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Prediction of ground vibration induced by blasting operations is a crucial challenge to
engineers working in surface mines. This study aims to assess the efficiency of two advanced
machine learning models in predicting ground vibrations in a granite quarry located in
Malaysia. To this end, two intelligent models were proposed by hybridizing the relevance
vector regression (RVR) with the grey wolf optimization (GWO) (which formed the RVR-
GWO model) and with the bat-inspired algorithm (BA) (which formed the RVR-BA
model). To the best of our knowledge, this is the first attempt to predict ground vibration
using the RVR-GWO and RVR-BA models. The afore-mentioned models were developed
and tested using 95 datasets. Then, the performance of the developed models was statisti-
cally checked through four comparative experiments using, among others, mean square error
(MSE) and correlation coefficient (R). The results indicated the superiority of the RVR-
GWO model over the RVR-BA model in terms of prediction precision. The RVR-GWO
model with R of 0.915 and MSE = 7.920 predicted the ground vibration better than the
RVR-BA model with R of 0.867 and MSE = 8.551. Accordingly, it was concluded that
applying the GWO algorithm to RVR can result in high accuracy in the prediction of blast-
induced ground vibration.

KEY WORDS: Blasting, Ground vibration, Relevance vector regression, Grey wolf optimization,
Bat-inspired algorithm, Metaheuristic algorithms.

INTRODUCTION

Blasting is a key technique adopted mostly in
the civil and mining engineering fields for rock
fragmentation purposes. The challenging issue is
that, in each blasting event, only around 20% of the
generated energy is applied to rock fragmentation
and the rest of the energy brings about different
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adverse impacts on surrounding environment and
structures, for instance, ground vibration, flyrock
and airblast (e.g., Hajihassani et al. 2014, 2018a, b;
Matidza et al. 2020; Chen et al. 2019). The phe-
nomena induced by blasting are illustrated in Fig-
ure 1. Among the induced adverse effects of
blasting, ground vibration is recognized as the most
destructive impact because it typically causes struc-
tural vibrations, demolition of buildings, instability
of bench and slope, and in some cases, significant
damage to underground water (e.g., Monjezi et al.
2010, 2011, 2013; Khandelwal et al. 2011; Ghasemi
et al. 2013; Saadat et al. 2014; Hajihassani et al. 2015;
Abbas and Asheghi 2018). Ground vibration is
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Figure 1. Blasting-induced phenomenon.

generally measured based on peak particle velocity
(PPV). Accordingly, to minimize the impact of
blasting events on the environment and structures,
there is a need to accurately estimate blast-induced
PPV.

Different experiments and techniques have
been proposed by different researchers to estimate
PPV induced by blasting. The experimental studies
were aimed generally at establishing empirical
equations based on relationships between distance
of PPV measurement (D) and explosive charge per
blasting delay (W) (Ghosh and Daemen 1983; Roy
1991). However, these empirical equations have
provided low-quality prediction accuracy in several
cases; therefore, artificial intelligence (AI)-based
techniques have received more attention in recent
years. Numerous researchers (e.g., Monjezi et al.
2009; Zhou et al. 2015; Nikafshan Rad et al. 2018;
Zhou et al. 2019a, b, c) have applied different Al
methods to solve different problems in engineering
fields, and they have become popular in the predic-
tion of PPV.

Artificial neural network (ANN) was employed
by Monjezi et al. (2013) to estimate PPV. The results
obtained by ANN were compared with those of
empirical models, which revealed that ANN was

more efficient than the rivals regarding the task
defined. In another study, Hasanipanah et al. (2017)
presented the classification and regression tree
(CART) for predicting PPV. They also developed
multiple regression (MR) and several empirical
models for the same purpose. Their findings con-
firmed the superiority of CART over MR and
empirical models regarding the PPV estimation.
With the same objective, Zhang et al. (2019) made
use of an optimized XGBoost to estimate PPV.
They used particle swarm optimization (PSO) to
optimize XGBoost parameters. To check the
acceptability of the model, they also employed some
empirical models. Their results revealed that PSO-
XGBoost outperformed the empirical models in
regard to PPV estimation. Bui et al. (2020) inte-
grated the quantile regression neural network
(QRNN) and the fuzzy C-means clustering (FCM)
for predicting PPV. Their results obtained by the
FCM-QRNN model were compared to those of the
random forest (RF) and ANN. The comparative
results confirmed the superiority of FCM-QRNN
over the others in estimating PPV.

