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Mapping mineral prospectivity (MPM) is mostly beset with prediction uncertainties, which
are generally categorized into (a) stochastic and (b) systemic types. The stochastic type is
usually linked to the low quality as well as insufficiency/inefficiency of data used. In contrast,
inaccurate selection of exploration criteria, exaggerated and arbitrary weighting of spatial
evidence layers resulting from subjective judgment of analyst and applying an integration
methodology, which is not able to consider the complexities of geological processes, are
main sources of systemic type. This paper aims for reducing the second type of MPM
uncertainty in delineating favorable exploration targets for Cu-Au mineralization in the
Moalleman District, NE Iran. Thus, several efficient evidence layers were translated from
geospatial criteria (e.g., geochemical, geological, structural and hydrothermal alterations)
and were considered for integration purpose in the study area. Then, an improved data-
driven simple additive weight (data-driven SAW) procedure was introduced for generating
prospectivity model. In this procedure, prediction-area plots and frequency ratio method
were applied for assigning objective weights to efficient evidence layers and their corre-
sponding classes, respectively. Furthermore, a supervised algorithm for machine learning
classification namely support vector machine (SVM) with radial basis function kernel was
executed for comparison purposes. The results indicated that the two prospectivity models
are succeeded in delineating favorable targets of mineralization; however, the SVM model is
more reliable than data-driven SAW in predicting high-potential areas of mineralization.

KEY WORDS: Prospectivity mapping, Data-driven simple additive weight, Support vector machine,
Moalleman District.

INTRODUCTION

Mapping of undiscovered highly favorable
landscapes where the sought deposit-type likely ex-
ists is a sophisticated procedure in regional-scale
mineral exploration. It involves simultaneous con-
sideration of multiple geoscience spatial datasets
(e.g., geochemical, geophysical and geological) (e.g.,
Carranza 2008). Mineral prospectivity mapping
(MPM), a process for delineating targets for explo-
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ration of the sought deposit-type, is able to integrate
spatial evidence layers such as stream sediment
geochemical signatures, geological-structural evi-
dence and surface outcrops of hydrothermal alter-
ations (e.g., Bonham-Carter 1994; Harris et al. 2001,
2008; Zuo and Carranza 2011). For this purpose,
geospatial datasets should be initially compiled and
analyzed in order to select and prepare spatial evi-
dence layers in a geographical information system
(GIS) (e.g., Zuo et al. 2009; McCuaig et al. 2010;
Gao et al. 2016). In other words, the following steps
are substantial in MPM (cf. Bonham-Carter 1994;
Ghezelbash et al. 2019a): (1) recognition of explo-
ration criteria according to a conceptual model of
prospectivity for the sought deposit-type; (2) incor-
porating objective weights into spatial evidence
layers; and (3) employing robust numerical tech-
niques for producing a predictive model of mineral
prospectivity. Thus, MPM can be deemed a multiple
criteria decision-making (MCDM) problem (Abedi
and Norouzi 2016; Ghezelbash et al. 2019b). That is
because in MCDM procedures, diverse and several
exploratory attributes in spatial evidence layers are
integrated to generate subsequently a prospectivity
model for a certain deposit-type. MPM techniques
are generally classified into data-driven and knowl-
edge-driven methods (Nykänen et al. 2008; Carranza
2017).

Three main steps are involved in data-driven
MPM, namely (Oh and Lee 2010; Joly et al. 2012;
Carranza and Laborte 2015): (1) identification and
selection of training sites; (2) generation of predic-
tive model of mineral prospectivity; and (3) evalu-
ation of success rate of predictive model. In the first
step, the training sites (locations of deposits and
non-deposits) are selected with tacit assumption that
deposit locations have features that are strongly
similar, if not the same, as deposit-type features,
whereas non-deposit locations have features that are
completely dissimilar to deposit-type features. In the
second step, quantitative relationships between
training data and individual spatial evidence layers
are established in order to create a predictive map of
mineral prospectivity. In the third stage, the pre-
dictive map is evaluated in terms of goodness-of-fit
with training deposit locations. Therefore, such
techniques are convenient for well-explored areas
(Lewkowski et al. 2010; Parsa et al. 2017; Ghezel-
bash et al. 2019a). Examples of these methods have
been used for MPM are weights-of-evidence (Bon-
ham-Carter and Agterberg 1990), logistic regression
(Carranza and Hale 2001), artificial neural networks

(Brown et al. 2000; Ghezelbash et al. 2019a), support
vector machines (SVMs) (Zuo and Carranza 2011;
Ghezelbash et al. 2019a), Bayesian classifiers (Por-
wal et al. 2006) and random forests (RF) (Carranza
and Laborte 2016; Parsa et al. 2018). Despite many
advantages of MPM, there are some exploration
biases and limitations in data-driven methods duo to
accessibility factors (Hronsky and Kreuzer 2019) as
well as targeting criteria, as the spatial characteris-
tics of known mineral deposits\occurrences are uti-
lized as training dataset. Therefore, data-driven
MPM as supervised methods are influenced by
locations of known mineral occurrences.

Knowledge-driven methods are usable accord-
ing to experience and expertise of geoscientists and
their judgment of geospatial relations among evi-
dence layers (i.e., exploration criteria) and known
mineral deposits. These methods are suitable for
under-explored or less-explored regions (Carranza
2011). There are many practical methods in this
category, in which, the function parameters are
conjectured conceptually according to knowledge
and experience of geoscientists about mineralization
controls or mineral systems (cf. Bonham-Carter
1994; Carranza 2008; Wang 2008; Ghezelbash and
Maghsoudi 2018; Ghezelbash et al. 2019a). Despite
widespread applications of these methods in MPM,
these methods suffer from systemic exploration bias
and uncertainty, which arise from over-estimation or
underestimation of arbitrary weights of spatial evi-
dence layers based on expert judgment (Ghezelbash
et al. 2019b). MCDM techniques are often applied in
the form of knowledge-driven MPM. Recently,
Ghezelbash et al. (2019b) proposed an improved
data-driven MCDM technique for mapping of por-
phyry-Cu prospectivity in the Varzaghan District,
NW Iran, by assigning data-driven (and, thus, not
arbitrary) weights to spatial evidence layers and to
their discretized classes considering the locations of
porphyry-Cu deposits in the study area as well as
applying prediction-area (P-A) plot and normalized
density function, respectively.

Concerning the nature of prediction, MPM as a
predictive tool is mostly besets with prediction
uncertainty, which must be modulated to obtain
precise and reliable outcomes (Carranza et al. 2008;
Kreuzer et al. 2008). Different factors such as falla-
cious selection of targeting criteria, unsuitable ex-
ploration dataset and inappropriate methodology
may lead to prediction uncertainties, which are di-
vided into two groups, known as stochastic and
systematic uncertainties. Stochastic uncertainty is
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the result of inherent properties of a dataset and
usually arises from inefficacious and inadequate
exploration data used for MPM (Lisitsin et al. 2013;
Ghezelbash et al. 2020a). Conversely, inaccurate
selection of targeting criteria, sensitivity of predic-
tive model to inefficient evidence layers and
unsuitable selection or application of numerical
methods for establishing the interrelations between
geospatial properties and known mineral occurrence
locations may propagate systemic uncertainties to
MPM (Pirajno 2012).

