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A reservoir geomechanical modeling has been attempted in the hydrocarbon-bearing
Miocene formations in the offshore Badri field, Gulf of Suez, Egypt. Pore pressure
established from the direct downhole measurements indicated sub-hydrostatic condition in
the depleted mid-Miocene Hammam Faraun and Kareem reservoirs. Vertical stress (Sv)
estimated using bulk density data yielded an average of 0.98 PSI/feet (22.17 MPa/km)
gradient. Magnitudes of minimum (Shmin) and maximum (Shmax) horizontal stresses were
deduced from the poro-elastic model. Relative stress magnitudes (Sv ‡ Shmax> Shmin)
reflect a normal faulting tectonic stress in the Badri field. Pore pressure and stress per-
turbations (DPP and DSh) in the depleted reservoirs investigated from actual measure-
ments recognized �stress path� values of 0.54 and 0.59 against the Hammam Faraun and
Kareem Formations, respectively. These stress path values are far away from the normal
faulting limit (0.68), indicating induced normal faulting or fault reactivation to be unlikely
at the present depletion rate.

KEY WORDS: In situ stress, Pore pressure, Depletion, Stress path, Reservoir geomechanics, Badri
field.

INTRODUCTION

Reservoir geomechanics plays a vital role in
well drilling, horizontal well placement and com-
pletion optimization (Zoback 2007; Ramdhan and
Goulty 2011; Baouche et al. 2020a, b). An accurate

assessment of the magnitudes of pore pressure (PP)
and principal stresses [vertical stress (Sv) and two
horizontal stress tensors—minimum (Shmin) and
maximum (Shmax) horizontal stresses] is an impor-
tant aspect of comprehensive geomechanical mod-
eling (Ganguli 2017; Ganguli et al. 2018; Radwan
et al. 2019a, 2020a; Ganguli and Sen 2020), as it
helps in understanding the potential risk of pro-
duction-induced faulting, wellbore instability and
solid production (Zoback and Zinke 2002; Haug
et al. 2018). Stress state changes in subsurface
reservoirs are controlled by changes in PP due to
fluid drawdown or fluid injection that affected the
horizontal stresses magnitudes during the produc-
tion or gas storage (Ruistuen et al. 1996; Addis
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1997a, b; Hillis 2001; Altmann et al. 2010; Dahm
et al. 2015; Mortazavi and Atapour 2018; Li et al.
2019a, b; Candela et al. 2019). Advancing and
evolving production from mature basins leads to
critical changes in the stress state and causing
reservoir depletion that resulted from fluid draw-
down (Hol et al. 2018). In addition, fluid injection is
usually used in the secondary recovery to increase
hydrocarbon production and maintains the reservoir
pressure, as well as gas storage (Paslay 1994; Rad-
wan et al. 2019b, c, d). The previously mentioned
activities in sedimentary systems can be called hu-
man-induced mechanical effects or anthropogenic
activities that need to be paid attention to during oil
and gas extraction and gas storage processes globally
(Hol et al. 2018). Hence, the consequences of stress
state change (or PP–stress coupling), which has been
recorded in several basins worldwide, cause surface
subsidence, field-scale deformation (e.g., Sand pro-
duction and casing collapse) and fault reactivation in
many basins like Brunei (Breckels and van Eekelen
1982), Texas, USA (e.g., Salz 1977; Whitehead et al.
1987), Canada (Ervine and Bell 1987), North Sea
(e.g., Teufel et al. 1991; Wirput and Zoback 2000;
Van Geuns and van Thienen-Visser 2017; Hol et al.
2018; Candela et al. 2019), France (Maury et al.
1990), Australia (Ruth et al. 2006) and Germany
(Dahm et al. 2015).

