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A fast and efficient technique for explanation of self-potential anomalies is of immense
importance for exploration, engineering, and environmental problems. Estimation of model
parameters of ore bodies in the subsurface is the primary concern in mineral exploration. In
most cases, self-potential data are delineated considering various simple or idealized
structures for the interpretation of lateral and vertical variations of subsurface ore bodies. In
this context, we developed an inversion algorithm to determine the different parameters
associated with a 2D inclined plate-type structure, which does not require any a priori
information. The developed algorithm can interpret appropriately every parameter with
minimum uncertainty. The position of causative source body (x), its half-width (w) and its
depth (z) were the parameters interpreted using the developed algorithm. It was found that
these parameters were well resolved within the estimated uncertainty, although solutions for
w showed wide variability. The technique was verified with synthetic data without noise and
with different degrees of Gaussian noise. The technique was also confirmed with three field
datasets for mineral exploration, and the interpreted parameters were in fair agreement with
those reported in earlier works.
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INTRODUCTION

Self-potential (SP) is a passive geophysical
technique that measures naturally occurring electric
potentials, which are generated in the Earth’s sur-
face due to different mechanisms (electrokinetic,
electrochemical, thermoelectric and mineralization
potential). The method was introduced to decipher
the formation of mineralization potential principally
linked to sulfide and graphite ore structure (Sato and
Mooney 1960; Sundararajan et al. 1998; Mendonca
2008) within the subsurface and it was later used for
oxide ore deposits as well (Biswas and Sharma
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2014a, 2016). The method has varied applications
apart from mineral exploration. It has been exten-
sively applied in engineering problems, hydrogeo-
logical  surveys, environmental contaminant
monitoring, and tracing shear zones (Kulessa et al.
2003; Jardani et al. 2008; Mendonca 2008; Mehanee
2014, 2015; Gobashy et al. 2020). A review of dif-
ferent applications of SP data can be found in Bis-
was (2017).

Numerous quantitative interpretation tech-
niques for SP data have been developed in the past
considering two different categories (Mehanee et al.
2011; Mehanee 2015; Essa and El-Hussein 2017).
The first category corresponds to 2D and/or 3D
subsurface geologic structures with arbitrary shape
and size. The second category is based on idealized
buried structures, which can be understood assuming
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Figure 1. A 2D inclined plate-type structure within the subsurface
(after Mehanee et al. 2011).

simple geometrical shapes such as a sphere, cylinder,
fault, and thick sheet. The detail of these categories
can be seen in few publications (e.g., Mehanee et al.
2011; Mehanee 2015; Essa and El-Hussein 2017,
Abdelrahman et al. 2019). The concern of this pre-
sent work is that, in some geological settings, there
can be a single polarized body that can be inter-
preted individually (Asfahani and Tlas 2005). In
such case, a technique of the second category, with
high computational facilities, can be used to inter-
pret the SP anomaly from a single polarized body
that does not need a priori data nearby the subsur-
face geology of that area.

In the past, several approaches have been
developed and applied to infer SP anomalies formed
due to simple geometrical structures. For example,
2D inclined sheet-type structures have been inter-
preted by various workers (Paul 1965; Rao et al.
1982; Murthy and Haricharan 1985; Sundararajan
et al. 1990, 1998; Jagannadha et al. 1993; Abdel-
rahman et al. 2003; Murthy et al. 2005; El-Kaliouby
and Al-Garani 2009; Monteiro Santos 2010; Essa
2011; Roudsari and Beitollahi 2013; Sharma and
Biswas 2013; Biswas and Sharma 2014a, b; Biswas
2016, 2019; Gobashy et al. 2020). Spherical- and
cylindrical-type structures have also been inter-
preted (Paul et al. 1965; Rao et al. 1970; Roy and
Mohan 1984; Murthy and Haricharan 1985; Abdel-
rahman and Sharafeldin 1997; Tlas and Asfahani
2007; Essa et al. 2008; Goktiirkler and Balkaya 2012;
Tlas and Asfahani 2013; Biswas and Sharma 2015;
Mehanee 2015; Roudsari and Beitollahi 2015; Di
Maio et al. 2016aa, b; Abdelrahman et al. 2019;
Abdelazeem et al. 2019). Moreover, 2D inclined