Jiang et al. (2019) examined the capacity of a
neuro-fuzzy inference system for prediction of PPV
and made a comparison with the results of the MR
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model. The neuro-fuzzy inference system delivered
more accurate results than MR. Nguyen et al. (2020)
tested the capability of a hybridized model inte-
grating the ANN and k-means clustering algorithm
(HKM) in PPV estimation. They also used classical
ANN, support vector regression (SVR), HKM and
hybridized form of SVR and empirical models in
their study. Their findings revealed that the pro-
posed HKM-ANN achieved performed better in
forecasting PPV compared to the other models no-
ted above. Fang et al. (2020a) hybridized the impe-
rialist competitive algorithm (ICA) with M5Rules to
estimate PPV. Their results confirmed higher effi-
ciency of ICA-M5Rules in comparison with other
models in PPV prediction. For the same goal, Ding
et al. (2020) offered the ICA to optimize XGBoost
parameters. They also made use of SVR, ANN and
gradient boosting machine (GBM). Their results
showed that ICA-XGBoost outperformed the ANN,
SVR and GBM methods in terms of PPV estima-
tion. Yang et al. (2020b) hybridized SVR with
optimization algorithms such as the genetic and
firefly algorithms. Based on their results, the firefly-
SVR model provided more acceptable predictions
for PPV. In a study by Li et al. (2020), a biogeog-
raphy-based optimization algorithm was combined
with ANN. They showed that the proposed model
outperformed the extreme learning machine and
ANN. Amiri et al. (2020) used another strategy for
optimizing ANN. In this regard, they used the
itemset mining algorithm and demonstrated its
superiority in this field. Yang et al. (2020a) predicted
PPV using ANFIS combined with genetic algorithm
(GA) and PSO. According to their results, both GA
and PSO were useful algorithms for improving the
ANFIS performance. Shang et al. (2020) combined
the ANN and firefly algorithm (FA) to predict PPV.
They indicated the effectiveness of ANN-FA model
in the field. A combination of cubist algorithm (CA)
and GA was proposed by Fang et al. (2020b) to
predict PPV. They compared the performance of the
proposed model with several machine learning
methods. Their results showed the superiority of
CA-GA model over other models. Yu et al. (2020c)
offered an advanced relevance vector machine
method for predicting PPV and concluded the
acceptability of the proposed method. In the same
purpose, a modified PSO algorithm was combined
with extreme learning machine by Jahed Armaghani
et al. (2020). Their results revealed the modified
PSO-extreme learning machine method was per-
fectly able in predicting the PPV.

A review of literature shows that optimization
algorithms, especially the particle swarm optimiza-
tion algorithm, are becoming increasingly popular
for PPV prediction. These algorithms have demon-
strated high capacity in improving the effectiveness
of predictive models. This has been considered only
for ANN and XGBoost models. However, there is a
need for innovative hybridized models in the field of
engineering to mitigate the destructive impacts that
blasting operations in a mine may exert on sur-
rounding environment. The present study attempted
to expand the body of knowledge by proposing the
relevance vector regression (RVR) optimized by
grey wolf optimization (GWO) (the RVR-GWO
model) and by bat-inspired algorithm (BA) (the
RVR-BA model) for predicting blast-induced PPV.