From another perspective, MPM is a classifica-
tion problem because every location of the area of
interest needs to be categorized into favorable or
non-favorable classes (Zuo and Carranza 2011;
Parsa et al. 2018). Machine learning algorithms are
known as very efficient classification tools that pro-
vide sensible solutions to MPM (Porwal et al. 2003).
Two main types of task are considered in machine
learning procedure: supervised and unsupervised.
The main difference between these two types is that
the former is done using a ‘‘ground truth.’’ In other
words, there are prior knowledge and information
about what the output for predictor variables (here
spatial evidence layers) should be. Thus, the main
aim of supervised learning is to train a function using
a training set of deposit locations and non-deposit
locations, by establishing the relationship between
input vectors and output targets (Sun et al. 2019;
Chen et al. 2019; Ghezelbash et al. 2019a). In con-
trast, the main aim of unsupervised learning is to
assume the natural structure inherent to a dataset,
which classifies the favorability of the area under
investigation based solely on the statistical features
of spatial evidence layers (Daviran et al. 2020;
Ghezelbash et al. 2020b). In the last decade, ma-
chine learning algorithms have been applied exten-
sively to MPM for supervised data-driven
classification aims (Rodriguez-Galiano et al. 2015;
Carranza and Laborte 2016; Daviran et al. 2021).
The principal task of machine learning algorithms in
MPM is to approximate precisely the relationships
between spatial evidence layers and known mineral
deposit occurrences because they are complex and
nonlinear. In addition, machine learning algorithms
are more successful when the space and dimension
of input features are high.

SVM (Vapnik 1998) is one of the most well-
known supervised machine learning algorithms. It is
a discriminative classifier defined by separating
hyperplanes. Indeed, for labeled training data fea-
tures, SVM outputs an optimal hyperplane that is

able to classify new feature vectors in a supervised
way (Suykens and Vandewalle 1999). The learning
procedure in SVM is done by using kernel functions.
The type of kernel function and its relevant
parameters are vital in deriving suitable results. The
most common kernel functions used in SVM are
linear function, radial basis function (RBF) and
sigmoid function.

The main objectives of this study were twofold.
Firstly, to introduce an improved data-driven
MCDM technique, called data-driven simple addi-
tive weight (data-driven SAW) for MPM, whereby
locations of known mineral deposit occurrences are
considered to assign objective weights to exploration
criteria (i.e., create spatial evidence layers) and
associated sub-criteria (discretized classes) using P-
A plots and frequency-ratio (FR) method, respec-
tively. Secondly, to apply a SVM with RBF kernel as
a supervised data-driven classification method to
generate another predictive model of mineral
prospectivity. The basic condition for implementing
supervised data-driven classification methods (e.g.,
SVM) is that the known mineral occurrences (or
deposits) of the type sought in the area under
investigation must have genetically similar features.
There are many epithermal vein-type Cu-Au deposit
occurrences with roughly similar features in the
study area. Thus, these multi-attribute deposit fea-
tures, which are used as training data to machine
learning algorithms (e.g., SVM), can provide suit-
able conditions for classification of the study area to
favorable or non-favorable. However, there were
three main reasons for using SVM in this study (cf.
Suykens and Vandewalle 1999). Firstly, unlike many
other machine learning algorithms (e.g., ANNs),
SVM has a regularization parameter (k), which
makes it less prone to over-fitting. Secondly, while
ANNs may suffer from multiple local minima, the
solution of an SVM is global and unique. Thirdly,
SVMs use kernel trick, and so they can provide ex-
pert knowledge about the problem by engineering
the kernel. Besides, SVM with RBF kernel usually
performs quite well compared to other kernel
functions (Zuo and Carranza 2011; Han et al. 2012).
To reach the above-mentioned goals, we used spatial
evidence layers that are genetically and spatially
relevant to Cu-Au deposits within the Moalleman
District, NE Iran. These spatial evidence layers in-
clude: (1) multi-element geochemical signatures
derived from principal component analysis (PCA);
(2) proximity to host rocks of mineralization (Eo-
cene volcano sedimentary units); (3) proximity to N,
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E, NW and NE-trending faults and fault density; and
(4) proximity to hydrothermal alterations.

GEOLOGICAL SETTING

The study region is located in NE Iran, within
1:100,000 scale quadrangle map of Moalleman
(Fig. 1) (Eshraghi and Jalali 2006). This district
approximately measures 1800 km2. In terms of
structural geology, the district is located in the
Central Iran zone (Fig. 1). The northern part of the
region is called the Torud-Chah Shirin belt, which is
situated as a part of the Great Kavir block between
the principal Torud sinistral and Anjilow dextral
strike-slip faults (Fig. 2) (Hushmandzadeh et al.
1978). The Torud-Chah Shirin volcano-plutonic
complex extends more than 10 km in width and
100 km in length along NE-SW belt. The oldest
lithological units in this area were expressed by
metamorphosed Precambrian basement like gneis-
ses, amphibolites and mica schists, which is covered
by Paleozoic and Mesozoic metamorphic sedimen-

tary sequences and Tertiary volcano-plutonic rock
units (Hushmandzadeh et al. 1978).

Eocene–Oligocene volcano-plutonic assem-
blage is the broadest lithological unit in the belt,
which consists middle Eocene tuff, shale, marl and
sandstone, middle-to-upper Eocene andesite and
dacite and Oligocene intrusive rocks (Hush-
mandzadeh et al. 1978; Zolfaghari 1998; Kohansal
1998). The Torud-Chah Shirin volcano-plutonic
complex hosts numerous of mineral occurrences and
some abandoned mines, such as Gandy Au (Ag +
Pb + Zn + Cu), Cheshmeh Hafez Pb + Zn + Cu
(Au), Chalu Cu (Au), Chah Messi (Cu), Pousideh
(Cu), Abolhassani Pb + Zn + Cu (Au), Zeresh Koh
(Cu) and Baghu-Darestan Au (Cu).

The main host rocks of Gandy deposit are
middle-to-upper Eocene volcanic, volcano-clastic
and terrigenous sedimentary rocks (Fard et al. 2006).
The Baghu-Darestan gold deposit consists domi-
nantly of Eocene intermediate to acidic lava flows of
basaltic andesite, andesite, trachyandesite, and da-
cite; and volcanic breccias and sub-volcanic intru-
sions, such as micro-quartz diorite, quartz
monzodiorite, micro-granodiorite and micro-granite,

Figure 1. Location of study area in NE of Iran.
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which are cut by several dykes (Rashidnejad-Omran
1992; Niroomand et al. 2018). Andesite and basaltic
andesite lavas in Cheshmeh Hafez area and tra-
chyandesite of basalt in Chalu region host
hydrothermal mineralization in these areas (Meh-
rabi and Siani 2012).

