to assist this choice,
among which the MKL framework was the most
promising one (i.e., Niazmardi et al., 2018; Qiu &
Lane, 2005, 2009; Yeh et al., 2011). In another word,
the MKL algorithms can solve the kernel selection
problem in the kernel-based learning algorithms.
Different kernel functions are combined using a
combination function, which can be either linear or
nonlinear. The proposed algorithm is among the
MKL algorithms that can handle both types of
combination functions. The parameters of the com-
bination function are estimated by solving the
existing optimization problem.

The MKL algorithms address the problem
associated with selecting the proper kernel function,
by learning an optimal task-specific kernel through
either linear or nonlinear combination of some
precomputed kernels (Bucak et al., 2014). Most of
the MKL algorithms have been proposed for clas-
sification purposes (Niazmardi et al., 2018), and
there are only a few algorithms proposed for the
regression analysis (Gonen & Alpaydin, 2010; Qiu &
Lane, 2005, 2009; Yeh et al., 2011). These few
algorithms cannot learn the nonlinear combination
of kernels and usually use complex optimization
strategies. To address these issues, we proposed

3762 Najafzadeh, Niazmardi



multiple-kernel support vector regression (MKSVR)
algorithm for accurate estimation of WQPs. The
MKSVR benefits from a flexible structure of MKL
algorithm which can learn both linear and nonlinear
combinations of kernels for regression analysis. Be-
sides, this algorithm uses the particle swarm opti-
mization algorithm to optimize the combination of
the kernels, which makes its implementation very
easy.

The rest of this paper is organized as follows.
First, brief reviews of the theorem associated with
the SVR and MKL algorithms are presented. After
that, the structure of the proposed MKSVR algo-
rithm and its optimization strategy is described.
Next, water quality data and experimental setups are
presented, followed by the presentation of the re-
sults in terms of qualitative and quantitative per-
formance. The conclusions are drawn in the final
step of this research.

METHODOLOGY

Regression and Support Vector Regression
Algorithms

Suppose we are provided with a set T ¼
xi; yif gni¼1 of n training samples xi 2 Rp, each of

which is assigned with a real-valued target yi 2 R.
Assume that these samples are obtained through

sampling an unknown function g : RP ! R. The
main purpose of regression is to estimate a function
f : Rp ! R that approximates the unknown function
g using the set of training samples (Mukherjee et al.,
1997); accordingly, regression is also known as
function approximation in some literature.

Several mathematical methods were proposed
for solving regression problems. Among these
models, the support vector regression attracted great
attention (Camps-Vails et al., 2006; Gunn, 1998;
Niazmardi et al., 2013; Qiu & Lane, 2009; Smola &
Schölkopf, 2004). The SVR aims at approximating a

linear function f ðxÞ ¼ wTuðxÞ þ b in which w and b
are regression parameters that should be estimated
using the training data. In this function, also known
as the prediction function or regressor, uð:Þ is a
mapping function from the original space of data
into the kernel space. The SVR algorithm estimates
w and b through optimizing a loss function and a
regularization term (Mukherjee et al., 1997). The
loss function minimizes the error of estimated

function, while the regularization term controls its
flatness (Rojo-Álvarez et al., 2018).

One of the most used loss functions in the
structure of SVR is e-insensitive loss function, pro-
posed by Vapnik (2013). The value of this function
Le for an error value e is calculated as:

LeðeÞ ¼ maxð0; jej � eÞ ð1Þ
The flatness of the SVR regressor can be esti-

mated through the calculation of its norm wk k2.
Accordingly, the SVR optimization is written as:

min
w;b

C
Xn

i¼1

Leðyi � wTuðxiÞ � bÞ þ 1

2
wk k2

( )
ð2Þ

where C is a positive real number (known as trade-
off parameter) that controls the trade-off between
the flatness and the error of the estimated function.
It can be shown that the minimization of Eq. 2 is
equivalent to the following constraint optimization
problem (Scholkopf & Smola, 2001):

min
w;b;ni;n

�
i

C
XN

i¼1

ni þ n�i
� �

þ 1

2
wk k2

( )
ð3Þ

Constrained to:

yi � w;uðxiÞh i � b � eþ ni 8i ¼ 1; . . . ;N ð4Þ

w;uðxiÞh i þ b� yi � eþ n�i 8i ¼ 1; . . . ;N ð5Þ

ni; n
�
i � 0 8i ¼ 1; . . . ;N: ð6Þ

In Eq. (3), ni and n�i are the positive slack
variables that are used to cope with the infeasible
constraints (Smola & Schölkopf, 2004). With the aid
of the Lagrange multiplier technique, Eq. (3) is re-
written by the dual problem as:

max
a;a�

� 1

2

XN

i¼1

XN

j¼1

ai � a�i
� �

aj � a�j

� �
Kðxi; xjÞ � e

XN

i¼1

ai þ a�i
� �

þ
XN

i¼1

yi ai � a�i
� �

( )

subjct to:
PN

i¼1

ai � a�i
� �

¼ 0

ai; a�i 2 0;C½ �

ð7Þ

where a and a� are the dual variables associated with
inequality constraint of Eqs. (4) and (5), respec-
tively. This is a convex optimization problem that is
solved conveniently. After solving this optimization
problem and obtaining optimum values for dual
variables, b is estimated considering the conditions
and training samples, and w is calculated as:
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w ¼
XN

i¼1

ai � a�i
� �

u xið Þ ð8Þ

After computing b and w, the target value y is
estimated as:

y ¼
XN

i¼1

ai � a�i
� �

Kðxi; xÞ þ b ð9Þ

where K is known as the kernel function with only
two open parameters e and C.

Multiple-Kernel Learning

Choosing a kernel function and fine-tuning its
parameters have a profound effect on the perfor-
mance of kernel-based learning algorithms such as
support vector regression (Yeh et al., 2011). There
are several different kernel functions available for a
specific learning task, from which the user should
choose the best performing one without any prior
knowledge about their performances. There is a
wide range of kernel learning methods that are
employed to either assist this choice or to estimate a
valid kernel function from the available training
data (Abbasnejad et al., 2012). The most promising
category of these algorithms is the MKL algorithms.

MKL algorithms estimate a (sub)-optimal ker-
nel function, known as the composite kernel, for a
specific learning task by combining a group of pre-
computed basis kernels (Gönen & Alpaydın, 2011).
The basis kernels are combined by the use of a
parametric combination function into the composite
kernel. Thus, the main goal of MKL algorithms is to
estimate the optimal values for the parameters of
the combination function (Niazmardi et al., 2018).
MKL algorithms yield this goal by optimizing a
target function with respect to these parameters.
Although most of the MKL algorithms have been
proposed for the classification problems, the opti-
mization techniques and the combination functions
associated with these algorithms can be also used for
the regression problems (Bucak et al., 2014; Gönen
& Alpaydın, 2011; Kloft et al., 2011; Niazmardi
et al., 2016). In the MKL literature, it is a common
practice to replace the kernel function of the dual
problem related to the kernel-based learning task
(Eq. 7 in the case of the SVR algorithm) with the
composite kernel. This issue was considered as the
target function of the MKL algorithm (Bucak et al.,

2014). Following this strategy, the target function of
the MKSVR can be written as the following min–
max problem:

min
g

max
a;a�

� 1

2

XN

i¼1

XN

j¼1

ai � a�i
� �

aj � a�j

� �
Kcðxi; xjÞ � e

XN

i¼1

ai þ a�i
� �

þ
XN

i¼1

yi ai � a�i
� �

( )

Subjct to:
PN

i¼1

ai � a�i
� �

¼ 0

ai; a�i 2 0;C½ �
g 2 D

ð10Þ

where g and D, respectively, denote the parameter of
the combination function and their feasible set; Kc

shows the composite kernel. An alternative opti-
mization strategy is used occasionally to solve this
optimization because optimizing Eq. (10) with re-
spect to g is not a convex problem (Gönen & Al-
paydın, 2011).