FIELD INVESTIGATION

A comprehensive research was carried out in
the Harapan Ramai granite quarry, located in Johor,
Malaysia, to measure and predict PPV. Geographi-
cally, the quarry is situated at latitude 1°30'42'N and
longitude 103°50'54"S. This quarry has the capacity
of producing almost 40,000 tons of granite monthly.
In the excavation operations, the drilling-and-blast-
ing method is generally used to displace and frag-
ment rock mass. In the Harapan Ramai project,
dynamite and ANFO are used as the main explo-
sives. Blast holes are drilled usually with a diameter
of 150 mm. After charging the blast holes with
explosive material, fine gravels were used as stem-
ming material. In each blasting operation, values of
W, burden-to-spacing ratio (B/S), stemming length
(SL) and D are measured. Additionally, values of
PPV in each blasting event are measured and re-
corded using the VibraZEB seismograph. To mea-
sure D, the GPS (global positioning system) is used;
with this instrument, distances between blast-points
and the VibraZEB seismograph are carefully mea-
sured. More details regarding the datasets used in
this study are mentioned in the next sections.

MODELS EXPLANATION

In this part, the review of literature related to
the RVR is presented; then, the GWO and BA are
explained. Optimization improves the performance
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of the RVR model by selecting the optimal value of
its parameters.

Relevance Vector Regression

The RVR proposed by Tipping (2001) is a
probabilistic method that works based on the
Bayesian approach. It does not need to predict the
error/margin tradeoff parameter C, which can de-
crease the time and the kernel function, and it does
not need to satisfy the Mercer condition. Due to the
RVR advantages over the SVR approach, RVR has
been applied increasingly to regression prediction
problems in recent years (Fang et al. 2015; Fang and
Su 2020). With RVR, which assumes that the model

is single-output () multiple-input (x), {x,, t,,}ivzl, the
output = (t1,...,ty)"
sum of a vector y = (y(x1),...
output is defined as:

can be represented as the
,y(xN))T. The target

th = y(xu,w) +e (1)

where e signifies random noise and w is a weight
vector. The y(x) function is defined as:

Zw, (x,x;) + wo = de) (2)

where ®(x) =[1,K(x,x1),K(x,x2),...,K(x,xn)]
The target output can then be written as
p(tulxn) = N(t]y(xn),0?). The likelihood can be gi-
ven as:

pltpo) =5ozeo -5l — o} @)

where w = (wo,wy,...,wn), t=(t,t,...,txy) and
& is the N x (N + 1) design matrix. Thus, the RVR
method adopts a Bayesian perspective and con-
strains (w and ¢?), thus:

p(wla) = HN wi0, 07

_ 1 172 W}
= S g ;' exp (— > (4)

N

pla) = Hgamma(oci|a7b) (5)
i=1

p(B) = gamma(fla, b) (6)
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where a is a N + 1 hyper-parameter, b = ¢°, and

gamma (a|a, b) is defined as
= / e dt
0

(7)
In addition, the posterior over weights can be
given as:

gamma(«|a, b) = 1(a) b e "*(a)

p(t|w, a*)p(wla)

p(W|[, o, 62) = p(t|0€70'2)
1 ~1/2
T 2aNtD)/2 ‘Z ‘ ®)
exp{ - 5000 -}
Y= (e 20720+ 4)" 9)
=02) o' (10)

where A = diag(o,00,...,ay) and the likelihood
distribution can be given as:

p(t|oc,az) :/p(t’w,oz)p(w|oc)dw = (271)7]\]/2|C|_1/2

exp{2 on t}

where the covariance is given by
C=0"2+®A'®!. Detailed description of the
RVR method has been provided in the literature
(e.g., Geem et al. 2001; Fang et al. 2019).

Various fields of study make use of the RVR
model for prediction purposes. In order to examine
rock mass boreability, the RVR model was devel-
oped by Fattahi (2020a). In other studies, Fattahi
(2020b, c) used the RVR model to predict the
unconfined compressive strength and penetration
rate of tunnel boring machines and found the
effectiveness of RVR for prediction purposes espe-
cially in the mining and geotechnical fields.