This work focuses on reservoir geomechanical
modeling in the offshore Badri field, a proven
hydrocarbon accumulation in the Gulf of Suez,
Egypt. The Middle Miocene Hammam Faraun and
Kareem Formations are the two principal hydro-
carbon-bearing units in the Badri field (Radwan
et al. 2019a, b, 2020a; Radwan 2020c), which are
presently in depleted condition due to prolonged
production. In this field, there have been no prior
published works on the present-day in situ stress
distribution and the effect of depletion in stress
magnitudes. We took this opportunity to address
these geomechanical aspects, the primary goals of
this study are to (a) assess the magnitudes of the
three principal stress components, (b) interpret the
prevailing tectonic stress regime, (c) quantify the
drop in PP and Shmin in depleted reservoirs, (d)
establish the depletion-induced reservoir stress path
and (e) link the stress path value of the studied
reservoirs with it is similar globally. Being an old
producing oil field, data availability is a major issue
that poses challenges in various steps of the
geomechanical modeling. However, to overcome
this common issue, we have employed the standard

accepted workflows and modeling techniques to
quantify the principal stress magnitudes.

GEOLOGICAL SETTINGS

The African plate separated from the Arabian
plate during Late Oligocene–Early Miocene (Bos-
worth and McClay 2001), and because of the conti-
nental rifting, the Gulf of Suez opened up (Schutz
1994; Moustafa 2002). It acts as a northwestern
continuation of the well-documented Red Sea rifting
system (Bosworth 1995; Bosworth and McClay
2001). It is characterized by a complex pattern of N/
NNE–S/SSW- and E–W-trending faults (Abdel-Ga-
wad 1970; Colletta et al. 1988; Evans 1988 ; Lyberis
1988; Patton et al. 1994; 1995; El-Naby et al. 2009;
Youssef 2011; Attia et al. 2015; Abudeif et al.
2016a, b; Radwan et al. 2020b, c) (Fig. 1). The
studied offshore Badri hydrocarbon field is situated
in one of such structures. It covers � 12 km2, lying
between 28�24¢–28�26¢ N and 33�22¢–33�47¢ E
(Fig. 2). A steeply dipping N–S normal fault sepa-
rates the studied field from its western neighbor El
Morgan field (Abudeif et al. 2016b, 2018; Radwan
et al. 2020a). Figure 3 represents the regional
lithostratigraphic succession of the study area.
During the mid-Miocene active rifting phase, clastic
sediments were deposited in the Kareem and
Hammam Faraun Formations, which are the prin-
cipal hydrocarbon-bearing reservoirs in the studied
field (Radwan et al. 2019a, 2020a). Reservoir facies
is characterized by stacked sandstone units associ-
ated with thin shales deposited in a fan delta system
(Rhine et al. 1988; EGPC 1996; Peijs et al. 2012;
Radwan 2018). The structural contour map at the
Belayim Formation top is shown in Figure 4. Late
Miocene South Gharib anhydrite acted as seal to the
underlying clastic reservoirs (Alsharhan and Salah
1995; Alsharhan 2003; Peijs et al. 2012; Radwan
2014, 2020a, b, c; Rohais et al. 2016).

MATERIALS AND METHODS

Four offshore wells were studied in the Badri
field, which encountered roughly 7000 feet1 of the
mid-late Miocene Ras Malaab Group of sediments.
Wireline geophysical logs were the primary inputs
for all the analyses. Log data were processed for

1 1 feet = 3.28 m.

464 Radwan and Sen



environmental and hole size corrections before uti-
lizing in the analyses. Various downhole measure-
ments, i.e., direct formation pressure and leak-off
tests were also available and used for calibration and
validation of the estimated parameters. Wireline
logs along with the direct downhole measurements
have been integrated to estimate the mentioned
parameters and ascertain the normal faulting
potential in the depleted units. The methods em-
ployed in this study are discussed below.

Estimation of Mechanical Properties

Rock strength and elastic properties are the
basic inputs to geomechanical modeling. In the ab-
sence of core-based static rock property measure-
ments, geophysical logs are employed to estimate
these parameters. In this study, the dynamic
geomechanical properties were estimated by the
following equations (Lal 1999; Chang et al. 2006;
Zhang 2013):

td ¼ Vp2 � 2Vs2

2 Vp2 � Vs2ð Þ ð1Þ

Ed ¼ RHOB� Vs2
3Vp2 � 4Vs2

Vp2 � Vs2

� �
ð2Þ

l ¼ tan sin�1 Vp � 1000

Vp þ 1000

� �� �
ð3Þ

where RHOB indicates log bulk density (gm/cc), Vp
and Vs represent compressional and shear seismic
velocities in m/s unit, d is log-derived Poisson�s ratio
(unitless), Ed is dynamic Young�s modulus (in GPa)
unit and l stands for friction coefficient. Rock
strength parameters, i.e., cohesive strength (c) and
uniaxial compressive strength (UCS) were estimated
against the reservoir intervals (Hammam Faraun
and Kareem Formations) as (Zoback 2007; Khaksar
et al. 2009; Zhang et al. 2010):