As mentioned previously, one of the most
important characteristics of the MKL algorithm is
how the basis kernels are combined into the com-
posite kernel which is controlled by the combination
function. Considering the linearity of this function,
the MKL algorithms can be categorized into two
groups of linear and nonlinear algorithms (Niaz-
mardi et al., 2016). The linear MKL algorithms ap-
ply the following function to n available basis
kernels Ki; i ¼ 1; :::; n to construct the composite
kernel:

Kc ¼
Xn

i¼1

diKi ð11Þ

where di; i ¼ 1; . . . ; n are non-negative weights
associated with the basis kernels, which should be
optimized by using the MKL algorithm.

Several options available can be used as the
combination function of the nonlinear MKL algo-
rithms. Among these functions, the polynomial
function of degree in the state of d � 1 is the most
common (Cortes et al., 2009), and it is expressed as:

Kc ¼
X

q2Q
lq1...qnK

q1
1 K

q2
2 . . .Kqn

n ð12Þ

where Q is known as q : q 2 Zn
þ;

Pn
i¼1 qi � d

� �
and

lq1...qn is equal to zero at least. Due to many open

parameters, adopting Eq. (12) as the combination
function leads to create an optimization problem
with a high degree of complexity. To reduce the
complexity of this problem, the following combina-
tion function is considered occasionally (Cortes
et al., 2009):
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Kc ¼
X

q2R
lq11 lq22 . . . lqnn K

q1
1 K

q2
2 . . .Kqn

n ð13Þ

where R ¼ q : q 2 Zn
þ;

Pn
i¼1 qi ¼ d

� �
and

lq1::::qn � 0.

According to the literature, quite a few linear
and nonlinear MKL algorithms have been employed
for data classification by adopting various target
functions and optimization strategies. Additionally,
most of these algorithms are applied for regression
problems. To the best of our knowledge, there is no
general guideline for selecting fixed values for the
SVR parameters. Thus, these parameters are esti-
mated occasionally using an n-fold cross-validation
technique. Although SVR demonstrated accept-
able performance, this technique is highly time-
consuming. Besides, the user should provide a set of
candidate values from which the optimum values for
the SVR parameters are selected. These issues may
yield sub-optimal values for the parameters. How-
ever, these problems can be avoided through
simultaneous optimization of the SVR parameters
and the kernel parameters in the MKSVR algo-
rithm. We refer the readers to Gönen and Alpaydın
(2011), Bucak et al. (2014) and Niazmardi et al.
(2018) for details of MKL algorithms.

Proposed MKSVR

The MKSVR algorithm should optimize
Eq. (10) jointly with respect to the dual variables
and parameters of the considered combination
function. This is achieved occasionally using an
alternative optimization (AO) strategy. The AO,
introduced as a two-stage optimization strategy,
optimizes either dual variables or the parameters of
the combination functions at each stage while
assigning fixed values to the other one. The AO
algorithm iterates until a termination criterion is
met.

Optimizing the target function of the MKSVR
with respect to the dual variable is a convex problem
that can be solved easily. However, optimization
with respect to the parameters of the combination
function can be highly challenging due to the non-
convexity of the optimization problem. Occasion-
ally, the gradient descendant method has been em-
ployed widely to solve this optimization problem

(e.g., Rakotomamonjy et al., 2008; Varma & Babu,
2009). In contrast, the gradient descendant method
is an iterative optimization method that needs sev-
eral evaluations of the gradient of the target func-
tion at each step. Accordingly, adopting this method
increases the computational complexity of the MKL
algorithm.