(11)

Bat-Inspired Algorithm

The BA is an optimization algorithm suggested
by Yang (2010). It is inspired by the echo-location
behaviors of microbats. The ith bat flies randomly
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with position x; at velocity v; with a fixed frequency
fi. Tt varies its loudness A, and wavelength 1 to
search for prey. The frequency, positions and
velocity of the bats are updated (Ansari and Gho-
lami 2015). The best selected current solution can be
given as:

Xnew = Xold + PAt (12)

where pe[— 1,1] and A" denote the average loud-
ness. In addition,

Al =gAl 0<a<1 (13)

it =)l —exp(=y)] (14)

Note that r; and A; are updated during the
algorithm operation procedure. A detailed descrip-
tion of the BA can be found in Yang (2010).
Moreover, Figure 2 presents the flowchart of the
BA. In this study, we adopted the BA for selection
of appropriate variables RVR in order to increase
the runtime efficiency of RVR-BA.

The acceptability and reliability of the BA have
been investigated by many researchers. For instance,
Saba et al. (2017) predicted time and intensity of
future earthquakes using a combination of ANN and
BA. Additionally, hybridizing ANN with BA was
used to predict air travel demand in a study carried
out by Mostafaeipour et al. (2018). In another re-
search, Chen et al. (2019) used the BA in data-dri-
ven mineral prospectivity mapping. The findings of
the afore-mentioned studies indicate effectiveness of
BA for optimization purposes.

Grey Wolf Optimization Algorithm

The GWO is a new population-based algorithm
proposed by Mirjalili et al. (2014). It is inspired by
grey wolves’ behavior in nature. In this algorithm,
four groups are defined: omega, alpha, delta and
beta. Moreover, the three hunting steps (i.e., encir-
cling prey, attacking prey and searching for prey) are
simulated. In the GWO, some parameters need to
be set in numbers, namely delta, the number of sites
selected for neighborhood search, the stopping cri-
terion, the maximum number of iterations, beta,
initialization of alpha and the number of search
agents. A detailed description of the GWO has been
provided in the literature by Mirjalili et al. (2014,
2016). Figure 3 presents a flowchart of the GWO. In

Initialize the optimization problem and algorithm parameters
To minimize the objective function f{x)

A ¢

Initialize parameters for upper layer and
generate initial population

v

Apply Bat algorithm on upper layer

Termination
criteria reached?

v

Results can be
optimized further?

Display the best solution

v

Com >

Figure 2. Flowchart of BA.

the current study, the GWO was used to select the
appropriate parameters of RVR model.

The potential of the GWO has been highlighted
in many studies. Xu et al. (2020) offered it for
optimizing SVR in approximating shear strength and
unconfined compressive strength of rock. In another
study, Gao et al. (2020) developed the GWO to
predict peak shear strength of rock. The application
of GWO was also investigated by Yu et al. (2020b)
for optimizing the SVR parameters for evaluation of
rock movement induced by blasting events in mines.
Recently, Shariati et al. (2020) predicted compres-
sive strength of concrete using a hybrid of the GWO
and extreme learning machine. The afore-men-
tioned studies confirmed that GWO can be used as a
powerful algorithm for optimizing purposes.
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RVR Optimized by BA and GWO

An epsilon RVR model with the radial basis
kernel function is defined with some parameters, on
which its performance depends greatly. In this pa-
per, the GWO and BA are applied as optimizers for
the hyper-parameters of RVR. Typically, RVR is
hybridized separately with GWO and BA, and the
prediction result achieved by a GWO- or BA-hy-
bridized RVR acts as a fitness function evaluation.
The optimized hyper-parameters of the RVR can be
obtained after the specified maximum iteration
number has been reached. Regulated parameters for
running the GWO and BA are presented in Tables 1
and 2, respectively.