The intrusion-related copper- and gold-bearing
epithermal veins, quartz-base metal veins and asso-
ciated gold placers in ancient times at Baghu-Dare-
stan mine are typical styles of mineralization
throughout this tertiary volcano-plutonic complex.
As an example, mineralization at Gandy has oc-
curred in quartz sulfide veins and breccias, consisting
mainly of carbonate minerals, quartz, barite, galena,
sphalerite, pyrite and chalcopyrite (Shamanian et al.
2004). Middle to possibly late Eocene was the zenith
of magmatic activity, which has been split into two
sets (Shamanian et al. 2004). Firstly, Eocene vol-
cano-clastic rocks comprising of andesite, andesite-

basalt, trachyte, basalt, dacite and rhyolite with
intercalated tuff strata, sandstone, siltstone and
conglomerate among them. Secondly, late Eocene-
early Oligocene shallow and dome-shape intrusion
bodies consist primarily of andesite, andesite-dacite
and diorite porphyry compositions. Ore fluids
mainly produced distinct quartz ± sulfide veins and
veinlets that cross-cut different types of country
rocks. A common feature of this mineralization is
their close spatial association with late Eocene-early
Oligocene magmatism, which interpreted to be the
source of mineralized fluid during the Pyrenean
phase of the Middle Alpine orogenic activity (Esh-
raghi and Jalali 2006).

The magmatic-related ore deposits (e.g., vein-
type Cu-Au deposits) in Torud-Chah Shirin belt
were structurally controlled, because the fault sys-
tem acted as pathways for the transport of ore-
bearing fluids with magmatic origin. The penetration

Figure 2. Simplified geological map of Moalleman 1:100,000 scale sheet (Modified after Eshraghi and Jalali 2006).
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of sub-volcanic acidic to intermediate intrusions into
andesitic volcanic sequences in the form of dykes
and sills caused hydrothermal alterations with vein-
type mineralization in some parts of the Torud-Chah
Shirin belt, which are genetically and spatially
associated with the fault system (Fard et al. 2006).
The main hydrothermal alteration assemblages
within this area include intermediate and advanced
argillic (kaolinite, alunite, illite, montmorillonite
and quartz), phyllic (sericite, pyrite and quartz), and
Fe-oxide and extensive propylitic (chlorite, epidote
and calcite). Argillic and phyllic hydrothermal
alterations were developed mostly in the west and
center of the Torud-Chah Shirin belt, especially in
areas where metallic mineralization occurred such as
at the Gandy, Chah Messi and Cheshmeh Hafez
mines (Imamjomeh 2005).

DATA USED

A systematic geochemical exploration program
within the area covered by the Moalleman geologi-
cal map (at scale 1:100,000) has been conducted by
the Geological Survey of Iran (GSI) at 1993. Basi-
cally, a regular network of sampling locations with
1400 m 9 1400 m cell size (or � 2 km2) was de-
signed and then 2–4 subsamples of stream sediments
were collected over the first- or second-order
streams within each cell (Azmi et al. 2020). All of
the collected subsamples within each cell were
composited into one sample for analysis (repre-
senting � 2 km2) and was attributed to the center of
the cell. This is because these composite stream
sediment samples can acceptably provide informa-
tion relevant not only to the upstream sources of the
samples but also to the immediate vicinity of the
sample locations. Subsequently, 819 composite
stream sediment samples have been collected from
the study area (Fig. 3).

For each composite sample, the concentrations
of 44 major and trace elements were measured by
inductively coupled plasma optical emission spec-
trometry (ICP-OES) except Au, which was sepa-
rately analyzed by fire assay method. Finally, among
the 44 major and trace elements, 6 elements (i.e., As,
Au, Cu, Pb, Sb and Zn) which are directly associated
with the known epithermal vein-type Cu-Au de-
posits in the study area (Imamjomeh 2005) were
selected for the data analysis in this study.

One may argue that stream sediment sampling
provides information pertinent to an upstream

source and cannot be used to predict prospectivity at
the location at which the sample was taken. How-
ever, the collection of stream sediment samples from
first- or second-order streams (but not from higher
order streams) ensures that any recognized geo-
chemical anomaly is coupled to the anomalous
source (e.g., mineralization) (cf. Carranza and Hale
1997; Moon 1999; Carranza 2010). Besides, stream
sediment geochemical anomalies are usually and
should be integrated with geological data (e.g.,
proximity to faults, proximity to hydrothermally-al-
tered rocks) to distinguish between significant (i.e.,
deposit-related) and false anomalies (cf. Carranza
and Hale 1997; Ali et al. 2015; Yilmaz et al. 2015).

Therefore, the geological map of the study area
(at 1:100,000 scale) was digitized, from which the
recorded lithological units and faults/lineaments
were derived in the vector format (Fig. 2). In addi-
tion, remote sensing data (ASTER and Landsat 8
OLI) were processed for detecting rocks outcrops
with phyllic–argillic and Fe-oxide alterations and for
validating the extracted faults from geological map.

METHODOLOGY

Techniques for Multiple-Criteria Decision-Making

MCDM deals with the selection of the best
alternative from several different options or with
prioritization and weighting of alternatives accord-
ing to the final objective (Triantaphyllou 2000). In
other words, decision makers attempt to select an
optimal solution using several criteria or attributes.
Several MCDM techniques have been proposed and
developed for MPM such as AHP (Saaty 1990),
TOPSIS (Hwang and Yoon 1981), VIKOR (Opri-
covic and Tzeng 2004) and SAW. These techniques
have been implemented in many studies for knowl-
edge-driven MPM according to expert opinion
(Asadi et al. 2016; Ghezelbash and Maghsoudi
2018). However, the knowledge-driven MPM de-
scribed in the cited references suffer from systemic
uncertainties resulting from over- or underestima-
tion of rating or weighting of spatial evidence layers
and their relevant classes. In this study, such
uncertainties were avoided by quantification of the
geospatial associations among known mineral de-
posit occurrences and spatial evidence layers
(Ghezelbash et al. 2019b) and, finally, by calculating
objective weights for exploration criteria and their
associated classes. To reach this goal, the perfor-
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mances of P-A plots as well as FR method were
evaluated.