To address the above issue, we proposed an AO
framework that replaces the gradient descendant
method with the particle swarm optimization (PSO)
algorithm. In the proposed optimization strategy,
the parameters of the combination function are
considered as the particles, whose search space is
defined as the feasible set of the parameters of the
combination function. To evaluate the fitness of
each particle, one composite kernel is constructed by
considering the values of each particle as the
parameters of the combination function. Equa-
tion (7) can be solved easily by employing a convex
optimization method, once this composite kernel as
the main kernel function of Eq. (7) was adopted.
After solving this optimization, the prediction
accuracy of this function is evaluated by employing a
five-fold cross-validation method. In fact, the fitness
value of each particle is considered as the precision
level of the models� performance.

The proposed optimization strategy of MKSVR
has several advantages over the gradient descendant
method. Firstly, the proposed strategy is very flexi-
ble and able to perform with any combination
function. Secondly, this is a cost-effective method
owing to the fact that there is no need to estimate or
evaluate the gradient. Finally, in addition to the
parameters of the combination function, the pro-
posed strategy is capable of optimizing the SVR
parameters (i.e., C and e). In fact, SVR parameters
are estimated occasionally using n-fold cross-vali-
dation, which is a very time-consuming technique. In
this case, each particle consists of two separate parts
for parameters of combination function and SVR
parameters (C and e). Table 1 shows the optimiza-
tion strategy of the MKSVR algorithm. The
flowchart of the processing steps of the MKSVR
algorithm is illustrated in Fig. 1. It is noteworthy
that the PSO algorithm is adopted due to the con-
tinuity of its search space and its satisfying perfor-
mance (Sengupta et al., 2019). However, the PSO
algorithm can be replaced by other meta-heuristics
optimization techniques.
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STUDY AREA, DATASET DESCRIPTION,
AND EXPERIMENTAL SETUP

Study Area

We evaluated the performance of the proposed
strategy for estimating WQPs of Karun River in
Khuzestan Province, Iran. This river drains from the
Bakhtiari area in the central Zagros Mountain and
follows a tortuous course on the Khuzestan plain,
and joins the Shatt al-Arab in Bousher before its
final discharge into the Persian Gulf. Karun River
(Fig. 2), with 829 km long and a watershed area of
65,230 km2, is the longest and the only navigable
waterway of Iran. Quite a few dams have been
constructed on the Karun River, whose main aims
are not only hydro-power generation but also flood
control. There is no denying the fact that dams on
the Karun River play a key role in the evolution of
some riverine issues such as land use, sediment
transport, and management of water quality. Karun
River is also the main source of water for several
cities, among which the largest is Ahvaz with just
above 1.3 million residents. Thus, assessment of the
water quality of this river is of high practical
importance.

Dataset Description

In this paper, 11 different WQPs were consid-
ered, namely BOD, COD, electrical conductivity
(EC), sodium (Na+), calcium (Ca2+), magnesium
(Mg2+), phosphate (PO4

3�), nitrite (NO2
�), nitrate

nitrogen (NO3
�), turbidity, and pH. The WQPs

were measured monthly from eight hydrometric
stations along the Karun River between the years
1995 and 2011; the location of these stations is shown
in Fig. 3 and is also listed in Table 2. As mentioned,
COD and BOD are harder to measure than the
other WQPs. Thus, these parameters were consid-
ered as the main variables to be estimated using the
other nine different parameters. In the case of
Karun River, Emamgholizadeh et al. (2014) were
the first researchers to use these WQPs data for
estimation of BOD and COD by ANN and ANFIS
models. Additionally, Najafzadeh et al. (2018) ap-
plied several explicit formulations for prediction of
BOD and COD by using EPR, MT, and GEP
models. Najafzadeh and Ghaemi (2019) applied
MARS and SVM techniques recently to estimate
BOD and COD; they used an improved simple
version of SVM. In contrast, this present research
aimed to employ a newly developed version of SVM
on the basis of kernel learning. The main statistics of
the WQP used in this study are given in Table 3.