thick sheet-like bodies have been elucidated by
Dmitriev (2012) and later by Biswas and Sharma
(2017). A comprehensive review of different inter-
pretation approaches developed for specific subsur-
face structures can be found in Murthy and
Haricharan (1985), Sundararajan et al. 1998, and
Biswas (2013). However, in the case of 2D inclined
plate-type structures, very few works have been
carried out in the past. Hafez (2005) developed a
technique for interpreting SP anomaly using first-
order moving filters specifically for a short profile.
Mehanee et al. (2011) developed a second moving
average method for interpreting SP anomalies,
which can sufficiently eliminate the SP effect of
deeper subsurface structure. Essa and El-Hussein
(2017) developed a technique constructed on second
horizontal gradient, which can eliminate undesirable
anomaly from measured SP anomalies.

In the present work, we encompass the work of
Hafez (2005) and Mehanee et al. (2011) as well as
the interpretation method of Essa and El-Hussein
(2017) for the delineation of 2D plate-type structure
for SP anomaly using the forward formula of Lile
(1994) and Abdelrahman et al. (1998). As men-
tioned by Mehanee et al. (2011), there is a need for
an effective interpretation of current flow lines,
depth, and width of the plate-type structure. Hence,
the present work is focused on the interpretation of
all parameters associated with plate-type structures.
To interpret effectively the SP responses from sub-
surface mineralized bodies, we used the very fast
simulated annealing (VFSA) algorithm intended for
the delineation of SP anomaly. We choose this
nonlinear global optimization inversion for this
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Figure 2. Flowchart of the inversion process (after Biswas 2013).
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Figure 3. Computed response for model 1.
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Table 1. Computed parameters for model 1
Parameters True value Range Mean model
Noise-free Noisy
L 150 0-200 150.3 £ 9.6 139.0 £ 19.6
L 100 0-150 100.3 + 9.7 89.4 £+ 19.6
Xo (m) 40 0-80 40.0 + 0.0 40.1 £ 0.3
w (m) 2 0-3 20401 21403
z (m) 7 0-10 6.9 £ 0.1 6.9 +03
Error 20 x 1078 8.0 x 1074
Model 1
a) Noise-free
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Figure 4. Histogram analysis for model 1.

study because long SP anomalies are mostly non-
linear. The inversion algorithm does not require a
priori information for the interpretation of SP data.
The benefit of this inversion algorithm is that it can
interpret effectively short and long profile data,
single as well as multiple structures, and it can
determine precisely parameters from shallow and
deeper structures. The method is exemplified and
analyzed on noise-free and noisy synthetic examples,

and trialed to elucidate three field anomalies for
exploration.

METHODOLOGY

Forward Formulation

Self-potential for a 2D inclined plate (Fig. 1) is
given by (Lile 1994; Abdelrahman et al. 1998):
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T 1 f(x+w
V(x) :E(Il —12) —11 tan 1(T>
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where z is depth, w is half-width of the body, x is
location of the body on the surface, /; and I, are line
currents (Fig. 1). An inclined plate (/4 > 1) will
show an asymmetrical anomaly, while a vertical
plate ([, = I,) produces a symmetrical anomaly
curve.

Global Optimization

The present global optimization is a modified
form of simulated annealing (SA), i.e., VFSA, which
was derived from the analogy of heat bath algorithm
(Sen and Stoffa 2013) and was applied extensively in
interpreting various geophysical data. Details of the
VFSA can be found in many publications (Rothman
1985, 1986; Sharma 2012; Sen and Stoffa 2013;
Sharma and Biswas 2013) and are not briefed here
for brevity. It was developed to overcome the limi-
tations of linear inversion and, because of its sta-
bility and robustness, it can negate the problem of
non-uniqueness and resolution. The other advan-
tages of this inversion method are that it takes less
time in computing a large set of data and in finding a
global solution (Sen and Stoffa 2013). Moreover, it is
quite efficient with minimum CPU time and it takes
a lesser amount of memory and with high resolution
(Ingber and Rosen 1992).

Every inversion method needs an error vector
or objective function to be minimized and, in the
present case, the error can be calculated from the
equation given below to determine the variation
between the observed and calculated anomalies
(Kaikkonen and Sharma 1998), thus:

1 Vo _ye ?
_ i i 2
¢ N;(|V?|+(V&ax—vgm)/z> @

where N refers to number of data, V? and V¥ are the
ith observed and model responses, respectively, VO
and V0. are the maximum and minimum values,
respectively, of synthetic/field data.