UCSSandstone ¼ 1200e�0:036DT ð4Þ

UCSShale ¼ 1:35
304:8

DT

� �2:6

ð5Þ

c ¼ UCS cos/
2 1� sin/ð Þ ð6Þ

where DT represents log sonic slowness (is ls/ft) and
generated UCS values (in MPa) against sandstones
[Eq. (4)] and shales [Eq. (5)], c is the cohesion (in
MPa) of the rock and / denotes the internal friction
angle in degrees.

Figure 1. Structural setting of the Gulf of Suez and surrounding areas.
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Calculation of Sv Profile

Vertical stress (Sv) at a depth (H) represents the
amount of the overburden pressure exerted by a
rock column of height H. Sv is calculated using the
log density (Plumb et al. 1991):

Sv ¼ H
0
RHOB Hð Þ � gdH ð7Þ

where RHOB is log bulk density at the depth (H) of
investigation, g is gravitational acceleration (9.8 m/
s2). A continuous density profile is required to esti-
mate a vertical stress profile, but in a practical sce-
nario, wireline density logs are never recorded right
from the top of a drilled well leaving a data gap in
shallow section (Sen et al. 2017; Ganguli and Sen
2018; Radwan et al. 2019a). Therefore, a synthetic
density profile was extrapolated from the surface to

a well�s drilled depth/target depth (TD) using the
Amoco equation (Sen et al. 2019; Radwan et al.
2019a, 2020a).

Calculation of PP

PP is one of the primary input parameters in
geomechanical models, as it affects the magnitudes
of horizontal stress components. The most reliable
PP estimates come from the direct measurements of
downhole formation pressure, but these data are
normally acquired against reservoir zones (Ganguli
et al. 2017; Sen et al. 2020). There are indirect ways
to calculating PP from wireline logs (Zoback 2007;
Zhang 2011; Sen et al. 2018a, b; Sen and Ganguli
2019; Baouche et al. 2020c, d) by employing a nor-
mal compaction line (NCL). The degree of deviation

Figure 2. Map of basement depth structure of the Gulf of Suez derived

from high-resolution aeromagnetic data (modified from Peijs et al. 2012),

showing the location of the studied Badri oil field.
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Figure 3. Oligocene recent lithostratigraphy of the Badri oil field (adapted from

Radwan 2014, 2018).

Figure 4. Structural contour map at reservoir top. X1–X4 represent the studied

wells in the Badri field. The projection coordinates of the presented map are

related to Egypt Gulf of Suez S-650 TL/Red Belt (modified after Abudeif et al.

2018, Radwan et al. 2019a, 2020a, c).
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of the mentioned log responses with respect to the
NCLs translates to the magnitude of the overpres-
sure (Radwan et al. 2019a, 2020a). However, this
method is only applicable to the shale sections. In
the studied Badri field, the majority of the lithos-
tratigraphy consists of salt and anhydrites, belonging
to Zeit, South Gharib, Feiran and Baba Formations.
This possess a huge limitation in employing NCL-
based PP estimation method. Therefore, the drilling
mud pressure used against these formations was
applied as a PP proxy. Usually, mud pressure is kept
in such a way that it provides sufficient pressure
overbalance (i.e., mud pressure ‡ formation PP) to
avoid any formation fluid influx. Direct downhole
pressure measurements were available against the
primary reservoir units, i.e., Hammam Faraun and
Kareem Formations, which guided the PP interpre-
tations against these zones.