Table 1. Optimization strategy of MKSVR algorithm
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In Table 3, magnesium and calcium with 60 mg/
l and 58.4 mg/l, respectively, have the highest con-
centrations. These two parameters also had rela-
tively large standard deviations, which can be
interpreted as high dispersion in the concentration
levels of these parameters. Nitrite and nitrate
nitrogen have become almost stable during the
measuring period; accordingly, they showed the
smallest standard deviations among the parameters.

Experimental Setup

To assess the performance of the proposed
MKSVR, we designed two different experiments. In
the first experiment, the performance of the
MKSVR was evaluated. The MKSVR algorithm
with the proposed optimization strategy was imple-
mented for both linear and nonlinear combination
functions (2nd-degree polynomial). The values of the
trade-off and the epsilon parameters were also
optimized along with the parameters of the combi-
nation function. For this algorithm, 19 different
functions were constructed as the basis kernels. The
basis kernels consisted of nine different radial basis
function (RBF) kernels and 10 polynomial kernels,
whose parameters were selected, respectively, from

the ranges 10�4; 10�3; � � � ; 104
� �

and 1; 2; . . . ; 10f g.
To run the MKSVR algorithm, control parameters

of the PSO algorithm, introduced as swarm size, the
number of iterations, inertia weight, and the accel-
eration constants (shown usually by c1 and c2 in the
literature), need to be set. Based on the suggestions
by Shi and Eberhart (1998), Trelea (2003) and
Bansal et al. (2011), the swarm size, the number of
iterations, and inertia weight were fixed at 20, 300,
and 0.72, respectively. Both acceleration parameters
were set to 2.

In the second experiment, the results of the
proposed method were compared with those ob-
tained using other regression algorithms. In this step
of the experiment, the Random Forest regression
(RFR) and SVR were selected as benchmark for
comparison. The SVR algorithm was implemented
by adopting both the polynomial and the RBF as
kernel functions. For this experiment, besides the
value of the used kernel parameter (i.e., the spread
of RBF kernel and the degree of polynomial), values
of the SVR trade-off and the epsilon parameters
should be set. Here, we used a fivefold cross-vali-
dation strategy to tune these parameters. The value
of spread of the RBF kernel and the epsilon were
both selected from the range {10�4, 10�3, … 104} and
the used range for the value of trade-off parameters
was {10�3, 10�2, … 103}. The degree of polynomial
kernel function was selected from the range {1, 2, …
10}.

Figure 1. Flowchart of MKSVR.
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Figure 2. Drainage basin of Karun River (https://en.wikipedia.org/

wiki/Karun).

Figure 3. Location of hydrometry stations along the Karun River.
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In both experiments, 75% of the datasets were
used for training the algorithms and the remaining
25% was applied for validation. The performance of
the algorithms was measured by means of different
validity measures including correlation coefficient
(R), root mean squared error (RMSE), and mean
absolute error (MAE). These error criteria are used
frequently in the literature for evaluation of envi-
ronmental processes (e.g., Ahmadianfar et al., 2020;
Jamei & Ahmadianfar, 2020; Jamei et al., 2020;
Najafzadeh & Ghaemi, 2019; Pourrajab et al., 2020).
In addition to these validity measures, some recent
statistical measures were used, namely uncertainty
at 95% confidence level (denoted as U95), reliabil-
ity, and resilience (Zhou et al., 2017).

Framework of Random Forest Regression

The RFR algorithm acts on the basis of
assembling the tree-like structure. It is capable of
establishing congruous formulation among a set of
input–output variables (Jamei et al., 2021). Gener-
ally, it can be noted that RFR model increases dif-
ferent decision trees (DTs), which are learned by
means of a sample of input datasets that are boot-
strapable. The final output vector of RFR model is
calculated by taking the average of these prediction
trees. According to Svetnik et al. (2003) research,
RFR is a triple step model. At first, X matrix is
defined as the training datasets which has N samples.
Afterward, k samples are selected randomly by
using the bootstrap resampling approach in order to
generate k regression trees. In this stage, probability
values pertaining to those samples that were ex-
cluded (P) are calculated as (Jamei et al., 2021):