Moreover, to find a global solution, a single run
is not sufficient, and hence in the present case, 10
runs were completed to find the mean model. Next,

a Gaussian probability density function (PDF) was
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(a) Noise-free ,

Figure 5. 3D cross-plot for model 1. Yellow points represent
true values. Red fields represent uncertainty boundaries and
peak PDF range.

calculated to find the most appropriate model and to
minimize the uncertainty in the final mean model,
which is close to the global mean model. To achieve
this, we followed the work of Mosegaard and
Tarantola (1995) and Sen and Stoffa (1996). The
particulars of the global model, besides uncertainty
analysis, can be understood from several works of
literature, viz. Biswas (2016, 2018) and Trivedi et al.
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Figure 6. Computed response for model 2.
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Table 2. Computed parameters for model 2

Parameters True value Range Mean model

Noise-free Noisy
I 200 0-250 208.0 + 12.9 181.9 £+ 14.6
L 150 0-200 154.3 £ 12.7 1334 + 14.1
xo (m) 40 0-80 40.0 £ 0.0 40.1 £ 0.1
w (m) 3 0-5 29+02 32+03
z (m) 9 0-10 9.0+ 0.1 85+£02
Error 1.0 x 107° 20 x 107°

(2020), who applied this for interpretation of various
geophysical data. The code was implemented using
MS FORTRAN Developer studio in Windows 10
platform. The computation of the entire process
takes 30 s (not CPU time). The details of the opti-
mization process are shown in Figure 2.

RESULTS
Theoretical Examples
Model 1

A self-potential anomaly was generated, using
Eq. (1), for a 2D inclined plate-type structure
(Fig. 3a) with different parameters (Table 1). The
inversion algorithm developed for such type of
structure was applied to interpret the synthetic data.
All five parameters for 2D inclined plate-type
structures were delineated, and the results are shown
in Table 1. Out of five parameters, as mentioned in
the theoretical formulation, the important for min-
eral exploration is the zero-crossing (x(), half-width
(w), and the depth (z). Hence, we tried to study
whether inversion can delineate these parameters or
not. Next, we tried to study the histogram of xq, w,
and z. We found that xy and z show peaks in true
values; however, w shows a wide solution (Fig. 4a).
This suggests that x, and z can be well resolved but
there is uncertainty in w. To confirm these obser-
vations, we again tried to see a 3D cross-plot analysis
between xg, w, and z. It can be also be seen from the
cross-plot that xy and z are very close to their true
values, but w shows a wide solution (Fig. 5a).
However, the elucidated parameters are very close
to their true values, which were taken for synthetic
analysis, and the parameters (xo, w, and z) were in-

side the uncertainty boundaries and peak PDF
range.

Next, to see the influence of noisy synthetic
data, 5% Gaussian noise (i.e., data multiplied by
Gaussian random values with mean of 1 and stan-
dard deviation of 0.2) was added to the same data
and the VFSA procedure was carried out again
(Fig. 3b). The inversion algorithm successfully in-
verted all the parameters. It was found that x and z
show peaks of their true values, but w shows a varied
array of solutions according to a histogram analysis
(Fig. 4b). To confirm this, we again studied the
cross-plot and found the same as for the noise-free
synthetic data. 5b shows the cross-plot for the noise-
corrupted synthetic data. Figure 3a and b shows the
responses from synthetic and calculated data. Ta-
ble 1 shows the interpreted parameters for this
model.