P-A Plots for Calculation of Exploration Criteria
Weights

Measuring the degree of efficiency of each
MSEL, which contributes to MPM, is a crucial stage
because the most efficient MSEL can be recognized.
In other words, the ability of each MSEL to predict
mineralized areas can be estimated by utilizing the
exact location of known mineral deposit occur-
rences. In this way, P-A plots are helpful (Yousefi
and Carranza 2015). The main aim of drawing P-A
plots in this study is to quantify the predictive ability
of each MSEL by determining objective or empirical
weights according to the exact location of known

mineral deposit occurrences (Yousefi and Carranza
2015). To generate a P-A plot, each map of MSEL
must be classified or re-classified. A P-A plot con-
sists of two curves in opposite directions, one rep-
resents the prediction rate based on known mineral
deposit occurrences and the other represents the
proportion of areas related to different classes of
spatial evidence layers. To calculate the degree of
efficiency of spatial evidence layers and thus their
weights, the normalized density index (Nd) and
weight of each MSEL (We) can be applied according
to the parameters (i.e., Pr (prediction rate) and
Oa(occupied area)) derived from the intersection
point of each P-A plot (Mihalasky and Bonham-
Carter 2001). The Nd is a measure of the rank or
relative importance of individual spatial evidence
layers with respect to mineral deposit occurrences.
Thus, a MSEL with Nd> 1 (We> 0) has positive

Figure 3. Location of the systematically collected sediment samples of study area.
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spatial relationship with mineral deposit occurrences
of the type sought whereas a MSEL with Nd< 1
(We< 0) has negative spatial relationship with the
mineral deposit occurrences of the type sought
(Parsa et al. 2016a).

Frequency Ratio (FR) for Assigning Sub-Criteria
Weights

The FR method was applied in this study to
model the relationships between the locations of
mineral deposit occurrences and classes of spatial
evidence layers (as sub-criteria). The FR is the ratio
of the area containing mineral deposit occurrences
to the whole area under study. The outstanding
advantages of this method are its simplicity of use
and the plain and straightforward interpretation of
outcomes (Oh et al. 2011). The FR for each sub-
criterion can be measured through the following
steps (Lee and Talib 2005; Yilmaz 2007). Firstly,
calculate the ratio of area of each sub-criterion
(class) to the total map area (Ra). Secondly, deter-
mine the ratio of the number of known mineral
deposit occurrences contained by each sub-criterion
(class) to the number of all mineral deposit occur-
rences in the study area (Rmo). Thirdly, calculate the
FR value for each sub-criterion (class) by dividing

Rmo with Ra (i.e., FR ¼ Rmo

Ra

� �
). Fourthly, rescale the

range of the derived FR values of all classes of a
MSEL into the [0,1] range for better comparison of
the efficiency of each sub-criterion (class).

Data-Driven SAW MCDM Procedure

The SAW technique, which is as weighted lin-
ear scoring method, is a simple but useful MCDM
method for calculating final weights of alternatives
based on the weighted average (Afshari et al. 2010).
In other words, quantitative weights are calculated
for all alternatives by multiplying the scaled values
assigned to alternatives with the weights derived
directly by expert decision makers. However, in this
study, we introduce a data-driven SAW technique
by which the objective or empirical weights are de-
rived using P-A plot per criterion as well as using FR
method per sub-criteria considering the exact loca-
tion of known mineral deposit occurrences instead
of weights derived from the judgments of expert

decision makers. The procedure of data-driven
SAW consists of the following four main steps:

1. Construction of a decision matrix X from
multi-attribute dataset as:

X ¼ xij
� �

m�n
ð1Þ

where xij is the performance of the ith alternative
regarding the jth criterion, m is the number of
alternatives (here the pixel values of spatial evi-
dence layers) and n is the number of criteria (here
spatial evidence layers).

2. Calculating the objective weights using the
FR method and assigning these weights to
the locations of alternatives in the con-
structed decision matrix in step 1.

3. Normalizing the components of the decision
matrix through the Max method according to
the following equation:

dij ¼
xij

.
xþj ; j 2 Xmax

x�j

.
xij; j 2 Xmin

0
@

1
A ð2Þ

where dij refers to the normalized performance of
the ith alternative with respect to the jth criterion,

xþj is the highest number of xij in the column j for

prospectivity criterion, x�j is the lowest number of xij

in the column j for non-prospectivity criterion,
Xmax and Xmin are sets of prospectivity and non-
prospectivity criteria, respectively.

4. Calculating the ranking scores of final MPM
as:

Si ¼
Xn

j¼1

wjdij ð3Þ

where Si refers to the ranking score of the ith
alternative, wj represents the weight of jth criterion

calculated using the parameters Pr and Oa of the
intersection point on a P-A plot (Wang et al. 2016).

Support Vector Machine (SVM)

The SVM was invented by Vapnik and Cher-
vonekis (1964) based on statistical learning theory as
a supervised classification method. The SVM creates
a hyperplane in a high dimensional feature space to
classify a set of data vectors into sensible classes if

1984 Ghezelbash, Maghsoudi, Bigdeli and Carranza



the data in the original space is not linearly separa-
ble. In other words, a superb classification can be
derived via the created hyperplane having the
maximum distance to the closest training sample
point of any class (Fig. 4) (Zuo and Carranza 2011).
To describe the SVM technique related to the two-
class problem, suppose the training data comprise N
data pairs in Eq. (4):

D ¼ ðxi; yiÞjxi 2 Rn; yi 2 �1; 1f gf gNi¼1 ð4Þ

where xi represents the independent variable, which
is labeled in two classes of yi ¼ þ1 and yi ¼ �1
(Kavzoglu and Colkesen 2009). In case of linear
data, the separation hyperplane equations of the two
classes are:

wxi þ b � þ1 for yi ¼ þ1

wxi þ b � �1 for yi ¼ �1
ð5Þ

which are equivalent to:

yi wxi þ bð Þ � 1 i ¼ 1; 2; :::; n ð6Þ
The separation hyperplanes can then be for-

malized as a decision function, thus:

f xð Þ ¼ sgn wxþ bð Þ ð7Þ

where sgn represents a sign function, which is de-
fined as:

sgn xð Þ ¼
1 if x[0
0 if x ¼ 0
�1 if x\0

8<
: ð8Þ

where w and b are parameters of separation hyper-
plane decision-making, which are derived through
the following optimization function:

Minimizer s wð Þ ¼ 1

2
wk k2 ð9Þ

Subject to

yl wxið Þ þ bð Þ � 1; i ¼ 1; . . . ; l ð10Þ
Transforming the problem into the equivalent

Lagrangian dual problem can simplify the calcula-
tion. The solution to this optimization problem is the
saddle point of the Lagrangian function, thus:

L w; b; að Þ ¼ 0;
@

@w
L w; b; að Þ ¼ 0 ð11Þ

where ai represents a Lagrangian multiplier. The
following optimization function defines the La-
grangian multipliers ai:

Maximize
Xl

i¼1

ai �
1

2

Xl

ij¼1

aiajyiyj xixj
� �

ð12Þ

subject to

ai � 0; i ¼ 1; :::; l and
Xl

i¼1

aiyi ¼ 0 ð13Þ

The following decision function represents the
separation rule according to the optimized hyper-
plane (Zuo and Carranza 2011):

f xð Þ ¼ sgn
Xl

i¼1

aiyi x:xið Þ þ b

 !
ð14Þ

A MATLAB-based program was employed to
execute SVM algorithm. Among several kernels
(linear, polynomial, sigmoid and RBF) which have
frequently used in SVM algorithm, RBF kernel due
to its less error as well as fewer parameters to be
estimated was used in this study (Rodriguez-Galiano
et al. 2015; Ghezelbash et al. 2019a). The RBF
kernel based on two samples X and x0 is calculated
as:

Kðx; x0Þ ¼ exp � x� x0k k2

2r2

 !
ð15Þ

A specific portion of data from the available
dataset is essential for training the machine learning
algorithms called training data. In this case, known
deposit and non-deposit datasets are utilized as
training data, which the number of both mentioned
data must be equal as the performance of SVM is
highly depends on this equality (Zuo and Carranza
2011). The left out portion of data, which was not
participated in the training procedure called out-of-
the-bag data (OOB), is utilized after the learning
procedure is terminated for evaluation of the per-
formance of the model and in this stage one can
decide if the proposed method is performing prop-
erly or not. The confusion matrix analysis has been
conducted for calculation of SVM accuracy and
learning procedure performance. This method is a
very effective tool while addressing the result of
multi-class classification problems. Indeed, this
method is capable of demonstrating the relationship
between the outputs and the true ones. The numbers
of true and false classified data are summarized and
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confusion matrix illustrates the ways the classifica-
tion method is confused predicting the true classifi-
cation. In a two-class confusion matrix, four results
are possible. These are: (a) true positive (TP), which
refers to correct prediction of deposit locations as
prospective; (b) true negative (TN), which refers to
correct prediction of non-deposit locations as non-
prospective; (c) false positive (FP), which refers to
incorrect prediction of the deposit locations as non-
prospective; and (d) false negative (FN), which re-
fers to incorrect prediction of non-deposit locations
as prospective. Classification accuracy of a trained
model can be described and formulized as follows:

Sensitivity ¼ TP

TPþ FN
ð16Þ

Specificity ¼ TN

TNþ FP
ð17Þ

Precision ¼ TP

TPþ FP
ð18Þ

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð19Þ

F-measure ¼ 2� Sensitivity� Precision

Sensitivityþ Presicion
ð20Þ

RESULTS

Evidence Layers

Definition of multi-element geochemical signa-
tures, which significantly represent the simultaneous
distribution of concentration of mineralization-re-
lated elements, is crucial in geochemical exploration
evidence to be used in MPM. In other words, geo-
chemical data of stream sediments generally require
multivariate analysis to derive enhanced multi-geo-
chemical layers of deposit-type sought. For this,
PCA, as an effective tool in exploratory data anal-
ysis, has been used extensively to reduce the
dimension of a dataset and to incorporate several
correlated variables into a single variable (Jolliffe
2002), which makes possible the interpretation of
stream sediment geochemical data. In other words,
PCA can exhibit significant associations among
chemical elements via decomposition of the corre-
lation or covariance matrix of variables to compo-
nent loadings and component scores. Before that,
centered-logratio (clr) transformation (Aitchison
1986) was implemented to the measured concen-
tration values of the six geochemical elements in
order to take into account the compositional nature

Figure 4. Support vectors and optimum hyperplane for the binary case of linearly separable data sets (after Zuo and Carranza 2011).
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of geochemical data (Carranza 2011). Then, a one-
stage PCA was conducted on the clr-transformed
values of data of the six geochemical elements. The
derived results are summarized in Table 1. Two
efficient components according to significant eigen-
value of> 1 were extracted. The contribution of
these two components is � 64% of the total vari-
ance. The first component represents a Pb-Zn
assemblage with positive values of loadings and Cu
enrichment with negative value of loading (Table 1).
The second component represents an As-Sb ele-
mental assemblage with positive values of loadings
and Au enrichment with negative value of loading
(Table 1). The study region is geologically prone to
Cu-Au mineralization. Thus, the negative scores of
PC1 and PC2, which represent the mineralization of
Cu and Au, respectively, were considered as signif-
icant multi-element geochemical signatures of the
sought deposit-type to be used in MPM.

Known mineral deposit occurrences in the study
area are related spatially and genetically to a wide
range of volcano sedimentary rocks with Eocene age
(Hushmandzadeh et al. 1978). Most outcrops of
these rock units are ore-forming geological clues to
Cu-Au deposits in the study area. Therefore, the
presence of and proximity to these rock units can
provide favorable condition for exploring Cu-Au-
related deposits within this region. Two sets of
geological units of middle-to-upper Eocene age were
separated from 1:100,000 geological map of
Moalleman District. The first one includes interme-
diate lavas and volcano-clastic rocks, andesite, an-
desitic dacite and trachyandesite, while the second
one includes spilitic basalt, keratophyre with a few
beds of sandstone and volcano-clastic rocks.
Accordingly, two maps of the presence of and

proximity to these units were generated for use in
MPM.

Pathways, through which ore-bearing fluids are
transported, are extremely influenced by tempera-
ture, pressure, composition and permeability of
rocks (Cox et al. 1987). The permeability of rocks is
controlled by faults/lineaments, which provide
favorable conditions for deposition of large volumes
of mineralization near the surface. Faults with
specific directions could be directly associated with
certain mineralization (Faulkner et al. 2010).
Therefore, the existence of faults, their directions
and intersections could be considered as structural
controls on Cu-Au mineralization in the study area.
To reach this goal, faults with various directions
(here, N-trending (350�–10� or 170�–190�), E-
trending (80�–100� or 260�–280�), NW-trending
(100�–170� or 280�–350�) and NE-trending (10�–80�
or 190�–260�)) were considered and their spatial
evidence layers of proximity to these faults were
derived. In addition, fault density as a fluid pathways
control evidence layer was generated. Finally, five
structural layers were generated for MPM.

Remote sensing is the procedure of uncovering
and monitoring the physical characteristics of an
area by measuring its reflected and emitted radiation
from satellite or aircraft. The significant capability of
remote sensing images in mineral exploration is to
recognize the hydrothermal alterations (e.g., potas-
sic, phyllic, argillic, Fe-oxide and propylitic), which
are considered as primary exploration guides for
hydrothermal vein-type Cu-Au deposits in regional
exploration stage. Image processing of remote
sensing data (e.g., ASTER and Landsat 8 OLI) is a
suitable way to gain valuable information on char-
acteristics of the surface of exploration targets,
which can be used for mapping hydrothermal alter-
ations (Tangestani and Moore 2001). Argillic
(kaolinite, alunite, illite, montmorillonite and
quartz) and phyllic (sericite, pyrite and quartz),
which are present mainly near veins, are the most
important alterations associated with related min-
eralization in this region of interest (Mehrabi et al.
2014). Therefore, phyllic–argillic alteration was ex-
tracted from ASTER data using matched filtering
(MF) approach (Moore et al. 2008). Iron oxide
alteration, which is another important alteration
associated with Cu-Au mineralization in the study
area due to oxidation of sulfide minerals especially
pyrite and chalcopyrite (Bahrampour et al. 2017),
was detected from Landsat 8 OLI data by PCA
technique (Crosta et al. 2003). Accordingly, spatial

Table 1. Rotated component matrix of ordinary PCA

Element PC1 PC2

Clr (As) � 0.2 0.776

Clr (Au) � 0.337 � 0.806

Clr (Cu) � 0.718 � 0.067

Clr (Pb) 0.889 � 0.198

Clr (Sb) 0.065 0.666

Clr (Zn) 0.697 0.391

Eigenvalue 1.95 1.89

Var. (%) 32.499 31.542

Cum. Var. (%) 32.499 64.041

Loadings in bold represent the efficient geochemical elements in

each component
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evidence layers of proximity to argillic-phyllic
alterations and proximity to Fe-oxide alterations
were generated.