Calculation of Shmin

In a tectonically active basin, tectonic stresses
and strains arise from tectonic plate movement. If
tectonic strains are applied to rock formations, these
strains add a stress component in an elastic rock.
The poro-elastic horizontal strain model considers
tectonic strains and therefore accommodates aniso-
tropic horizontal stresses (Blanton and Olson 1999).
Because Gulf of Suez is active tectonically, this
study employed a poro-elastic horizontal strain
model to ascertain Shmin magnitude. This model in-
volves the tectonic strain components (Najibi et al.
2017) acting on two horizontal stress directions
(Javani et al. 2017). The Shmin is estimated as:

Shmin ¼ ts

1� ts
Sv � aPPð Þ þ aPP

þ tEs

1� ts2
ex þ tseyð Þ ð8Þ

where a denotes the Biot coefficient; and ts and Es
denote the static Poisson�s ratio and Young�s mod-
ulus. The Biot coefficient has a default value of 1 (Li
et al. 2019a, b; Ganguli and Sen 2020). Laboratory-
based rock compressibility and bulk modulus mea-
surements can quantify the Biot coefficient. How-
ever, in the absence of core-based measurements, we
used the default value for the calculation purpose,
which is considered a standard modeling practice
(Hofmann et al. 2005; Zoback 2007). Static elastic
properties were available from core-based mea-
surements. �ex� and �ey� indicate the two strain ele-

ments acting on a horizontal plane in mutually
perpendicular directions (Kidambi and Kumar 2016;
Amiri et al. 2019; Taghipour et al. 2019); thus,

ex ¼ Sv
ts

Es

1

1� t
� 1

� �
ð9Þ

ey ¼ Sv
ts

Es
1� t2

1� t

� �
ð10Þ

In the absence of core-based elastic property data,
empirical relationships by Wang (2000) were used to
derive the static elastic properties; thus,

ts ¼ td ð11Þ

Es ¼ 0:4142� Ed � 1:0593 ð12Þ

where ts and Es are static Poisson�s ratio (unitless)
and Young�s modulus (in GPa), respectively. Dy-
namic elastic properties (i.e., td and Ed) are calcu-
lated using Eqs. (1) and (2), respectively. The
estimated Shmin was calibrated with formation in-
tegrity test (FIT) and leak-off test (LOT) measure-
ments, which are recorded during drilling, usually
below the casing setting depths.

Estimation of Shmax

This is the most difficult parameter in geome-
chanical modeling because there are no direct
measurement methods. Wellbore breakout widths
(from image logs) are generally used to constrain the
Shmax magnitude (Zoback 2007). Zhang (2011) dis-
cussed using an empirical tectonic factor (tf) to
estimate Shmax, although the output can be vague
and largely over-/underestimated if tectonic factor
data for the studied area are not well established
from a good volume of well data estimates. Since the
image log was not run in the studied wells, we used
the poro-elastic model to estimate this parameter.
Unavailability of image logs is very common in old
producing hydrocarbon fields globally, which poses
challenges in Shmax magnitude calibration. However,
the poro-elastic horizontal strain model is an estab-
lished Shmax modeling technique in the absence of
image log-based calibration data (Kidambi and
Kumar 2016; Javani et al. 2017; Najibi et al. 2017;
Abbas et al. 2018; Mohammed et al. 2018; Amiri
et al. 2019; Taghipour et al. 2019). PP, calibrated
with direct measurements, is one of the main input
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parameters and, hence, provided increased confi-
dence in this method. The equation is:

Shmax ¼
ts

1� ts
Sv � aPPð Þ þ aPP

þ Es

1� ts2
tsex þ eyð Þ ð13Þ

Input parameters of the above equation are already
discussed above.

Stress Path Analysis in a Depleted Reservoir

The stress state within a reservoir is coupled to
changes in PP resulting from fluid injection and
withdrawal. The most observed coupling is between
the least horizontal principal stress and PP. The
coupling coefficient, DSh/DPP, is commonly known
as the stress path (Santarelli et al. 1998; Goulty
2003). For a reservoir characterized by vertical
stresses larger than horizontal stresses, depletion can
induce normal faulting when DSh exceeds a critical
fraction of DPP (Chan and Zoback 2002). The stress
path associated with depletion at reservoir scales
ranges from 0.34 to 1.18 (Addis1997a; Hillis 2000;
Altmann et al. 2010) and it is between 0.6 and 0.8 for
overpressured compartments at basin scales (En-
gelder and Fischer 1994; Hillis 2001; Tingay et al.
2003). Coupling between maximum horizontal
principal stress and PP is predicted, but has rarely
been reported in the field due to difficulties in
measuring the relationship (Zoback and Zinke
2002). Overburden and shear stresses are generally
assumed to be decoupled from changes in PP. Based
on the poro-elastic theory, the stress path (A) can be
expressed mathematically as (Segall and Fitzgerald
1996):