Model 2

The second model (Fig. 6a), a 2D inclined plate,
was taken to see the variations of w and z. The
inversion procedure was executed for this model and
the parameters were interpreted. Again, it was
found that w shows varied solutions; however, x,,
and z can be determined precisely. Histograms and
cross-plots were very similar as for model 1 and
hence were not shown here for brevity. Moreover, to
check the consistency in higher degree of noise-
corrupted data, 10% Gaussian noise was added to
this model (Fig. 6b). The inversion procedure was
again executed for this model, and the results were
the same as discussed for model 1. Table 2 shows the
final interpreted parameters, and Figure 6a and b
shows the calculated anomalies in case of noise-free
and noisy data, respectively.
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Figure 7. Computed response for model 3.
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Table 3. Computed parameters for model 3
Parameters True value Range Mean model
Noise-free Noisy
I 200 0-300 189.3 +£ 8.7 145.4 + 33.0
I 200 0-300 189.4 + 8.6 145.3 £+ 32.9
X (m) 40 0-80 40.0 £ 0.0 395+ 0.1
w (m) 4 0-10 43 +£02 45408
z (m) 10 0-20 9.9+ 0.1 92 +0.2
Error 12 x 1078 9.0 x 1073
i o this model can be interpreted, 20% Gaussian noise
0 — Field data (Polymetallic vein, Caucasus)
. e o Field data was added to the data and the VFSA process was
. Calculated data again applied (Fig. 7b). The results were the same as
20 — discussed earlier (Table 3). Figure 7 shows the
g computed responses for both types of data for
> model 3.
£ -40 —
2
< .
o .
@ Field Examples
-60 — Interpeted value
Xo = 123.4+0.4
1 =0 ' To confirm the usefulness and consistency of
-80 — T T T T T T the present method, three field examples were used.
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Distance (m)

Figure 8. Computed response for field data (polymetallic vein,
Caucasus).

Model 3

The third model, a 2D vertical plate-type
(I, = Ip) structure, was taken to see whether it can
be interpreted as well by the inversion procedure as
a different model (Fig. 7a). The inversion procedure
was used to interpret the data and it yielded the
same results as for Models 1 and 2. The histograms
and cross-plots were found to agree with those of
model 1. Moreover, to check whether noisy data for

Polymetallic Sulfide Deposit

The first example was from a polymetallic vein-
type deposit in the Caucasus (after Eppelbaum and
Khesin 2012). The anomaly data were digitized at
2.57 m intervals. The data were interpreted by Essa
and El-Hussein (2017) considering 2D plate and by
Gobashy et al. (2020) considering a 2D inclined
sheet-type structure. These field data were again
interpreted here using the proposed inversion algo-
rithm. It was found that the important parameters
for 2D inclined plate-type structures were depth and
half-width. The present results show that the depth
of the body was 44 m and half-width 21 m. Figure 8

Table 4. Computed parameters for field example (polymetallic vein, Caucasus)

Parameters Range Mean model Essa and El-Hussein (2017) Gobashy et al. (2020)
I 0-100 60.7 £ 5.3 - -

I, 0-110 65.7 £5.3 - -

xo (m) 100-140 1234 £ 04 - 211.437%

w (m) 0-50 209 + 1.6 0.64 -

z (m) 0-50 438 £ 0.7 30.7 30.88

Error 2.0 x 107 - -

4x-axis was different in this case
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Figure 9. Computed response for field data (Surda anomaly).

Table 5. Computed parameters for field example (Surda anomaly, India)

Parameters Range Mean model Essa and El-Hussein (2017) Mehanee et al. (2011) Gobashy et al. (2020)
L 0-600 564.8 + 353 - - -

I 0-700 555.4 + 33.1 - - -

Xo (m) 230-260 2524 +£02 - - — 417"

w (m) 0-20 10.0 £ 0.6 10.01 9.8 -

z (m) 0-20 162 £0.3 10.85 9.5 31.29

Error 35x107° - - -

4x-axis was different in this case
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Figure 10. Computed response for field data (Kalava anomaly).
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Field data (Kalava anomaly)
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Figure 11. Histogram analysis for Kalava anomaly.
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Figure 12. 3D cross-plot for Kalava anomaly.

shows the responses from the field and calculated
data, and Table 4 shows the interpreted parameters.

Surda Anomaly

The second field example was from copper
sulfide deposits in the Surda area, India (Murthy and
Haricharan 1984; Sundararajan et al. 1998). The
data, taken from Sharma and Biswas (2013), have
been used widely for interpretation considering 2D

inclined sheet-type subsurface structures (Sun-
dararajan et al. 1998; Sharma and Biswas 2013;
Biswas and Sharma 2014b; Biswas 2017; Gobashy
et al. 2020). However, the same SP anomaly data
were also interpreted considering a 2D inclined
plate-type structure (Mehanee et al. 2011; Essa and
El-Hussein 2017). The SP data were re-interpreted
here considering 2D inclined plate, and the depth
and half-width interpreted were 16 m and 10 m,
respectively. The interpreted data were consistent
with the interpreted depth and half-width from
Mehanee et al. (2011) and Essa and El-Hussein
(2017). The responses from the field and calculated
data are illustrated in Figure 9, and all the inter-
preted models are shown in Table 5.