P ¼ 1� 1

N

� 	N

ð14Þ

Based on Eq. (14), if N has infinite value, the
probability will become approximately 37% of the
main training datasets that are not taken into ac-
count to be drawn, being introduced as out-of-bag
datasets and considered for the performance of
testing stages. In the second stage of RFR devel-
opment, regression trees (RTs) which were not
pruned, k bootstrapped data samples are generated.
As a tree is grown structurally, in each node, an
input variable (attribute) is selected randomly from
all input variables (A), introduced as internal nodes.
Thus, a minimum Gini index is applied to measure
how each attribute has a contribution to evaluating
elements of tree structures (i.e., nodes and leaves).
In this way, the optimum input variable is defined by
a splitting variable in order to generate the branches
hierarchy. Through the last phase of RFR develop-
ment, the final model is composed of extracted k
regression trees. Fundamentally, there are two sta-
tistical measures, introduced as the coefficient of
determination and mean squared error, to assess the
accuracy level of RFR.

RESULTS AND DISCUSSION

Results of the First Experiment

Table 4 presents the quantitative performance
of the MKSVR algorithm developed by linear and
nonlinear combination functions for the estimation
of BOD and COD.

Table 2. Names and coordinates of the hydrometry stations

Hydrometry Station Region Longitude Latitude Height

Mollahsani Karun 48�, 53¢, 00¢¢ 31�, 35¢, 00¢¢ 18

Zergan Karun- Northern Ahvaz 48�, 45¢, 41¢¢ 31�, 22¢, 27�¢¢ 20

Ahvaz Fifth Bridge Karun- Southern Ahvaz 48�, 40¢, 09¢¢ 31�, 18¢, 26¢¢ 21

Kot Amir Karun- Southern Ahvaz 48�, 36¢, 17¢¢ 31�, 12¢, 55¢¢ 2

Maroun Maroun-Shadegan 49�, 36¢, 13¢¢ 31�, 04¢, 31¢¢ 64

Darkhoin Karun 48�, 25¢, 00¢¢ 30�, 44¢, 00¢¢ 1700

Khorramshar Karun 48�, 10¢, 00¢¢ 30�, 26¢, 00¢¢ 1560

Deirifarom Arvand-Khoramshahr 48�, 11¢, 09¢¢ 30�, 22¢, 53¢¢ 4

Nahre Ghasebe Nahre 48�, 29¢, 00¢¢ 30�, 01¢, 00¢¢ 1000
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Figure 4. Scatter plot of observed BOD values versus estimated ones by MKSVR.

Table 3. Statistical properties of water quality parameters in the Karun River

Parameter Unit Max Min Average Std. Dev Skewness

Ca2+ mg/l 58.4 1 12.47 9.20 1.92

Na+ mg/l 40 1.42 18.48 7.50 0.144

Mg2+ mg/l 60 2.1 13.21 11.74 2.038

NO�
2 mg/l 2.1 0.08 0.41 0.31 1.88

NO�
3 mg/l 2.7 0.34 1.01 0.38 1.074

PO3�
4 mg/l 3.21 0.13 1.21 0.78 0.701

EC Decisiemens per meter 9.26 1.7 4.72 1.62 0.743

pH – 8.71 5.1 7.15 0.77 -0.294

Turbidity Nephelometric turbidity units 25 1 7.10 5.30 1.051

BOD mg/l 40.6 3.7 19.21 10.28 0.421

COD mg/l 34.2 1.06 15.86 9.30 0.381

Table 4. Accuracy level of the MKSVR algorithms in the estimation of the WQP parameters

WQP Combination function Validity measures

R RMSE MAE U95 Reliability (%) Resilience (%)