A ¼ DSh

DPP
¼ a

1� 2t
t� 1

� �
ð14Þ

where a denotes the Biot coefficient. Deformation
analysis in reservoir space indicates that, if a de-
pleted reservoir�s stress path surpasses a critical va-
lue, DPP and DSh can induce normal faulting in the
reservoir (Zoback and Zinke 2002). In case of a
normal faulting scenario, this can be expressed as:

Sv � PP � DPPð Þ
Sh � DShð Þ � PP � DPPð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ l

h i2
ð15Þ

In terms of stress path, the above equation can be
reduced to:

A ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ l

h i2 ð16Þ

Considering l = 0.6 (Townend and Zoback 2000;
Chan and Zoback 2002), the value of A for normal
faulting becomes 0.68. The evolution of stress and
PP in a depleting producer unit with a steep stress
path can induce normal faulting even if the initial
stress state is not close to the shear failure (Zoback
and Zinke 2002). In case a depleted reservoir attains
this A value, the reservoir stress path intersects the
normal faulting limit yielding an unstable stress
path. Unstable stress path implies the potential for
production-induced normal faulting in the depleted
reservoir (Chan and Zoback 2002).

RESULTS AND DISCUSSIONS

Downhole pressure measurements were taken
by modular dynamic tester tool (MDT) against the
two hydrocarbon-bearing formations, which yielded
0.30 and 0.27 PSI/feet PP gradients against the
Hammam Faraun and Kareem Formations, respec-
tively, in the present day. We also had access to the
reservoir PP measurements taken in the virgin con-
ditions (prior to production). At the in situ pre-
production condition, the Hammam Faraun and
Kareem Formations exhibited 0.48 and 0.45 PSI/feet
gradients, which can be considered hydrostatic. Due
to prolonged depletion, both the formations are
presently in sub-hydrostatic PP regime. PP in most
of the Zeit Formation and the three members
(Feiran, Sidri and Baba) of the Belayim Formation
have been interpreted as hydrostatic (0.44 PSI/feet).
However, because of ductile nature and solubility,
salt/halite is hard to drill with hydrostatic mud
pressure. Using drilling fluid pressure as PP proxy,
an average 0.57–0.60 PSI/feet PP gradient was
finalized against the South Gharib Formation and
the basal part of the Zeit Formation. The calibrated
PP profiles at both present day and virgin conditions
are presented in Figure 5. Results indicate that both
the hydrocarbon producers (sandstones of the
Hammam Faraun and Kareen Formations) are de-
pleted (i.e., they have sub-hydrostatic condition)
while hydrostatic pressure condition is retained be-
tween non-producer units of the Feiran, Sidri and
Baba Formations, indicating an alternating pressure
regression profile.
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The studied wells have been drilled to average
165–170 feet2 of water depth. Extrapolated density
profile with a shallowest sediment density of 2.15 g/
cc provides the best fitting density trend with the
wireline bulk density log (Radwan 2019a, 2020a).
Vertical variation of Sv is controlled by lithology.
For example, anhydrites possess a higher density
(2.9 g/cc) than salt/halite (2.1 g/cc), resulting in
higher Sv gradient in the Zeit Formation (0.98 PSI/
feet) compared to South Gharib (0.94 PSI/feet).
Based on the density log-based estimation, at 7000

feet2 TVD (true vertical depth), Sv magnitude is
6850 PSI, which translates to an average 0.978 PSI/
feet vertical stress gradient (Fig. 5). Rock mechani-
cal properties were estimated from geophysical logs
to characterize formation strength and stiffness, as
presented in Figure 6. Based on the log-derived
Poisson�s ratio and Young�s modulus and static to
dynamic property correlation [Eqs. (11) and (12)],
Shmin and Shmax magnitudes were quantified
according to the poro-elastic horizontal strain model
(Fig. 5). Two FITs and one LOT were available

Figure 5. Present-day PP and principal stress magnitudes in well X1, Badri field.