Kalava Anomaly

The last field example (Fig. 10) was from a
sulfide mineralized deposit in a fault zone in Cud-
dapah Basin, India (Rao et al. 1982). The data, taken
from Biswas and Sharma (2015), were interpreted
earlier considering a sheet-type structure (Sun-
dararajan et al. 1990; Jagannadha et al. 1993; Murthy
et al. 2005; El-Kaliouby and Al-Garani 2009; Go-
bashy et al. 2020), a horizontal cylinder-type struc-
ture (Biswas and Sharma 2015), a vertical cylinder
(Mehanee 2014), and a 2D inclined plate-type
structure (Mehanee et al. 2011). The data were re-
interpreted here considering a 2D inclined plate-
type structure. A histogram was also prepared for
these field data to see whether the responses were
the same as those found from the synthetic exam-
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Table 6. Computed parameters for field example (Kalava anomaly, India)

Parameters Range Mean model Mehanee et al. (2011) Gobashy et al. (2020)
I 0-150 1223+ 1.6 - -

I, 0-120 1193 £ 1.6 - -

Xo (m) —-5t05 —0.07 £0.0 - — 0455

w (m) 0-10 3.8+0.1 2.13 -

z (m) 0-10 7.0 £ 0.0 3.65 7.35

Error 9.0 x 107* - -

ples. It was found that w also shows a wide range; ACKNOWLEDGMENTS

however, xy and z were close to their near probable
values (Fig. 11). Moreover, a 3D cross-plot also
shows that xj and z were very close to the probable
values but w widely varies (Fig. 12). The interpreted
z and w were 7m and 3.8 m, respectively. The
interpreted depth is consistent with Biswas and
Sharma (2015) but somewhat different from Meha-
nee et al. (2011). Figure 10 shows the computed
response, and Table 6 shows the interpreted
parameters.

CONCLUSIONS

We have developed an inversion algorithm for
the delineation, from self-potential data, of different
parameters associated with a 2D plate-type struc-
ture. The method of VFSA was applied to determine
the 2D plate viz. location of the body (x), its half-
width (w) and its depth (z). The solutions show that
the technique can delineate all the three parameters;
however, there some small uncertainty in deter-
mining w, which varies widely but within uncertainty
limits. Analyses of histograms and cross-plots reveal
the same. The technique was verified using noise-
free and noisy synthetic data, and it can guess all the
three parameters with good accuracy. Three field
examples were also interpreted, and the results were
consistent with results of other techniques published
in the literature. The inversion method can interpret
self-potential data considering a 2D inclined plate-
type structure without a priori evidence of the sub-
surface structure and variation in resistivity data.
However, the present method cannot be considered
as a final interpretation for mineral exploration; ra-
ther, it should be integrated with other geophysical
techniques for more reliable results. The method can
be used as well for single and/or multiple structures
associated with mineralization.
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posal on the interpretation of mineral exploration
study for submission to the Institute of Eminence
(IoE) research grant, BHU by AB.

REFERENCES

Abdelazeem, M., Gobashy, M., Khalil, M. H., & Abdraboub, M.
(2019). A complete model parameter optimization from self-
potential data using Whale algorithm. Journal of Applied
Geophysics, 170, 103825.

Abdelrahman, E. M., Abdelazeem, M., & Gobashy, M. (2019). A
minimization approach to depth and shape determination of
mineralized zones from potential field data using the Nelder-
Mead simplex algorithm. Ore Geology Reviews, 114, 103123.

Abdelrahman, E. M., El-Araby, H. M., Hassanein, A. G., &
Hafez, M. A. (2003). New methods for shape and depth
determinations from SP data. Geophysics, 68, 1202-1210.

Abdelrahman, E. M., Hassaneen, A Gh, & Hafez, M. A. (1998).
Interpretation of self-potential anomalies over two-dimen-
sional plates by gradient analysis. Pure and Applied Geo-
physics, 152, 773-780.