BOD Linear 0.79 4.87 3.80 22.49 60 55

Nonlinear 0.80 4.76 3.73 22.40 64 55

COD Linear 0.71 4.75 3.35 19.14 56 54.54

Nonlinear 0.72 4.59 3.57 18.98 54 52.17
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Analysis of accuracy level obtained using the
MKSVR algorithm shows that this algorithm yielded
acceptable performances in estimating both BOD
and COD. However, marginally better perfor-
mances were obtained in the case of using the non-
linear combination functions. This is because, due to
their flexibility, the nonlinear combination functions
can better model the underlying structure of data.
These results were also in line with the results ob-
tained by Cortes et al. (2009), where nonlinear
combination of kernels was used for classification
algorithms. However, it should be noted that linear
combination functions are less computationally
complex than the nonlinear ones, so their adoption
will reduce the computational complexity of the
algorithm.

The performance of the MKL algorithms de-
pends highly on their optimization strategy by which
they find the optimal combination of the kernels.
The good performance of the MKSVR algorithm
using the proposed optimization strategy can sub-
stantiate the effectiveness of PSO as the optimiza-
tion algorithm. Figures 4 and 5 show the qualitative

comparison of the MKSVR algorithm for BOD and
COD, respectively. For BOD measured values be-
tween 5 and 10 mg/l, Fig. 4 indicates that some
estimated values of BOD were placed out of the ±

25% allowable error range. As shown in Fig. 5,
both MKSVR techniques had over-predicted slightly
COD values between 2 and 5 mg/l; for COD = 5–
7 mg/l, all the models have shown a remarkable
over-estimation for some measured COD values.

Comparison to Other Regression Algorithms

Table 5 summarizes the obtained accuracies of
the regression algorithms used as comparison
benchmarks.

As observed from the results, the RMSE values
of the SVR algorithm for estimation of COD and
BOD in the case of adopting polynomial kernel,
respectively, were 5.79 and 6.32, respectively. How-
ever, these values reduced to 4.85 and 5.97 when the
RBF was adopted as the kernel function. The higher
performance of the RBF kernel in comparison with

Figure 5. Scatter plot of observed COD values versus estimated ones by MKSVR.
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the other kernel is due to its higher ability to char-
acterize the data. Besides, the RBF kernel function
also has fewer numerical difficulties, so it is a more
appropriate choice than the polynomial kernel for
the SVR algorithm. Comparison of the perfor-
mances of the MKSVR, RFR, and SVR algorithms
shows that, in most cases, the MKSVR algorithm
outperformed the other algorithms. As an example,
the RMSE of the MKSVR considering the nonlinear
combination function for estimating the BOD was
4.76 mg/l, while for SVR using RBF kernel function

and for the RFR algorithm the RMSEs were
5.97 mg/l and 5.15 mg/l, respectively. The worst
performance of SVR compared to the MKSVR is
due to the fact that using a single kernel cannot
guarantee to obtain the best model for data under
consideration. However, different kernel functions
can provide different modeling of the data, and their
combination can lead to the best possible data
model.

Figures 6 and 7 illustrate the qualitative per-
formance of SVR and RFR models for both BOD

Figure 6. Scatter plot of observed BOD values versus estimated ones by SVR and RFR models.

Table 5. Performance of benchmark regression algorithms

WQI Algorithm validity measures

R RMSE MAE U95 Reliability (%) Resilience (%)

BOD SVR (RBF kernel) 0.68 5.97 4.55 23.49 46 48.15

SVR (Polynomial kernel) 0.63 6.32 4.95 23.84 46 40.74

RFR 0.77 5.15 4.28 22.74 54 43.48

COD SVR (RBF kernel) 0.70 4.85 3.43 19.23 58 47.62

SVR (Polynomial kernel) 0.65 5.79 4.71 20.21 36 34.37

RFR 0.72 4.63 3.59 19.02 56 40.9
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and COD indices, respectively. From Fig. 6, for
BOD of 5–10 mg/l, the two SVR models and the
RFR technique indicated relatively high over-esti-
mation and consequently placing out-of-error
bound. Additionally, for BOD of 25–40 mg/l, there
was slight under-estimation of BOD. In Fig. 7, for
COD of 2.5–15 mg/l, all the three models relatively
over-estimated COD. SVR with polynomial kernel
has under-estimated COD remarkably when COD
was between 25 and 35 mg/l.