As the ranges of minimum–maximum values of
spatial evidence layers of geochemical, geological,
structural and alterations data are not the same, they
well all transformed into the same domain to be
contributed to MPM. In this regard, multiple fuzzy
membership functions (e.g., fuzzy linear, fuzzy
Small, fuzzy Large, fuzzy MS-Large, fuzzy MS-
Small, fuzzy Near and fuzzy Gaussian) have been
used to transform the values of rasterized maps into
fuzzy domain [0,1] (Beucher et al. 2014). MS-Large
as a nonlinear fuzzy function is more applicable
compared to others when the large input values are
expected to have higher membership. In contrast,
MS-Small is more applicable when small input val-
ues are expected to have higher membership (Demir
et al. 2016) such as spatial evidence layers of prox-
imity to certain spatial features (e.g., hydrothermal
alterations, host rock and faults). These two func-
tions (MS-Large and MS-Small) are similar to the
fuzzy Large and Small functions, respectively, ex-
cept that the definitions of these functions are
founded on a specific mean and standard deviation.
On the one hand, the MS-Large function was per-
formed to convert the range of values of multi-ele-
ment geochemical layers of PC1 and PC2 as well as
fault density layer into the range [0, 1]. On the other
hand, the original values of spatial evidence layers of
proximity to host rocks, N, E, NW and NE-trending
faults, phyllic–argillic and Fe-oxide alterations were
transformed to fuzzy domains using the MS-Small
function in Arc GIS software.

Mineral Prospectivity Mapping Using Data-driven
SAW

One of the main objectives of this study is to
explore the performance of data-driven SAW pro-
cedure for recognizing the exploration targets of the
deposit-type sought. Prior to data-driven SAW
MPM, continuous-value spatial evidence layer needs
to be discretized for assignment of meaningful
weights according to locations of known mineral
deposit occurrences. This was applied to the fuzzi-
fied spatial evidence layers of (1) enhanced multi-
element geochemical signatures of PC1 and PC2, (2)
proximity to two sets of host rocks, (3) proximity to
four sets of trending faults as well as fault density

and (4) proximity to phyllic–argillic and Fe-oxide
alterations.

At the first stage, the concentration-area (C-A)
fractal method which was firstly introduced by
Cheng et al. (1994) for separation of geochemical
populations, was employed to derive the anomaly
and background classes (Parsa et al. 2016b;
Ghezelbash et al. 2019c, d) of fuzzified geochemical
layers of PC1 and PC2. The C-A log–log plots of
geochemical layers of PC1 and PC2 are shown in
Figure 5. These log–log plots consist of the values of
fuzzified scores of PC1 and PC2 Vs. the occupied
areas with the fuzzified values of PC1 and PC2
scores greater than contour values. Breaks between
the straight line pieces of log–log plots were used as
thresholds in order to classify PC1 and PC2 scores.
As shown in Figure 5, there were four different
thresholds and, thus, five different geochemical
classes for fuzzified multi-element geochemical lay-
ers of PC1 and PC2 (Fig. 6a, b).

At the second stage, the equal intervals of 0.2
were used to classify the fuzzified geological, struc-
tural and alteration maps (Fig. 6c–k).

At the third stage, the P-A plots and FR
method were employed for calculating and assigning
the meaningful weights of exploration criteria and
their relevant sub-criteria, respectively. The P-A
plots for 11 classified spatial evidence layers were
drawn based on the occupied areas and locations of
known mineral deposit occurrences (Fig. 7). Then,
the intersection point of each plot was determined,
by which the meaningful weights (We) as well as the
degree of efficiency of exploration criteria (here
classified spatial evidence layers) were measured.
According to Table 2, all evidence layers exhibit
positive geospatial association with Cu-Au deposit
occurrences in Moalleman District. However, prox-
imity to phyllic–argillic and Eocene volcanic rocks
(two sets of host rocks) and also the fault density
layers are the most efficient criteria due to the
highest positive We values (We = 1.45, 1.32, 1.26 and
1.15, respectively). In addition, proximity to NE-
trending faults layer, the geochemical layer of PC1,
proximity to E-trending faults layer, proximity to
Fe-oxide, the geochemical layer of PC2 and prox-
imity to NW and N-trending faults layers are the
least efficient criteria due to the lowest positive We

values (We = 0.94, 0.94, 0.75, 0.7, 0.53, 0.4 and 0.36,
respectively). Moreover, FR method was employed
to calculate the sub-criteria (here relevant classes of
spatial evidence layers) weights (Table 3). The FR
values were calculated for all derived classes of
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Figure 5. C-A fractal log–log plots for classification of fuzzified values of PC1 and PC2 scores.
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Figure 6. Classified maps of fuzzified evidential layers: (a) PC1 scores; (b) PC2 scores; (c) proximity to phyllic–argillic alterations; (d)
proximity to Fe-oxide alteration; (e) proximity to Eocene volcanic rocks; and (f) proximity to Eocene spilitic basalt and keratophyre

rocks; (g) fault density; (h) proximity to N-trending faults; (i) proximity to E-trending faults; (j) proximity to NW-trending faults; and (k)

proximity to NE-trending faults.
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Figure 6. continued.
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Figure 7. P-A plots for fuzzified classified maps of evidential layers: a PC1 scores; b PC2 scores; c proximity to phyllic–argillic alterations; d

proximity to Fe-oxide alteration; e proximity to Eocene volcanic rocks; and f proximity to Eocene spilitic basalt and keratophyre rocks; g
fault density; h proximity to N-trending faults; i proximity to E-trending faults; j proximity to NW-trending faults; and k proximity to NE-

trending faults.
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spatial evidence layers and they are shown in Ta-
ble 3.

At the final stage, data-driven SAW procedure
was applied for defining the favorable targets of Cu-
Au mineralization. For this purpose, a decision
matrix of exploration criteria vs. the alternatives
should be, firstly, constructed, in which, the vertical
columns represent the five spatial evidence layers of

geochemistry, geology, tectonic and hydrothermal
alterations and the horizontal rows represent the
pixel values of spatial evidence layers with specific
coordinates. Then, the measured weights derived
from P-A plots (Table 2) were assigned to explo-
ration criteria. Furthermore, the weighted pixel
values of five spatial evidence layers derived from
FR method (Table 3) were placed as alternatives in

Figure 7. continued.
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decision matrix. Finally, the model of mineral
prospectivity was produced in this paper using data-
driven SAW procedure (Fig. 11a).