�MDT� represents direct measured pore pressure values by Modular Dynamic

Tester tool. Green and red dots indicate MDT measurements in depleted and

virgin reservoir conditions, respectively. Estimated Shmin is validated with FIT

(pink squares) and LOT (black square).
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from the lower part of the Zeit and South Gharib
Formations, which have been instrumental in the
Shmin calibration. Estimated magnitudes (PSI unit3)
and gradients (PSI/feet) of PP and principal stress
elements are presented in Table 1.

The estimated stress magnitudes indicate that
Sv is the highest principal stress and Shmin is the least
stress component (Table 1). Based on the relative
stress magnitude distributions (Sv ‡ Shmax> Shmin),
a normal faulting stress state is inferred from the
studied Badri field. Figure 7 presents a cross-plot
between Sv normalized horizontal stress compo-
nents. Similar stress field observation has been made
by Hussein et al. (2013), who interpreted a pure
extensional normal faulting regime in the northern
(using 18 earthquake events) and southern Gulf of
Suez zone (total 79 events) based on the inversion of
earthquake focal mechanism (Hussein et al. 2013).
Bosworth and Durocher (2017) studied 17 earth-
quake events (M ‡ 3) during the last 45 years from
the central sub-basin of the Gulf of Suez and inter-

preted a NE–SW extension; the same is supported
by wellbore breakout-based observations (Bosworth
and Durocher 2017). Zaky (2017) studied the out-
crops from the El Quseir region and observed that
the Miocene–Pleistocene syn-rift rocks are dissected
by a large number of NNW–WNW-oriented normal
faults, some of which have oblique slickensides
indicating reactivation of these normal faults during
a recent extensional movement (Zaky 2017). Our
poro-elastic horizontal strain model results are
compatible with these previous stress field inter-
pretations, referring to the present-day normal
faulting tectonic regime in the studied field.

Based on MDT measurements in depleted and
virgin reservoir conditions, PP drop (DPP) across the
two reservoirs was quantified. Results indicate a 950–
1000 PSI2 PP reduction in the Hammam Faraun
Formation, whereas PP dropped 1070–1200 PSI
against the Kareem (Fig. 8). The vertically stacked

Figure 6. Dynamic elastic parameters (Poisson�s ratio and Young�s modulus), friction coefficient

and rock strength (cohesive strength and UCS) estimated from geophysical logs in well X1. The

presented interval belongs to the Kareem reservoir unit.

2 1 PSI/feet = 22.62 MPa/km; 1 Feet = 3.28 m; 1 PSI = 0.00689

MPa.
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Kareem reservoir sandstone units are separated by
thin shales over a cumulative 1000 feet1 vertical
thickness. A wide range of DPP in the Kareem For-

mation (as interpreted from MDT points) might be
due to unequal drawdown from various permeability
units across shale barriers. Based on the DPP, Shmin

Table 1. Estimated magnitudes and gradients of present-day PP and principal stress components

Depth

(feeta)