CONCLUSIONS

In this paper, regression analysis was used to
obtain hard-to-estimate water quality parameters
such as BOD and COD, as a function of other easy-
to-measure field parameters. In this way, various
regression algorithms in terms of a newly improved
SVR model were considered. The performance of
the SVR algorithm depended on the mathematical
structures of the kernel function. To address issues
associated with various types of kernel selection,

novel multiple-kernel support vector regression
(MKSVR) algorithms were proposed. These algo-
rithms are capable of learning an optimal kernel
through linear or a nonlinear combination of some
precomputed basis kernels. From this study, the
following conclusions have been drawn.

� Using the SVR algorithm, both BOD and
COD were estimated using other water
quality parameters with acceptable accuracy.

� The performance of the SVR algorithm was
highly dependent on the kernel function and
on fine-tuning its parameters. Additionally,
the RBF kernel applied in the SVR algorithm
yielded better results than those obtained by
the second-order polynomial kernel and RFR
model.

� The MKSVR algorithm could increase the
performance of the SVR algorithm for the
estimation of BOD and COD. For this algo-
rithm, the nonlinear combination functions
yielded better performance than the linear
ones.

Figure 7. Scatter plot of observed COD values versus estimated ones by SVR and RFR models.
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For future studies, it is highly recommended to
study the role of different setting parameters of SVR
and MKSVR models on the accurate estimation of
BOD and COD. Although the second-degree poly-
nomial was used to construct the nonlinear combi-
nation of the kernels in this research, there is a
strong need to employ a higher degree of polyno-
mial kernel in the topology design of the MKSVR
algorithm.
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G. (2011). Multioutput support vector regression for remote
sensing biophysical parameter estimation. IEEE Geoscience
and Remote Sensing Letters, 8(4), 804–808.

Vapnik, V. (2013). The nature of statistical learning theory.
Springer.

Varma, M., & Babu, B. R. (2009). More generality in efficient
multiple kernel learning. In Proceedings of the 26th annual
international conference on machine learning (pp. 1065–1072)
ACM.

Verma, A., & Singh, T. (2013). Prediction of water quality from
simple field parameters. Environmental Earth Sciences, 69(3),
821–829.

Wu, C.-H., Ho, J.-M., & Lee, D.-T. (2004). Travel-time prediction
with support vector regression. IEEE Transactions on Intel-
ligent Transportation Systems, 5(4), 276–281.

Yeh, C.-Y., Huang, C.-W., & Lee, S.-J. (2011). A multiple-kernel
support vector regression approach for stock market price
forecasting. Expert Systems with Applications, 38(3), 2177–
2186.

Yu, P.-S., Chen, S.-T., & Chang, I.-F. (2006). Support vector
regression for real-time flood stage forecasting. Journal of
Hydrology, 328(3–4), 704–716.

Zhou, Y., Chang, F.-J., Guo, S., Ba, H., & He, S. (2017). A robust
recurrent anfis for modeling multi-step-ahead flood forecast
of three gorges reservoir in the yangtze river. Hydrology and
Earth System Sciences Discuss, 5, 1–29.

3775A Novel Multiple-Kernel Support Vector Regression Algorithm for Estimation of Water…

https://doi.org/10.1021/ci034160g

	A Novel Multiple-Kernel Support Vector Regression Algorithm for Estimation of Water Quality Parameters
	Abstract
	Introduction
	Methodology
	Multiple-Kernel Learning
	Proposed MKSVR

	Study Area, Dataset Description, and Experimental Setup
	Study Area
	Dataset Description
	Experimental Setup
	Framework of Random Forest Regression

	Results and Discussion
	Results of the First Experiment
	Comparison to Other Regression Algorithms

	Conclusions
	References