Mineral Prospectivity Mapping Using Data-driven
SVM

To portray the high potential areas of related
mineralization, a RBF kernel-based SVM was exe-
cuted in this paper as a supervised data-driven
classification for modeling of mineral prospectivity.
The supervised SVM model used in this contribution
requires two sets of training data: (1) deposit loca-
tions, which represent the presence of mineral de-
posit occurrences and take value 1, and (2) non-
deposit locations refer to the absence of mineral
deposit occurrences and take value 0. Determination
and extraction of deposit features is a simple pro-
cedure wherever the number of known mineral de-
posit occurrences is high, although determination
and extraction of non-deposit features is a chal-
lenging problem. Three basic points must be con-
sidered for this purpose as follows (Carranza et al.
2008):

� For elevating the efficiency and accuracy of
classification procedure, the number of non-
deposit locations must be equal to those of
deposit locations; this is 20 in this paper.

� The locations of non-deposit features must be
selected as far as possible from the locations
of deposit features.

� Unlike the deposit locations, which usually
have clustered, or regular nature, non-deposit
locations must have random nature.

The point pattern analysis (Fig. 8a) was carried
out in this paper for delineating how far the loca-
tions of non-deposits would be adequately far from
deposit locations. It can be seen that all deposit pairs
are located within � 5000 m, which demonstrates
that there is 100% probability that another deposit
occurs within this distance. Instead, 2987 m was se-
lected in this study as the buffer distance within
which there is an 88% probability of finding a
neighboring deposit next to any given deposit
(Fig. 8). In order to enhance the accuracy of selec-
tion of non-deposit locations, a 1000 m buffer
around the volcanic host rocks of Eocene age was
also considered. Accordingly, 20 non-deposit loca-
tions were randomly selected from the remaining
regions (Fig bb).

Eleven fuzzified spatial evidence layers (Fig. 6),
namely multi-element geochemical layers of PC1
and PC2, proximity to two sets of host rocks, prox-
imity to N, E, NE and NW-trending faults as well as
fault density, proximity to phyllic–argillic and Fe-
oxide alterations, were implemented for SVM
prospectivity modeling in this study. Then, the pre-
dictive prospectivity model of RBF kernel-based
SVM was created. For this, a total number of 1800
pixel values (those of spatial evidence layers in the
locations of 40 deposits and non-deposits) were used
for training and OOB evaluation. The 75% of da-
taset (a total number of 1350) is considered as
training dataset, while the remaining 25% is utilized
as OOB data (a total number of 450) for validation

Table 2. Prediction rate (Pr), occupied area (Oa), normalized density (Nd) and normalized weight (We) of each exploration criterion.

Values in bold represent the efficient exploration criteria

Exploration criteria Pr Oa Nd We

Geochemistry (PC1) 0.72 0.28 2.57 0.94

Geochemistry (PC2) 0.63 0.37 1.7 0.53

Fault density 0.76 0.24 3.17 1.15

N-trending faults 0.59 0.41 1.44 0.36

E-trending faults 0.68 0.32 2.13 0.75

NW-trending faults 0.6 0.4 1.5 0.4

NE-trending faults 0.72 0.28 2.57 0.94

Eocene volcanic rocks 0.79 0.21 3.76 1.32

Eocene spilitic basalt and keratophyre rocks 0.78 0.22 3.55 1.26

Phyllic–argillic 0.81 0.19 4.26 1.45

Iron oxide 0.67 0.33 2.03 0.7
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Table 3. Frequency ratio values of discretized classes per exploration criterion

Conditioning factor Classes No. of de-

posit

Area of

class

Ratio of occurrences

(Rmo)

Ratio of area

(Ra)