Abdelrahman, E. M., & Sharafeldin, M. S. (1997). A least-squares
approach to depth determination from self-potential
anomalies caused by horizontal cylinders and spheres. Geo-
physics, 62, 44-48.

Asfahani, J., & Tlas, M. (2005). A constrained nonlinear inversion
approach to quantitative interpretation of self-potential
anomalies caused by cylinders, spheres and sheet-like struc-
tures. Pure and Applied Geophysics, 162, 609-624.

Biswas, A. (2013). Identification and resolution of ambiguities in
interpretation of self-potential data: Analysis and integrated
study around South Purulia Shear Zone, India. Ph.D. thesis,
Department of Geology and Geophysics, Indian Institute of
Technology Kharagpur, 199 pp. Retrieved May, 2020 from h
ttp://www.idr.iitkgp.ac.in/xmlui/handle/123456789/3247.


http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/3247
http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/3247

188

Biswas, A. (2016). A comparative performance of least square
method and very fast simulated annealing global optimiza-
tion method for interpretation of Self-Potential anomaly over
2-D inclined sheet type structure. Journal of the Geological
Society of India, 88(4), 493-502.

Biswas, A. (2017). A review on modeling, inversion and inter-
pretation of self-potential in mineral exploration and tracing
Paleo-Shear zones. Ore Geology Reviews, 91, 21-56.

Biswas, A. (2018). Inversion of source parameters from magnetic
anomalies for mineral/ore deposits exploration using global
optimization technique and analysis of uncertainty. Natural
Resources Research, 27(1), 77-107.

Biswas, A. (2019). Inversion of amplitude from the 2-D analytic
signal of self-potential anomalies. In K. Essa (Ed.), Minerals
(pp. 13-45). London: In-Tech Education and Publishing.

Biswas, A., & Sharma, S. P. (2014a). Resolution of multiple sheet-
type structures in self-potential measurement. Journal of
Earth System Science, 123(4), 809-825.

Biswas, A., & Sharma, S. P. (2014b). Optimization of Self-Po-
tential interpretation of 2-D inclined sheet-type structures
based on Very Fast Simulated Annealing and analysis of
ambiguity. Journal of Applied Geophysics, 105, 235-247.

Biswas, A., & Sharma, S. P. (2015). Interpretation of self-potential
anomaly over idealized body and analysis of ambiguity using
very fast simulated annealing global optimization. Near Sur-
face Geophysics, 13(2), 179-195.

Biswas, A., & Sharma, S. P. (2016). Integrated geophysical studies
to elicit the structure associated with Uranium mineralization
around South Purulia Shear Zone, India: A Review. Ore
Geology Reviews, 72, 1307-1326.

Biswas, A., & Sharma, S. P. (2017). Interpretation of Self-poten-
tial anomaly over 2-D inclined thick sheet structures and
analysis of uncertainty using very fast simulated annealing
global optimization. Acta Geodaetica et Geophysica, 52(4),
439-455.

Di Maio, R., Piegari, E., Rani, P., & Avella, A. (2016a). Self-
Potential data inversion through the integration of spectral
analysis and tomographic approaches. Geophysical Journal
International, 206, 1204-1220.

Di Maio, R., Rani, P., Piegari, E., & Milano, L. (2016b). Self-
potential data inversion through a Genetic-Price algorithm.
Computers & Geosciences, 94, 86-95.

Dmitriev, A. N. (2012). Forward and inverse self-potential mod-
eling: A new approach. Russian Geology and Geophysics, 53,
611-622.

El-Kaliouby, H. M., & Al-Garani, M. A. (2009). Inversion of self-
potential anomalies caused by 2D inclined sheets using
neural networks. Journal of Geophysics and Engineering, 6,
29-34.

Eppelbaum, L., & Khesin, B. (2012). Methodological specificities
of geophysical studies in the complex environments of the
caucasus. In L. Eppelbaum & B. Khesin (Eds.), Geophysical
studies in the caucasus (pp. 39-138). Berlin: Springer.

Essa, K. S. (2011). A new algorithm for gravity or self-potential
data interpretation. Journal of Geophysics and Engineering,
8, 434-446.