In this paper, the objective function was served
by the root mean squared error (RMSE); the lower
the RMSE, the higher the estimation accuracy. The
RMSE can be defined as:

1
RMSE = EZ(a —p)? (15)

where a and p denote actual and predicted values.
The procedure of optimizing the RVR variables
with GWO and BA is presented in Figure 4.

PREDICTION OF PPV USING RVR-GWO
AND RVR-BA

In this section, the implementations of the
RVR-GWO and RVR-BA models based on the
prepared database are explained briefly.

Database

For RVR-GWO and RVR-BA modeling, 95
datasets were collected and divided into two subsets:
75 datasets were allotted for training the models and
20 datasets for testing and verifying the constructed
models. The input parameters were W, B/S, SL, and
D parameters, and the output parameter was PPV.
The elementary statistics of datasets used in this
study are presented in Table 3. In addition, the
ranges of the parameters implemented in the mod-
eling processes are shown in Figure 5 and summa-
rized as follows:

Fattahi and Hasanipanah
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W parameter: 33%, 16%, 23% and 28% of
the whole data were between 0-350, 350450,
450-550 and 550-650 kg, respectively.

e B/S parameter: 22%, 34%, 29% and 15% of
the whole data were between 0-0.8, 0.8-0.83,
0.83-0.86 and 0.86-0.9, respectively.

e SL parameter: 13%, 21%, 34% and 32% of
the whole data were between 0-2.5, 2.5-4.5,
4.5-6.5 and 6.5-8 m, respectively.

e D parameter: 16%, 11%, 39% and 34% of
the whole data were between 0-150, 150-250,
250-350 and 350-450 m, respectively.

e PPV parameter: 19%, 37%, 35% and 9% of

the whole data were between 0-8, 8-14, 14—

25 and 25-34 mm/s, respectively.

Pre-processing of Data and Evaluation of Model
Performance

To improve the stability of training of the RVR-
BA and RVR-GWO models, both output and input
data need to be normalized. In this study, all data
were converted into values in the range [0, 1] using
the following equation:

Xy = > Fmin (16)

Xmax — Xmin

where X, Xmin, Xmax and x,, are values to be nor-
malized, minimum value, maximum value and nor-
malized values, respectively.

To evaluate model performance, the correlation
coefficient (R), mean squared error (MSE), mean
absolute percentage error (MAPE) and variance
account for (VAF) were used as measures of accu-
racy. MSE, R, MAPE and VAF could be defined,
respectively, as follows (e.g., Rezaei et al. 2011;
Fattahi 2015a, b; Mostafaeipour et al. 2018; Mehr-
danesh et al. 2019; Hasanipanah et al. 2018a, b,
2020a, b, ¢, d; Gao et al. 2020; Jing et al. 2020;
Ramezanalizadeh et al. 2020a, b; Yu et al. 2020a;
Zhou et al. 2020):

MSE = %Z(a -p)? (17)

e n(Sap) — (Sa(Cp) )
(s - o] s - pp
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Figure 3. Flowchart of GWO.
1 a—
Table 1. Parameters of GWO MAPE = [ Z M x 100 (19)
n am
Parameters Values
Maximum number of iterations 60 VAF = {1 — Var(a—p)} x 100 (20)
Population number (search agents) 45 vara;,
Fitness RMSE

where a, p and n are actual value, predicted value
and observations number, respectively.