FR NFR

PC1 1 3 20,576 15 47.109 0.318 0.026

2 1 6208 5 14.213 0.351 0.029

3 5 12,493 25 28.603 0.874 0.073

4 9 3833 45 8.775 5.127 0.434

5 2 567 10 1.298 7.703 0.652

PC2 1 7 25,179 35 57.648 0607 0.041

2 1 6233 5 14.270 0.350 0.023

3 3 9314 15 21.324 0.703 0.047

4 4 2474 20 5.664 3.530 0.239

5 5 477 25 1.092 22.891 1.555

Fault density 1 1 30,126 5 68.974 0.072 0.006

2 4 3057 20 6.999 2.857 0.270

3 6 4086 30 9.355 3.206 0.303

4 7 4739 35 10.850 3.225 0.305

5 2 1669 10 3.821 2.616 0.247

NW-faults 1 8 25,853 40 59.191 0.675 0.063

2 2 5974 10 13.677 0.731 0.069

3 2 3853 10 8.821 1.133 0.107

4 2 2794 10 6.396 1.563 0.147

5 6 5203 30 11.912 2.518 0.238

NE-faults 1 0 14,655 0 35.553 0 0

2 0 4746 0 10.866 0 0

3 1 5537 5 12.677 0.394 0.037

4 5 6913 25 15.827 1.579 0.149

5 14 11,826 70 27.076 2.585 0.244

N-faults 1 12 37,205 60 85.182 0.704 0.066

2 2 2656 10 6.081 1.644 0.155

3 2 1449 10 3.317 3.014 0.285

4 1 953 5 2.181 2.291 0.216

5 3 1414 15 3.237 4.633 0.438

E-faults 1 7 31,511 35 72.145 0.485 0.045

2 9 4570 45 10.463 4.300 0.406

3 2 2607 10 5.968 1.675 0.158

4 1 2868 5 6.566 0.761 0.072

5 1 2121 5 4.856 1.029 0.097

Eocene volcanic rocks 1 1 29,708 5 68.017 0.073 0.006

2 0 1249 0 2.859 0 0

3 1 1278 5 2.926 1.708 0.161

4 4 3472 20 7.949 2.515 0.238

5 14 7970 70 18.247 3.836 0.362

Eocene spilitic basalt and keratophyre

rocks

1 4 32,870 20 75.257 0.265 0.025

2 1 2032 5 4.652 1.074 0.101

3 1 2338 5 5.352 0.934 0.088

4 4 2566 20 5.874 3.404 0.322

5 10 3871 50 8.862 5.641 0.533

Phyllic–argillic 1 2 34,730 10 79.515 0.125 0.011

2 4 1804 20 4.130 4.842 0.458

3 3 1629 15 3.729 4.021 0.380

4 4 1833 20 4.196 4.765 0.450

5 7 3681 35 8.427 4.152 0.392

Iron-oxide 1 9 38,375 45 87.860 0.512 0.048

2 1 931 5 2.131 2.345 0.221

3 1 715 5 1.637 3.054 0.288

4 2 864 10 1.978 5.055 0.478

5 7 2792 35 6.392 5.475 0.518
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Figure 8. Locations of deposits and selection of non-deposit samples.
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purpose. To optimally selection of RBF kernel in
SVM, two parameters namely C and k should be
appropriately selected. In this study, various C and k
sets during a trial-and-error procedure were tested
and a trained model was generated for each set.
Then, the accuracy of each trained model for each C
and k set based on OOB data was calculated
(Fig. 9). The OOB error for different SVM models
was calculated and finally it was found that in
accuracy of 93.55% (error of 6.45%) (Fig. 10b) the
optimum value of RBF-kernel parameters is
C = 0.25 and k = 0.2 (Fig. 9). Then, the calculated
parameters were fixed for constructing optimum
SVM model. As it is obvious in Figure 10a, the
accuracy of trained SVM model is 96.07% resulting
3.93% error. Different classification indices such as
sensitivity, specificity, precision and F-measure are
used to measure the accuracy of the classification.
Sensitivity, which refers to correctly classified de-
posit locations, was 93.62% (Table 4). This shows
that the generated model is qualified in determining
the deposit locations. Conversely, specificity
demonstrates the capability of the model in pre-
dicting the non-deposit sites. The calculated result
illustrates that the specificity of trained SVM-RBF
model is 98.51% in determining the non-deposit
zones (Table 4). Moreover, this model achieves
96.07% of precision (Table 4), representing that
among the predicted cells that labeled as deposit,
96.07% of them are actually true deposit locations.

F-measure calculates the weighted average of pre-
cision, sensitivity and false positives and false neg-
atives are taken into account to clarify the
classification accuracy. As it depicted in Table 4, the
value of F-measure is 94.82% for trained model,
clearly showing that the SVM-RBF model owns
significant prediction capability and reliability in
modeling the Cu-Au mineralization in the Moalle-
man District. In the final step, all pixel values of 11
spatial evidence layers were extracted and used as
test data for generation of data-driven MPM model
based on constructed SVM-RBF (Fig. 11b).

Defuzzification and Performance Evaluation
of Prospectivity Models

For quantitative assessment of two predictive
prospectivity models derived from data-driven SAW
and RBF kernel-based SVM methods and also
measuring the degree of success or failure of these
models, the weights of the evidence method were
implemented. Indeed, this method supplies a statis-
tical t-value that is able to quantify the efficiency of
spatial associations between known mineral deposit
occurrences and discretized classes of prospectivity
models (Bonham-Carter 1994). The larger t-value
represents the stronger spatial associations. Empiri-
cally, t = 1.96 is an acceptable cutoff value for
determination of the statistical significant correla-

Figure 9. 3-D plot of the trial-and-error procedure for selecting optimum RBF kernel parameters C and k.
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tion called ‘‘the lower level of significance.’’ In
addition, the highest t-value (tmax) which could be
selected among the various t-values calculated for

different classes of mineral prospectivity models
called ‘‘the highest level of significance.’’

In this study, for defuzzification of continuous-
value prospectivity models derived from data-driven
SAW and RBF kernel-based SVM methods, the
threshold values at the five-percentile intervals were
used. Then, the student t-value for each class of
prospectivity models was calculated and the two
significant thresholds were determined. As shown in
Figure 12, tmax values for the two prospectivity
models were determined at 85th percentile of
prospectivity scores. Finally, classified predictive
prospectivity models of data-driven SAW and RBF
kernel-based SVM methods were generated and

Table 4. Classification accuracy indices of SVM model

Indices SVM (%)

Sensitivity 93.62

Specificity 98.51

Precision 96.07

F-measure 94.82

Figure 10. Graphical confusion matrix, accuracy and error of SVM model based on training and OOB dataset.
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Figure 11. Continuous-value mineral prospectivity models derived by a data-driven SAW and b RBF-

based-kernel SVM models.
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Figure 12. Discretization of prospectivity scores based on the thresholds of calculated t-values of a data-

driven SAW and b RBF-based-kernel SVM models.
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Figure 13. Classified mineral prospectivity models derived by a data-driven SAW and b RBF-based-

kernel SVM models.
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high-favorable, favorable and non-favorable classes
were derived (Fig. 13).

DISCUSSION AND CONCLUSIONS

In this study, two prospectivity models of
MCDM and supervised machine learning methods
namely data-driven SAW and RBF kernel-based
SVM were generated by integration of subjective
geological knowledge and empirical mineralization-
related dataset. The results represent that the two
prospectivity models derived from data-driven SAW
(Fig. 13a) and SVM (Fig. 13b) models were suc-
ceeded in delineating favorable targets associated
with Cu-Au mineralization in Moalleman District.
However, the SVM model is more reliable in
delineating the mineralization-related targets in the
study area. Because, this model could pre-
dict � 95% of known mineral deposit occurrences
(19 out of 20) in only � 10% of the study area
(highly favorable class), while the prospectivity
model derived from data-driven SAW could pre-
dict � 65% of known mineral deposit occurrences
(13 out of 20) in only � 8% of the study area (highly
favorable class).

The derived predictive prospectivity models
(especially SVM model) not only are able to accu-
rately predict known areas of Cu-Au mineralization
but also identify areas of high-favorable mineral-
ization where no mineral deposit has been discov-
ered. Accordingly, the following results are derived
from this paper:

� The contribution of inefficient exploration
criteria can significantly increase the bias and
uncertainty in MPM. Thus, retaining the most
efficient targeting criteria that properly rep-
resent the mineralization-related characteris-
tics to be used in MPM can significantly
increase the accuracy and efficiency of the
predictive model and success of prospectivity
modeling.

� Using data-driven weights based on the
locations of known mineral deposit occur-
rences can extremely enhance the efficiency
of MCDM methods (e.g., SAW) for gener-
ating MPM models and thus can reduce the
systematic uncertainty in MPM.

� Implementation of machine learning algo-
rithms, such as support vector machines as
supervised classifiers where there are a large

number of training deposit locations, is very
useful in data-driven predictive modeling of
mineral prospectivity.

� Although machine learning algorithms are
able to predict highly favorable areas in spa-
tial prospectivity modeling, the matter of the
limitations of datasets, especially the non-
uniform nature of certain input data (because
data collection is typically denser around
known deposits and outcrops), remains a
challenging problem. This problem leads
undoubtedly to bias and uncertainty in any
predictive model of mineral prospectivity.
However, this challenging problem is not di-
rectly related to the weakness of the machine
learning algorithms used but it is directly re-
lated to the availability and the selection of
input datasets (Hronsky and Kreuzer 2019).
In this study, we believe that the bias and
uncertainty in the result are mainly due to
availability of data because we used mostly
legacy data that are available in the study
area. Therefore, like any other predictive
model, the final prospectivity model achieved
in this study needs to be updated once new
relevant spatial data become available.
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