Essa, K. S., & El-Hussein, M. (2017). A new approach for the
interpretation of self-potential data by 2-D inclined plate.
Journal of Applied Geophysics, 136, 455-461.

Essa, K., Mahanee, S., & Smith, P. D. (2008). A new inversion
algorithm for estimating the best fitting parameters of some
geometrically simple body to measured self-potential
anomalies. Exploration Geophysics, 39, 155-163.

Gobashy, M., Abdelazeem, M., Abdrabou, M., & Khalil, M. H.
(2020). Estimating model parameters from self-potential
anomaly of 2D inclined sheet using whale optimization
algorithm: Applications to mineral exploration and tracing
shear zones. Natural Resources Research, 29, 499-519.

K. Rao et al.

Goktiirkler, G., & Balkaya, C. (2012). Inversion of self-potential
anomalies caused by simple geometry bodies using global
optimization algorithms. Journal of Geophysics and Engi-
neering, 9, 498-507.

Hafez, M. A. (2005). Interpretation of the self-potential anomaly
over a 2D inclined plate using a moving average window
curves method. Journal of Geophysics and Engineering, 2,
97-102.

Ingber, L., & Rosen, B. (1992). Genetic algorithms and very fast
simulated reannealing: A comparison. Mathematical and
Computer Modeling, 16(11), 87-100.

Jagannadha, R. S., Rama, R. P., & Radhakrishna, M. 1. V. (1993).
Automatic inversion of self-potential anomalies of sheet-like
bodies. Computers & Geosciences, 19, 61-73.

Jardani, A., Revil, A., Boleve, A., & Dupont, J. P. (2008). Three-
dimensional inversion of self-potential data used to constrain
the pattern of groundwater flow in geothermal fields. Journal
of Geophysical Research-Solid Earth, 113, B09204.

Kaikkonen, P., & Sharma, S. P. (1998). 2-D nonlinear joint
inversion of VLF and VLF-R data using simulated annealing.
Journal of Applied Geophysics, 39, 155-176.

Kulessa, B., Hubbard, B., & Brown, G. H. (2003). Cross-coupled
flow modeling of coincident streaming and electrochemical
potentials and application to sub-glacial self-potential data.
Journal of Geophysical Research, 108(B8), 2381.

Lile, O. B. (1994). Modeling self-potential anomalies from electric
conductors. In EAGE 56th meeting and technical exhibition
(Vienna, Austria).

Mehanee, S. (2014). An efficient regularized inversion approach
for self-potential data interpretation of ore exploration using
a mix of logarithmic and non-logarithmic model parameters.
Ore Geology Reviews, 57, 87-115.

Mehanee, S. (2015). Tracing of paleo-shear zones by self-potential
data inversion: case studies from the KTB, Rittsteig, &
Grossensees graphite-bearing fault planes. Earth, Planets and
Space, 67, 14-47.

Mehanee, S., Essa, K. S., & Smith, P. D. (2011). A rapid technique
for estimating the depth and width of a two-dimensional plate
from self-potential data. Journal of Geophysics and Engi-
neering, 8, 447-456.

Mendonca, C. A. (2008). Forward and inverse self-potential
modeling in mineral exploration. Geophysics, 73, F33-F43.

Monteiro Santos, F. A. (2010). Inversion of self-potential of ide-
alized bodies anomalies using particle swarm optimization.
Computers & Geosciences, 36, 1185-1190.

Mosegaard, K., & Tarantola, A. (1995). Monte Carlo sampling of
solutions to inverse problems. Journal of Geophysical Re-
search, 100(B7), 12431-12447.

Murthy, B. V. S., & Haricharan, P. (1984). Self-potential anomaly
over double line of poles—interpretation through log curves.
Proceedings Indian Academy of Science (Earth and Planetary
Science), 93, 437-445.

Murthy, B. V. S., & Haricharan, P. (1985). Nomograms for the
complete interpretation of spontaneous potential profiles
over sheet like and cylindrical 2D structures. Geophysics, 50,
1127-1135.

Murthy, I. V. R., Sudhakar, K. S., & Rao, P. R. (2005). A new
method of interpreting self- potential anomalies of two-di-
mensional inclined sheets. Computers & Geosciences, 31,
661-665.