Formation Sv Shmin Shmax PP Comments

Magnitude Gradient Magnitude Gradient Magnitude Gradient Magnitude Gradient

PSIb PSI/feetc PSIb PSI/feetc PSIb PSI/feetc PSIb PSI/feetc

2100 Zeit 1873 0.89 1443 0.69 1740 0.83 950 0.45 FIT at base 0.65

PSI/feetc2500 2250 0.90 1692 0.68 2086 0.83 1131 0.45

3000 2815 0.94 2080 0.69 2500 0.83 1357 0.45

3575 3425 0.96 2600 0.73 3050 0.85 2045 0.57

3600 South

Gharib

3400 0.94 3023 0.84 3300 0.92 2060 0.57 LOT at base

0.84 PSI/feet4000 3800 0.95 3359 0.84 3680 0.92 2300 0.58

4500 4290 0.95 3773 0.84 4150 0.92 2600 0.58

5240 5000 0.95 4400 0.84 4800 0.92 3144 0.60

5300 Hammam

Faraun

5089 0.96 3400 0.64 4500 0.85 1597 0.30 Depleted reser-

voir, Virgin

PP 0.48 PSI/

feetc

5400 5189 0.96 3450 0.64 4535 0.84 1628 0.30

5500 5291 0.96 3520 0.64 4620 0.84 1658 0.30

5600 Feiran 5415 0.97 4390 0.78 4985 0.89 2533 0.45 Anhydrite

5680 5513 0.97 4465 0.79 5055 0.89 2569 0.45

5700 Sidri 5536 0.97 4483 0.79 5073 0.89 2578 0.45 Shale

5735 5572 0.97 4512 0.79 5105 0.89 2594 0.45

5800 Baba 5655 0.98 4574 0.79 5165 0.89 2623 0.45 Anhydrite

5850 5716 0.98 4620 0.79 5205 0.89 2646 0.45

5900 Kareem 5769 0.98 3700 0.63 4910 0.83 1595 0.27 Depleted reser-

voir, Virgin

PP 0.45 PSI/

feetc

6000 5871 0.98 3866 0.64 5001 0.83 1622 0.27

6500 6379 0.98 4150 0.64 5400 0.83 1757 0.27

6800 6690 0.98 4380 0.64 5565 0.82 1835 0.27

a1 Feet = 3.28 m, b1 PSI = 0.00689 MPa, cPSI/feet = 22.62 MPa/km

Figure 7. Sv normalized horizontal stress cross-plot from the

Badri oil field. Data points indicate a present-day normal fault

tectonic stress state in the study area.
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dropped in the range of 500–560 PSI in the Hammam
Faraun Formation and 570–790 PSI in the Kareem
Formation (Fig. 8). These yielded the average stress
path (A) values of 0.54 and 0.59 in the upper and
lower reservoirs, respectively. Both estimated A val-
ues are still far from the critical failure/faulting limit
(A = 0.68) (Fig. 9). A higher depletion rate would
have potentially increased the stress path values of
the reservoirs to the critical level, resulting in deple-
tion-induced reservoir instability. Therefore, it was
concluded that the present rate of depletion in the
mid-Miocene reservoirs of the Badri oil field will
most probably not induce normal faulting.

In this work, we have compared our data with
other depleted reservoirs worldwide data to fig-
ure out how our findings in the Badri field are far or
similar to those in other regions. From our review of

the previously published data by many authors
worldwide at reservoir scale (e.g., Salz 1977;
Breckels and van Eekelen 1982; Whitehead et al.
1987; Woodland and Bell 1989; Teufel et al. 1991;
Addis 1997a, b Hillis 2000; Altmann et al. 2010), we
concluded that the least recorded stress path value
was 0.34 in Canada, while the highest value was 1.18
and it was recorded in the North Sea (Table 2).
Hence, by using a simple approach, we classified the
A values into three categories (i.e., high, medium
and low). To get the values for each category, we
subtracted the lowest and highest values and then
divided the result by three to define the boundaries
of the proposed three categories. The stress path A
values in the low category range from 0.340 to 0.620,
in the medium category from 0.621 to 0.900 and in
the high category from 0.901 to 1.18. The A values in

Figure 8. Changes in pore pressure (DPP) and minimum horizontal stress (DSh)

due to depletion in Track 5. PP and Sh of virgin and depleted conditions are plotted

on Track 6, along with the geophysical log signatures and downhole measurements

(formation MDT pressure points before and after production, FIT and LOT).
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both the middle Miocene reservoirs in this study
belong to the low category, similar to Travis Peak
Formation and Lake Maracaibo in the USA and
Venezuela, respectively (Table 2).

CONCLUSIONS

This study offers a reservoir geomechanical
modeling of the Miocene formations in the Badri oil
field, offshore Egypt. Pore pressure and three prin-
cipal stress magnitudes were quantified from geo-

physical logs and calibrated/validated with various
downhole measurements. A normal faulting tectonic
regime was deciphered in the study area. Reductions
in PP and Shmin were inferred in the primary reser-
voirs, i.e., Hammam Faraun and Kareem Forma-
tions, because of prolonged hydrocarbon
production. Stress path analysis was performed in
both mid-Miocene reservoirs to identify any poten-
tial depletion-induced normal faulting. This study
will be helpful in future planning of infill well dril-
ling, production rate optimization without inducing
any reservoir damage or instability.

Figure 9. PP–Sh cross-plot and stress path (A) of the Hammam

Faraun (A = 0.54) and Kareem (A = 0.59) Formations along with

normal faulting limit. Depletion, in this case, is unlikely to

introduce normal faulting in the two reservoirs.
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