RESULTS AND DISCUSSION
Table 2. Parameters of BA

Parameters Values In this study, the RVR-GWO and RVR-BA
models were proposed to predict PPV. The results

;?p‘?laﬁon:izet_ 28 obtained from the comparative experiments (MSE,
g am Heration 05 R, MAPE and VAF) on these two hybrid intelli-
0 0.5 gence models are listed in Table 4. It is worth
f min 0 mentioning that the lowest MSE and MAPE, and
f max 2 the highest R and VAF are the most ideal results.
Fitness RMSE

Table 4 shows that, in the testing phase, the RVR-
GWO model (with R =0.915 MSE = 7.920,
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Table 3. Statistical details of the datasets used

Descriptive statistics Parameter
W (kg) BIS SL (m) D (m) PPV (mm/s)

Mean 424.171 0.830 5.353 298.968 14.016
Standard error 16.380 0.003 0.204 9.927 0.717
Standard deviation 159.651 0.027 1.992 96.760 6.991
Kurtosis —1.134 — 1.006 —0.991 —0.430 0.160
Skewness — 0421 0.249 -0.464 —0.810 0.791
Min 133.593 0.789 1.5 90 2.834
Max 642.518 0.895 8 440 33.080

MAPE = 15343 and VAF =83.476%) is more
accurate than the RVR-BA model (with R = 0.867,
MSE =8.551, MAPE =16.109 and VAF =
75.012%) in predicting PPV. In addition, a corre-
lation between the estimated and measured PPV for
all 76 data points is depicted in Figure 6. This fig-
ure indicates the RVR-GWO model possessed a
superior predictive capacity over the RVR-BA

model for predicting PPV because a very close
agreement was obtained between the measured and
predicted PPV. Moreover, comparison of PPV esti-
mated by the RVR-BA and RVR-GWO models and
the measured PPV for all 76 data points is depicted
in Figures 7 and 8, respectively. Furthermore, the
Taylor diagram related to predictive models related
to all data points is shown in Figure 9. These fig-
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Burden-to-Spacing ratio

50.8 m0.83 =0.86 =0.9

D (m)

m150 m250 m350 =450

W (kg)

m350 m450 =550 =650

Stemming length (m)

m2.5 W45 W65 =8

PPV (mm/s)

m8 mi14 m25 34

Figure 5. Information about the variables in the database.

Table 4. Performance indices for the two hybrid intelligent models

Model MSE (Train) MSE (Test) R (Train) R (Test) MAPE (Train) MAPE (Test) VAF% (Train) VAF% (Test)
RVR-BA 4.583 8.551 0.955 0.867 11.799 16.109 91.261 75.012
RVR-GWO 5.230 7.920 0.944 0.915 12.080 15.343 89.195 83.476

ures and Table 4 show that the RVR-GWO and
RVR-BA models were able to successfully estimate
PPV; however, the RVR-GWO performed better
than the RVR-BA in both training and testing da-
tasets.

CONCLUSIONS

Ground vibration induced by blasting is a major
concern in surface mines because it can cause dam-
age to nearby structures. Therefore, predicting
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Figure 7. Errors of PPV estimation for training datasets using: (a) RVR-BA; (b) RVR-GWO.

ground vibration is a practical need, especially for tive experiments using MSE, R, MAPE and VAF%.

safety issues. The objective of this study was the The main conclusions of the research are the fol-
development of two advanced machine learning lowing:

models to predict ground vibration in the Harapan

Ramai granite quarry located in Malaysia. To do so, e The proposed RVR-GWO model was more
the RVR-BA and RVR-GWO models were devel- effective and robust than the proposed RVR-
oped. Totally, 95 sets of data were used to develop BA model in predicting ground vibration.
the two models. Then, the performances of the This confirms the effectiveness of the GWO

developed models were checked through compara-
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Figure 8. Errors of PPV estimation for testing datasets using: (a) RVR-BA; (b) RVR-GWO.

capacity for generalization.

e The proposed RVR-GWO model can be
addressed as a powerful tool for the predic-
tion of other phenomena induced by mine
blasting such as flyrock and air-overpressure.

e For future research, it is interesting to de-
velop the RVR model optimized with other
metaheuristic algorithms such as water wave
optimization, wind-driven optimization, sim-
plified swarm optimization, shark smell opti-
mization, sine cosine algorithm, locust swarm
algorithm, krill herd algorithm, etc.
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