Paul, M. K. (1965). Direct interpretation of self-potential
anomalies caused by inclined sheets of infinite extension.
Geophysics, 30, 418-423.

Paul, M. K., Data, S., & Banerjee, B. (1965). Interpretation of SP
anomalies due to localized causative bodies. Pure and Ap-
plied Geophysics, 61, 95-100.

Rao, A. D., Babu, H., & SivakumarSinha, G. D. (1982). A Fourier
transform method for the interpretation of self-potential



Global Optimization for Delineation of Self-potential Anomaly of a 2D Inclined Plate 189

anomalies due to two-dimensional inclined sheet of finite
depth extent. Pure and Applied Geophysics, 120, 365-374.

Rao, B. S. R, Murthy, I. V. R., & Reddy, S. J. (1970). Interpre-
tation of self-potential anomalies of some simple geometrical
bodies. Pure and Applied Geophysics, 78, 60-717.

Rothman, D. H. (1985). Nonlinear inversion, statistical mechanics
and residual statics estimation. Geophysics, 50, 2784-2796.

Rothman, D. H. (1986). Automatic estimation of large residual
statics correction. Geophysics, 51, 337-346.

Roudsari, M. S., & Beitollahi, A. (2013). Forward modeling and
inversion of self-potential anomalies caused by 2D inclined
sheets. Exploration Geophysics, 44, 176-184.

Roudsari, M. S., & Beitollahi, A. (2015). Laboratory modelling of
self-potential anomalies due to spherical bodies. Exploration
Geophysics, 46, 320-331.

Roy, S. V. S., & Mohan, N. L. (1984). Spectral interpretation of
self-potential anomalies of some simple geometric bodies.
Pure and Applied Geophysics, 78, 66-77.

Sato, M., & Mooney, H. M. (1960). The electrochemical mecha-
nism of sulfide self-potentials. Geophysics, 25, 226-249.

Sen, M. K., & Stoffa, P. L. (1996). Bayesian inference, Gibbs
sampler and uncertainty estimation in geophysical inversion.
Geophysical Prospecting, 44, 313-350.

Sen, M. K., & Stoffa, P. L. (2013). Global optimization methods in
geophysical inversion (2nd ed.). London: Cambridge Pub-
lisher.

Sharma, S. P. (2012). VFSARES—A very fast simulated anneal-
ing FORTRAN program for interpretation of 1-D DC

resistivity sounding data from various electrode array.
Computers & Geosciences, 42, 177-188.

Sharma, S. P., & Biswas, A. (2013). Interpretation of self-potential
anomaly over 2D inclined structure using very fast simulated
annealing global optimization—An insight about ambiguity.
Geophysics, 78(3), WB3-WB15.

Sundararajan, N., Arun Kumar, I., Mohan, N. L., & SeshagiriRao,
S. V. (1990). Use of Hilbert transform to interpret self-po-
tential anomalies due to two dimensional inclined sheets.
Pure Applied Geophysics, 133, 117-126.

Sundararajan, N., Srinivasa Rao, P., & Sunitha, V. (1998). An
analytical method to interpret self-potential anomalies
caused by 2D inclined sheets. Geophysics, 63, 1551-1555.

Tlas, M., & Asfahani, J. (2007). A best-estimate approach for
determining self-potential parameters related to simple geo-
metric shaped structures. Pure and Applied Geophysics, 164,
2313-2328.

Tlas, M., & Asfahani, J. (2013). An approach for interpretation of
self-potential anomalies due to simple geometrical structures
using flair function minimization. Pure and Applied Geo-
physics, 170, 895-905.

Trivedi, S., Kumar, P., Parija, M. P., & Biswas, A. (2020). Global
optimization of model parameters from the 2-D analytic
signal of gravity and magnetic anomalies. In A. Biswas & S.
P. Sharma (Eds.), Advances in modeling and interpretation in
near surface geophysics (pp. 189-221). Berlin: Springer.



	Global Optimization for Delineation of Self-potential Anomaly of a 2D Inclined Plate
	Abstract
	Introduction
	Methodology
	Global Optimization

	Results
	Theoretical Examples
	Model 1
	Model 2
	Model 3

	Field Examples
	Polymetallic Sulfide Deposit
	Surda Anomaly
	Kalava Anomaly


	Conclusions
	Acknowledgments
	References




